Solution to Problem #117

Rob Johnson of West Hills CA, John Snyder of Oconomowoc WI, John T. Robinson of Yorktown Heights NY, Jean Moreau de Saint-Martin of Paris (France), Ignacio Larrosa Cañestro of Coruņa (Spain), Paul Botham of Ipswich UK, and Matt Hudelson of Washington State University solved the problem.

Here is Ignacio Larrosa Cañestro's solution:

The LHS is a symmetrical polynomial. Then, if x0 is a root, so is 1/x0, and
x0 = 0 is never a root. Dividing by x^2,

x^2 + ax + b +a/x + 1/x^2 = 0   (#1)

Letting

z = x + 1/x      (#2)

z^2 = x^2 + 1/x^2 + 2

and the equation becomes

z^2 +az + (b - 2) = 0  ==>

z = (-a +/- sqrt(a^2 - 4(b - 2)))/2   (#3)

Then, if  b > a^2/4 + 2 there aren't real solutions, because z is imaginary
and then x can't be real.

Solving #2 for x,

x^2 - zx + 1 = 0

x = (z +/- sqrt(z^2 - 4))/2

If z is real, in order to x be real, it must be z^2 ≥ 4  ===> z ≤ -2 or  z ≥ 2.

In #3 we can see that the the number of solutions don't depend on the sign
of a. Then we can study only the case a ≥ 0, and reflect the conclusions to
a ≤ 0. Let 

z1 = (-a + sqrt(a^2 - 4(b - 2)))/2

z2 = (-a - sqrt(a^2 - 4(b - 2)))/2

Then, if z is real,

i) z1^2 ≥ 4 and z2^2 ≥ 4  ===> 4 real solutions for (#1)

ii) (z1^2 ≥ 4 and z2^2 < 4)  or (z1^2 < 4 and z2^2 ≤ 4)  ===> 2 real
solutions for (#1)

iii) z1^2 < 4 and z2^2 < 4  ===> 0 real solutions for (#1)


A) z1^2 ≥ 4

a^2 + a^2 - 4(b - 2) - 2a*sqrt(a^2 - 4(b - 2)) ≥ 16

a^2 - 2(b - 2) - a*sqrt(a^2 - 4(b - 2)) ≥ 8

a^2 - 2b - 4 ≥ a*sqrt(a^2 - 4(b - 2))  ===>


a^2 - 2b - 4 ≥ 0  ===>  b ≤ a^2/2 - 2

AND

(a^2 - 2b - 4)^2 ≥ a^2(a^2 - 4(b - 2)) <===>

- 8a^2 + 4b^2 + 16b + 16 ≥ 8a^2

- 2a^2 + b^2 + 4b + 4 ≥ 2a^2

(b + 2)^2 ≥ (2a)^2  <===> b ≥ 2a - 2 OR  b ≤ -2a - 2

(we are assuming that a ≥ 0)

B) z2^2 ≥ 4

a^2 + a^2 - 4(b - 2) + 2a*sqrt(a^2 - 4(b - 2)) ≥ 16

a^2 - 2(b - 2) + a*sqrt(a^2 - 4(b - 2)) ≥ 8

a*sqrt(a^2 - 4(b - 2)) ≥  - a^2 + 2b + 4   ===>



(-a^2 + 2b + 4)^2 ≤ a^2(a^2 - 4(b - 2)) <===>

4b^2 + 16b - 8a^2 + 16 ≤ 8a^2

- 2a^2 + b^2 + 4b + 4 ≤ 2a^2

(b + 2)^2 ≤ (2a)^2  <===> b ≤ 2a - 2   AND   b ≥ -2a - 2

(we are assuming that a ≥ 0)

OR

- a^2 + 2b + 4  ≤ 0  ==> b ≤ a^2/2 - 2



Joining all, taking in account that the two parabolas an two straight lines
intersect in (+/- 4, 6) and (0, - 2)

0 real solutions:

IF |a| ≥ 4,  b  >  a^2/4 + 2
IF - 4 < a < 0,  b > -2a - 2
IF  0 ≤ a < 4,  b > 2a - 2

2 real solutions:

IF a ≤ -4,  2a - 2  <  b  <  -2a - 2
IF - 4 < a < 0,  2a - 2  <  b  ≤ -2a - 2
IF  0 < a < 4,  -2a - 2  <  b ≤ 2a - 2
IF a ≥ 4,  -2a - 2 < b <  2a - 2

4 real solutions:

IF a ≤ -4,  -2a - 2  ≤  b  ≤  a^2/4 + 2
IF - 4 < a ≤ 0,  b  ≤ 2a - 2
IF  0 < a < 4,  b  ≤ -2a - 2
IF a ≥ 4,  2a - 2  ≤  b  ≤  a^2/4 + 2

In the figure, there are 0 real solutions in the white area, 2 real
solutions in the blue area and 4 real solutions in the red area. At the
frontiers, the number of real solutions is the highest of the neighbours
zones.

Back to the Archives
Back to the Math Department Homepage.