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Ideals

All rings are assumed to be commutative and to have identity. R
always denotes such a ring.

Definition
Recall that an ideal is an additive subgroup, I, such that rl C I for
all r € R. A maximal ideal is a proper ideal, M, which is not
contained in any other proper ideal.
(Warning: Axiom of Choice) All rings have a maximal ideal. Some
rings have more than one.
Examples:

1. RIX], (X)

2. Z, (p) for any prime p

3. Q {0}
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Ideals, cont.

Definition
The product of two ideals, | and J, is

{Za;b; |ai €l and b; € J fori =1, ...,n for some n € Z+}

ExampIeS'
CInRIX], (X)X +1) = (X2 + X),
CInQIX,Y,Z] (X, Y)Y,Z)=(XY,XZ,Y? Y2Z).
amzs()() (2).



Ideals, cont.

Definition
The product of two ideals, | and J, is

{Za;b; |ai €l and b; € J fori =1, ...,n for some n € Z+}

Examples:

L In RIX], (X)(X + 1) = (X2 + X).

2. In Q[X,Y,Z] (X,Y)Y,Z)=(XY,XZ,Y?% YZ).

3. In Zs, (2)(2) = (2).
IJ C I N J, in particular, I? C | containment may or may not be
strict.
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Definition

A local ring denoted, (R, M), is a ring with a unique maximal
ideal, M.

(Warning: Axiom of Choice) Every non-unit is contained in some
maximal ideal.
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Examples of local rings:

1. R[X] is not a local ring.

2. Z is not a local ring.

3. Q is a field. All fields are local rings.

4. Rg = ZP[();I*&)X"] is a local ring of order p"*! whose maximal
ideal is (X1, X2, ..., Xp).



Local Rings, cont.

Examples of local rings:

Ll

R[X] is not a local ring.
Z is not a local ring.

Q is a field. All fields are local rings.

R = w is a local ring of order p"*! whose maximal
I

ideal is (X1, X2, ..., Xp).

Rg2 = % is a local ring where f(Y) is a polynomial of

degree n, irreducible modulo p. lts order is p>” and it's
maximal ideal is (X).
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Galois Rings

Definition
Let p be a prime and k be a positive integer and suppose that
f(X) is a polynomial of degree r irreducible modulo p. Then we

Zk[X] . .
call (fp(kix)) a Galois ring and denote it G(p¥,r).
Examples:
1. G(pk, 1) = Zpk.
2. G(p,r) =Fp.
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Facts About Local Rings
Let (R, M) be a finite local ring.

Lemma (Nakayama)

If | is an ideal of R then IM =1 iff| = 0.

This means we can form the sequence of nested ideals,
M2M 2. 2M~12 M =0.

Lemma
MK /M*+1 s a vector space over R/M for all positive integers k.

Corollary

Any two minimal generating sets for M are the same size,
dimg/pyM* /ML,

Corollary
|R| = |R/M|9 for some prime p and positive integer q.

Corollary
|R| = p" for some prime p and positive integer n.



The Structure Theorem

Theorem (General Structure Theorem)

Let (R, M) be a local ring of characteristic p*. Let r = [R/M : Z,]
and suppose M is minimally generated by x1,x2, ..., xp. Then:

1. G(p*,r) < R and G(p,r) is the largest Galois ring in R.

2. G(p*, r)[X1, X2, ..., Xs] = R in such a way that X; — x; for
i=1,2,..,n
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The Structure Theorem, cont.

Example:
Suppose we want to know which rings of order p° have
characteristic p and have M? = 0...

1.

We know |R| = |R/M]|9 therefore g =5, (=1 <= Risa
field).

. Take g = 5 and get |[M/M?| = |M| = p* since

MR/ MR = 0.
Thus G(p, 1)[X1,X2,X3,X4] == ZP[X]_,XQ,X3,X4] — R.

Since M2 =0, W R
Conclude these two are actually isomorphic.



Abridged Catalogue

[TM] T [MP] T [M3] T [M*] [ [MP] | charR | R
p> | 0 0 0 0 p SAX]
pP | 0 0 0 0 p> G(p%3)
oo o o [ | g =
p* | PP | 0 | 0 | 0 p P2
P4 P2 0 0 0 p2 %
5oy 1 ¢ (U(Z2))
pt | P 0 0 0 p3 G(p?,3)
Plofo ool e [ R
Flolo ool e | gl
PR | 0 p Lellx
- - - p (]
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A Specific Case

What about when |M| = p°, |M?| = p and charR = p?

1. ldentify all rings of this type with a matrix with entries from
Zp.

2. ldentify isomorphisms of these rings with matrices of the same
type.

3. A question of ring isomorphisms becomes a question of linear
algebral
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A Specific Case, Step 1

Given (R, M) of characteristic p such that |R| = p°, |M| = p® and
IM2| = p, we know:

1. M =(xy,x2,X3,xs)

2. M2 =(y)

3. Therefore x;x; = n; jy for some n;; € Zp,.

So define N = (n; ;) and we get a correspondence between rings
and matrices over Zp.
Let X = (x1 X2 X3 x4) and note that X' x = yN.
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A Specific Case, Step 2

Given an isomorphism (R, M) 2 (R',M"), we know that
¢[M] = M’ so that:

1. xj — Zp;J><J{+r;y’.

2. We can assume r; =0 for all i = 1,2, 3, 4.

3. y > qy’ for non-zero q € Zp.

Note that P(xy xax3xs) " = (¢(x1) d(x2) p(x3) p(x4)) T so that
PxTxPT = qy'N'.
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A Specific Case, Step 3

Thus we have that (R, M) = (R, M’) iff there exists some P and ¢
so that:

PTNP = gN'.

Luckily this forms an equivalence relation on the n x n matrices
over Zp, called projective congruence. So the question becomes:
What is a representative set for the equivalence classes?
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Lemma

Suppose p # 2 and let f be a non-square modulo F . Then any
symmetric n x n matrix, N, over F} is projectively congruent to a
matrix of the form:

l,.1 0 O
0 a0
0 00

where r is the rank of N anda=1ora="f.



A Specific Case, cont.

Lemma

Suppose p # 2 and let f be a non-square modulo F . Then any
symmetric n x n matrix, N, over F} is projectively congruent to a
matrix of the form:

l,.1 0 O
0 a0
0 00

where r is the rank of N anda=1ora="f.

This lemma tells us how to pick representatives of each
isomorphism class of the types of rings we're interested.



Looking Towards the Future

1. Finish classifying local rings of order p°.

2. Generalize this technique to classify local rings such that
M3 = 0.



