$$
\text { The Evaluation of } \int_{0}^{1}\lfloor-\ln x\rfloor d x
$$

We consider the more general problem:

$$
\int_{0}^{1}\lfloor-\ln x\rfloor^{k} d x
$$

where k is a positive integer.
Now, if n is a nonnegative integer,

$$
\begin{aligned}
& e^{-n} \geq x \geq e^{-n-1} \\
& -n \geq \ln x \geq-n-1 . \\
& n \leq-\ln x \leq n+1
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int_{0}^{1}\lfloor-\ln x\rfloor^{k} d x & =\sum_{n=0}^{+\infty} \int_{e^{-n-1}}^{e^{-n}}\lfloor-\ln x\rfloor^{k} d x=\sum_{n=0}^{+\infty} \int_{e^{-n-1}}^{e^{-n}} n^{k} d x \\
& =\sum_{n=0}^{+\infty}\left(e^{-n}-e^{-n-1}\right) n^{k}=\left(1-e^{-1}\right) \sum_{n=0}^{+\infty} n^{k} e^{-n} .
\end{aligned}
$$

Now, for $|x|<1$, we have

$$
\sum_{n=0}^{+\infty} n^{k} x^{n}=\frac{P_{k}(x)}{(1-x)^{k+1}},
$$

where $P_{k}(x)$ is a polynomial of degree k. In particular,

$$
\sum_{n=0}^{+\infty} n x^{n}=\frac{x}{(1-x)^{2}} \text { and } \sum_{n=0}^{+\infty} n^{2} x^{n}=\frac{x(1+x)}{(1-x)^{3}} .
$$

Thus

$$
\int_{0}^{1}\lfloor-\ln x\rfloor d x=\left(1-e^{-1}\right) \sum_{n=0}^{+\infty} n e^{-n}=\left(1-e^{-1}\right) \frac{e^{-1}}{\left(1-e^{-1}\right)^{2}}=\frac{1}{e-1}
$$

and

$$
\int_{0}^{1}\lfloor-\ln x\rfloor^{2} d x=\left(1-e^{-1}\right) \sum_{n=0}^{+\infty} n^{2} e^{-n}=\left(1-e^{-1}\right) \frac{e^{-1}\left(1+e^{-1}\right)}{\left(1-e^{-1}\right)^{3}}=\frac{e+1}{(e-1)^{2}} .
$$

One can obtain similar results for $k \geq 3$. For example,

$$
\begin{aligned}
& k=3: \text { integral }=\frac{e^{2}+4 e+1}{(e-1)^{3}} \\
& k=4: \text { integral }=\frac{e^{3}+11 e^{2}+11 e+1}{(e-1)^{4}} \\
& k=5: \text { integral }=\frac{e^{4}+26 e^{3}+66 e^{2}+26 e+1}{(e-1)^{5}} .
\end{aligned}
$$

One might also note that if $k=0$, then we have, as above,

$$
\int_{0}^{1} d x=\left(1-e^{-1}\right) \sum_{n=0}^{+\infty} e^{-n}=\left(1-e^{-1}\right) \frac{1}{1-e^{-1}}=1
$$

Don Redmond
Department of Mathematics
Southern Illinois University
Carbondale, IL 62901
redmond@siu.edu

