Local Rings of Order p^6

Charlie Scherer

October 24, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition

Recall that an ideal is an additive subgroup, I, such that $rI \subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition

Recall that an ideal is an additive subgroup, I, such that $rI \subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.

(Warning: Axiom of Choice) All rings have a maximal ideal. Some rings have more than one.

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition

Recall that an ideal is an additive subgroup, I, such that $rI \subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.

(Warning: Axiom of Choice) All rings have a maximal ideal. Some rings have more than one.

Examples:

1. $\mathbb{R}[X]$, (X)

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition

Recall that an ideal is an additive subgroup, I, such that $rI \subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.

(Warning: Axiom of Choice) All rings have a maximal ideal. Some rings have more than one.

Examples:

- 1. $\mathbb{R}[X]$, (X)
- 2. \mathbb{Z} , (p) for any prime p

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition

Recall that an ideal is an additive subgroup, I, such that $rI \subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.

(Warning: Axiom of Choice) All rings have a maximal ideal. Some rings have more than one.

Examples:

- 1. $\mathbb{R}[X]$, (X)
- 2. \mathbb{Z} , (*p*) for any prime *p*

3. \mathbb{Q} , $\{0\}$

Definition

The product of two ideals, I and J, is

$$\left\{\sum a_i b_i \, | \, a_i \in I \text{ and } b_i \in J \text{ for } i = 1, ..., n \text{ for some } n \in \mathbb{Z}^+
ight\}$$

Definition

The product of two ideals, I and J, is

$$\left\{\sum \mathsf{a}_i b_i \, | \, \mathsf{a}_i \in \mathsf{I} \text{ and } b_i \in \mathsf{J} \text{ for } i=1,...,n \text{ for some } n \in \mathbb{Z}^+
ight\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples:

1. In
$$\mathbb{R}[X]$$
, $(X)(X+1) = (X^2 + X)$.

Definition

The product of two ideals, I and J, is

$$\left\{\sum \mathsf{a}_i b_i \, | \, \mathsf{a}_i \in \mathsf{I} \, \, \mathsf{and} \, \, \mathsf{b}_i \in \mathsf{J} \, \, \mathsf{for} \, \, i=1,...,\mathsf{n} \, \, \mathsf{for} \, \mathsf{some} \, \, \mathsf{n} \in \mathbb{Z}^+
ight\}$$

Examples:

1. In $\mathbb{R}[X]$, $(X)(X+1) = (X^2 + X)$. 2. In $\mathbb{Q}[X, Y, Z]$ $(X, Y)(Y, Z) = (XY, XZ, Y^2, YZ)$.

Definition

The product of two ideals, I and J, is

$$\left\{\sum \mathsf{a}_i b_i \, | \, \mathsf{a}_i \in \mathsf{I} \text{ and } b_i \in \mathsf{J} \text{ for } i = 1, ..., \mathsf{n} \text{ for some } \mathsf{n} \in \mathbb{Z}^+
ight\}$$

Examples:

1. In $\mathbb{R}[X]$, $(X)(X + 1) = (X^2 + X)$. 2. In $\mathbb{Q}[X, Y, Z]$ $(X, Y)(Y, Z) = (XY, XZ, Y^2, YZ)$. 3. In \mathbb{Z}_6 , (2)(2) = (2).

Definition

The product of two ideals, I and J, is

$$\left\{\sum \mathsf{a}_i b_i \, | \, \mathsf{a}_i \in \mathsf{I} \, \, \mathsf{and} \, \, \mathsf{b}_i \in \mathsf{J} \, \, \mathsf{for} \, \, i=1,...,\mathsf{n} \, \, \mathsf{for} \, \mathsf{some} \, \, \mathsf{n} \in \mathbb{Z}^+
ight\}$$

Examples:

1. In
$$\mathbb{R}[X]$$
, $(X)(X+1) = (X^2 + X)$.

2. In
$$\mathbb{Q}[X, Y, Z](X, Y)(Y, Z) = (XY, XZ, Y^2, YZ).$$

3. In \mathbb{Z}_6 , (2)(2) = (2).

 $IJ \subset I \cap J$, in particular, $I^2 \subset I$ containment may or may not be strict.

Local Rings

Definition

A local ring denoted, (R, M), is a ring with a unique maximal ideal, M.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local Rings

Definition

A local ring denoted, (R, M), is a ring with a unique maximal ideal, M.

(Warning: Axiom of Choice) Every non-unit is contained in some maximal ideal.

Examples of local rings:

1. $\mathbb{R}[X]$ is not a local ring.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples of local rings:

1. $\mathbb{R}[X]$ is not a local ring.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2. ${\mathbb Z}$ is not a local ring.

Examples of local rings:

- 1. $\mathbb{R}[X]$ is not a local ring.
- 2. ${\mathbb Z}$ is not a local ring.
- 3. \mathbb{Q} is a field. All fields are local rings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples of local rings:

- 1. $\mathbb{R}[X]$ is not a local ring.
- 2. $\mathbb Z$ is not a local ring.
- 3. \mathbb{Q} is a field. All fields are local rings.
- 4. $R_G = \frac{\mathbb{Z}_p[X_1,...,X_n]}{(X_iX_j)}$ is a local ring of order p^{n+1} whose maximal ideal is $(X_1, X_2, ..., X_n)$.

Examples of local rings:

- 1. $\mathbb{R}[X]$ is not a local ring.
- 2. $\mathbb Z$ is not a local ring.
- 3. \mathbb{Q} is a field. All fields are local rings.
- 4. $R_G = \frac{\mathbb{Z}_p[X_1,...,X_n]}{(X_iX_j)}$ is a local ring of order p^{n+1} whose maximal ideal is $(X_1, X_2, ..., X_n)$.
- 5. $R_{g^2} = \frac{\mathbb{Z}_p[X,Y]}{(X^2,f(Y))}$ is a local ring where f(Y) is a polynomial of degree *n*, irreducible modulo *p*. Its order is p^{2n} and it's maximal ideal is (X).

Galois Rings

Definition

Let p be a prime and k be a positive integer and suppose that f(X) is a polynomial of degree r irreducible modulo p. Then we call $\frac{\mathbb{Z}_{p^k}[X]}{(f(X))}$ a Galois ring and denote it $G(p^k, r)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Galois Rings

Definition

Let p be a prime and k be a positive integer and suppose that f(X) is a polynomial of degree r irreducible modulo p. Then we call $\frac{\mathbb{Z}_{p^k}[X]}{(f(X))}$ a Galois ring and denote it $G(p^k, r)$. Examples:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$G(p^k, 1) = \mathbb{Z}_{p^k}$$
.

Galois Rings

Definition

Let p be a prime and k be a positive integer and suppose that f(X) is a polynomial of degree r irreducible modulo p. Then we call $\frac{\mathbb{Z}_{p^k}[X]}{(f(X))}$ a Galois ring and denote it $G(p^k, r)$. Examples:

1.
$$G(p^k, 1) = \mathbb{Z}_{p^k}$$
.

2. $G(p,r) = \mathbb{F}_{p^r}$.

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then IM = I iff I = 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then IM = I iff I = 0.

This means we can form the sequence of nested ideals, $M \supseteq M^2 \supseteq \dots \supseteq M^{t-1} \supseteq M^t = 0.$

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then IM = I iff I = 0.

This means we can form the sequence of nested ideals, $M \supseteq M^2 \supseteq \dots \supseteq M^{t-1} \supseteq M^t = 0.$

Lemma

 M^k/M^{k+1} is a vector space over R/M for all positive integers k.

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then IM = I iff I = 0.

This means we can form the sequence of nested ideals, $M \supseteq M^2 \supseteq \dots \supseteq M^{t-1} \supseteq M^t = 0.$

Lemma

 M^k/M^{k+1} is a vector space over R/M for all positive integers k.

Corollary

Any two minimal generating sets for M^k are the same size, $\dim_{R/M} M^k / M^{k+1}$.

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then IM = I iff I = 0.

This means we can form the sequence of nested ideals, $M \supseteq M^2 \supseteq \dots \supseteq M^{t-1} \supseteq M^t = 0.$

Lemma

 M^k/M^{k+1} is a vector space over R/M for all positive integers k.

Corollary

Any two minimal generating sets for M^k are the same size, $\dim_{R/M} M^k / M^{k+1}$.

Corollary

 $|R| = |R/M|^q$ for some prime p and positive integer q.

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then IM = I iff I = 0.

This means we can form the sequence of nested ideals, $M \supseteq M^2 \supseteq \dots \supseteq M^{t-1} \supseteq M^t = 0.$

Lemma

 M^k/M^{k+1} is a vector space over R/M for all positive integers k.

Corollary

Any two minimal generating sets for M^k are the same size, $\dim_{R/M} M^k / M^{k+1}$.

Corollary

 $|R| = |R/M|^q$ for some prime p and positive integer q.

Corollary

 $|R| = p^n$ for some prime p and positive integer n.

Theorem (General Structure Theorem)

Let (R, M) be a local ring of characteristic p^k . Let $r = [R/M : \mathbb{Z}_p]$ and suppose M is minimally generated by $x_1, x_2, ..., x_n$. Then:

- 1. $G(p^k, r) \leq R$ and $G(p^k, r)$ is the largest Galois ring in R.
- 2. $G(p^k, r)[X_1, X_2, ..., X_n] \twoheadrightarrow R$ in such a way that $X_i \mapsto x_i$ for i = 1, 2, ..., n

Example:

Suppose we want to know which rings of order p^5 have characteristic p and have $M^2 = 0...$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example:

Suppose we want to know which rings of order p^5 have characteristic p and have $M^2 = 0...$

1. We know $|R| = |R/M|^q$ therefore q = 5, $(q = 1 \iff R$ is a field).

Example:

Suppose we want to know which rings of order p^5 have characteristic p and have $M^2 = 0...$

1. We know $|R| = |R/M|^q$ therefore q = 5, $(q = 1 \iff R$ is a field).

2. Take q = 5 and get $|M/M^2| = |M| = p^4$ since $M^{1+k}/M^{2+k} = 0$.

Example:

Suppose we want to know which rings of order p^5 have characteristic p and have $M^2 = 0...$

1. We know $|R| = |R/M|^q$ therefore q = 5, $(q = 1 \iff R$ is a field).

- 2. Take q = 5 and get $|M/M^2| = |M| = p^4$ since $M^{1+k}/M^{2+k} = 0$.
- 3. Thus $G(p,1)[X_1, X_2, X_3, X_4] = \mathbb{Z}_p[X_1, X_2, X_3, X_4] \twoheadrightarrow R.$

Example:

Suppose we want to know which rings of order p^5 have characteristic p and have $M^2 = 0...$

1. We know $|R| = |R/M|^q$ therefore q = 5, $(q = 1 \iff R$ is a field).

- 2. Take q = 5 and get $|M/M^2| = |M| = p^4$ since $M^{1+k}/M^{2+k} = 0$.
- 3. Thus $G(p,1)[X_1, X_2, X_3, X_4] = \mathbb{Z}_p[X_1, X_2, X_3, X_4] \twoheadrightarrow R.$
- 4. Since $M^2 = 0$, $\frac{\mathbb{Z}_p[X_1, X_2, X_3, X_4]}{(X_i X_j)} \twoheadrightarrow R$

Example:

Suppose we want to know which rings of order p^5 have characteristic p and have $M^2 = 0...$

1. We know $|R| = |R/M|^q$ therefore q = 5, $(q = 1 \iff R$ is a field).

- 2. Take q = 5 and get $|M/M^2| = |M| = p^4$ since $M^{1+k}/M^{2+k} = 0$.
- 3. Thus $G(p,1)[X_1, X_2, X_3, X_4] = \mathbb{Z}_p[X_1, X_2, X_3, X_4] \twoheadrightarrow R.$
- 4. Since $M^2 = 0$, $\frac{\mathbb{Z}_p[X_1, X_2, X_3, X_4]}{(X_i X_j)} \twoheadrightarrow R$
- 5. Conclude these two are actually isomorphic.

Abridged Catalogue

$ \begin{array}{ c c c c c c c } \hline p^3 & 0 & 0 & 0 & 0 & p & \frac{G(p,3)[X]}{(X^2)} \\ \hline p^3 & 0 & 0 & 0 & p^2 & G(p^2,3) \\ \hline p^4 & 0 & 0 & 0 & 0 & p & \frac{G(p,2)[X,Y]}{(X^2,XY,Y^2)} \\ \hline \end{array} $	
$\begin{array}{ c c c c c c c }\hline p^3 & 0 & 0 & 0 & 0 & p^2 & G(p^2,3) \\ \hline p^4 & 0 & 0 & 0 & 0 & p & \frac{G(p,2)[X,Y]}{(X^2,XY,Y^2)} \end{array}$	
p^4 000 p^2 $\frac{G(p^2,2)[X,Y]}{(X^2,pX,Y-p)} \cong \frac{G(p^2)}{(X^2,pX,Y-p)} = \frac{G(p^2)}{(X^2,pX,Y-p)}$	(2)[X] (pX)
p^4 p^2 0 0 0 p $\frac{G(p,2)[X]}{(X^3)}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\frac{G(p^2,2)[X]}{(X^3,X^2-np)} n \notin (U(\mathbb{Z}$	$(Z_{p^2}))^2$
p^{4} p^{2} 0 0 0 p^{3} ($(p^{2},3)$	
$\begin{array}{ c c c c c c c c c } \hline p^5 & 0 & 0 & 0 & 0 & p & G(p,1)[X_1,X_2,X_3,X_4,Z_3,Z_3,Z_3,Z_3,Z_3,Z_3,Z_3,Z_3,Z_3,Z_3$	X ₅]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X ₅] 4,5
$ F F F F F F (X_1 X_2, X_2^2, X_1^3)$	
p^5 p^4 p^3 p^2 p p $\frac{G(p,1)[X]}{(X^6)}$	

A Specific Case

What about when $|M| = p^5$, $|M^2| = p$ and charR = p?

1. Identify all rings of this type with a matrix with entries from $\mathbb{Z}_p.$

A Specific Case

What about when $|M| = p^5$, $|M^2| = p$ and charR = p?

- 1. Identify all rings of this type with a matrix with entries from \mathbb{Z}_p .
- 2. Identify isomorphisms of these rings with matrices of the same type.

A Specific Case

What about when $|M| = p^5$, $|M^2| = p$ and charR = p?

- 1. Identify all rings of this type with a matrix with entries from \mathbb{Z}_p .
- 2. Identify isomorphisms of these rings with matrices of the same type.
- 3. A question of ring isomorphisms becomes a question of linear algebra!

Given (R, M) of characteristic p such that $|R| = p^6$, $|M| = p^5$ and $|M^2| = p$, we know:

Given (R, M) of characteristic p such that $|R| = p^6$, $|M| = p^5$ and $|M^2| = p$, we know:

1. $M = (x_1, x_2, x_3, x_4)$

Given (R, M) of characteristic p such that $|R| = p^6$, $|M| = p^5$ and $|M^2| = p$, we know:

1.
$$M = (x_1, x_2, x_3, x_4)$$

2.
$$M^2 = (y)$$

Given (R, M) of characteristic p such that $|R| = p^6$, $|M| = p^5$ and $|M^2| = p$, we know:

- 1. $M = (x_1, x_2, x_3, x_4)$
- 2. $M^2 = (y)$
- 3. Therefore $x_i x_j = n_{i,j} y$ for some $n_{i,j} \in \mathbb{Z}_p$.

Given (R, M) of characteristic p such that $|R| = p^6$, $|M| = p^5$ and $|M^2| = p$, we know:

- 1. $M = (x_1, x_2, x_3, x_4)$
- 2. $M^2 = (y)$

3. Therefore $x_i x_j = n_{i,j} y$ for some $n_{i,j} \in \mathbb{Z}_p$.

So define $N = (n_{i,j})$ and we get a correspondence between rings and matrices over \mathbb{Z}_p .

Let $\bar{x} = (x_1 x_2 x_3 x_4)$ and note that $\bar{x}^\top \bar{x} = yN$.

Given an isomorphism $(R, M) \xrightarrow{\phi} (R', M')$, we know that $\phi[M] = M'$ so that:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Given an isomorphism $(R, M) \xrightarrow{\phi} (R', M')$, we know that $\phi[M] = M'$ so that:

1. $x_i \mapsto \sum p_{i,j} x'_j + r_i y'$.

Given an isomorphism $(R, M) \xrightarrow{\phi} (R', M')$, we know that $\phi[M] = M'$ so that:

- 1. $x_i \mapsto \sum p_{i,j}x'_j + r_iy'$.
- 2. We can assume $r_i = 0$ for all i = 1, 2, 3, 4.

Given an isomorphism $(R, M) \xrightarrow{\phi} (R', M')$, we know that $\phi[M] = M'$ so that:

- 1. $x_i \mapsto \sum p_{i,j} x'_j + r_i y'$.
- 2. We can assume $r_i = 0$ for all i = 1, 2, 3, 4.

3.
$$y \mapsto qy'$$
 for non-zero $q \in \mathbb{Z}_p$.

Given an isomorphism $(R, M) \xrightarrow{\phi} (R', M')$, we know that $\phi[M] = M'$ so that:

1.
$$x_i \mapsto \sum p_{i,j} x'_j + r_i y'$$
.

2. We can assume $r_i = 0$ for all i = 1, 2, 3, 4.

3. $y \mapsto qy'$ for non-zero $q \in \mathbb{Z}_p$. Note that $P(x_1 x_2 x_3 x_4)^\top = (\phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4))^\top$ so that $P\bar{x}^\top \bar{x} P^\top = qy' N'$.

Thus we have that $(R, M) \cong (R', M')$ iff there exists some P and q so that: $P^{\top}NP = qN'.$

Thus we have that $(R, M) \cong (R', M')$ iff there exists some P and q so that:

 $P^{\top}NP = qN'.$

Luckily this forms an equivalence relation on the $n \times n$ matrices over \mathbb{Z}_p , called projective congruence. So the question becomes:

Thus we have that $(R, M) \cong (R', M')$ iff there exists some P and q so that:

 $P^{\top}NP = qN'.$

Luckily this forms an equivalence relation on the $n \times n$ matrices over \mathbb{Z}_p , called projective congruence. So the question becomes: What is a representative set for the equivalence classes?

A Specific Case, cont.

Lemma

Suppose $p \neq 2$ and let f be a non-square modulo \mathbb{F}_{p^k} . Then any symmetric $n \times n$ matrix, N, over \mathbb{F}_p^q is projectively congruent to a matrix of the form:

 $\begin{bmatrix} \mathbf{I}_{r-1} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 0 \end{bmatrix}$ where r is the rank of N and a = 1 or a = f.

A Specific Case, cont.

Lemma

Suppose $p \neq 2$ and let f be a non-square modulo \mathbb{F}_{p^k} . Then any symmetric $n \times n$ matrix, N, over \mathbb{F}_p^q is projectively congruent to a matrix of the form:

 $\begin{bmatrix} \mathbf{I}_{r-1} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 0 \end{bmatrix}$ where r is the rank of N and a = 1 or a = f.

This lemma tells us how to pick representatives of each isomorphism class of the types of rings we're interested.

Looking Towards the Future

- 1. Finish classifying local rings of order p^6 .
- 2. Generalize this technique to classify local rings such that $M^3 = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ