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Ideals

All rings are assumed to be commutative and to have identity. R
always denotes such a ring.

Definition
Recall that an ideal is an additive subgroup, I , such that rI ⊂ I for
all r ∈ R. A maximal ideal is a proper ideal, M, which is not
contained in any other proper ideal.

(Warning: Axiom of Choice) All rings have a maximal ideal. Some
rings have more than one.
Examples:

1. R[X ], (X )

2. Z, (p) for any prime p

3. Q, {0}
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Ideals, cont.

Definition
The product of two ideals, I and J, is{∑

aibi | ai ∈ I and bi ∈ J for i = 1, ..., n for some n ∈ Z+
}

Examples:

1. In R[X ], (X )(X + 1) = (X 2 + X ).

2. In Q[X ,Y ,Z ] (X ,Y )(Y ,Z ) = (XY ,XZ ,Y 2,YZ ).

3. In Z6, (2)(2) = (2).

IJ ⊂ I ∩ J, in particular, I 2 ⊂ I containment may or may not be
strict.
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Local Rings

Definition
A local ring denoted, (R,M), is a ring with a unique maximal
ideal, M.

(Warning: Axiom of Choice) Every non-unit is contained in some
maximal ideal.
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Local Rings, cont.

Examples of local rings:

1. R[X ] is not a local ring.

2. Z is not a local ring.

3. Q is a field. All fields are local rings.

4. RG =
Zp [X1,...,Xn]

(XiXj )
is a local ring of order pn+1 whose maximal

ideal is (X1,X2, ...,Xn).

5. Rg2 =
Zp [X ,Y ]

(X 2,f (Y ))
is a local ring where f (Y ) is a polynomial of

degree n, irreducible modulo p. Its order is p2n and it’s
maximal ideal is (X ).
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Galois Rings

Definition
Let p be a prime and k be a positive integer and suppose that
f (X ) is a polynomial of degree r irreducible modulo p. Then we

call
Z

pk [X ]

(f (X )) a Galois ring and denote it G (pk , r).

Examples:

1. G (pk , 1) = Zpk .

2. G (p, r) = Fpr .
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Facts About Local Rings
Let (R,M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then IM = I iff I = 0.

This means we can form the sequence of nested ideals,
M % M2 % ... % Mt−1 % Mt = 0.

Lemma
Mk/Mk+1 is a vector space over R/M for all positive integers k.

Corollary

Any two minimal generating sets for Mk are the same size,
dimR/MMk/Mk+1.

Corollary

|R| = |R/M|q for some prime p and positive integer q.

Corollary

|R| = pn for some prime p and positive integer n.
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The Structure Theorem

Theorem (General Structure Theorem)

Let (R,M) be a local ring of characteristic pk . Let r = [R/M : Zp]
and suppose M is minimally generated by x1, x2, ..., xn. Then:

1. G (pk , r) ≤ R and G (pk , r) is the largest Galois ring in R.

2. G (pk , r)[X1,X2, ...,Xn] � R in such a way that Xi 7→ xi for
i = 1, 2, ..., n



The Structure Theorem, cont.

Example:
Suppose we want to know which rings of order p5 have
characteristic p and have M2 = 0...

1. We know |R| = |R/M|q therefore q = 5, (q = 1 ⇐⇒ R is a
field).

2. Take q = 5 and get |M/M2| = |M| = p4 since
M1+k/M2+k = 0.

3. Thus G (p, 1)[X1,X2,X3,X4] = Zp[X1,X2,X3,X4] � R.

4. Since M2 = 0,
Zp [X1,X2,X3,X4]

(XiXj )
� R

5. Conclude these two are actually isomorphic.
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Abridged Catalogue

|M| |M2| |M3| |M4| |M5| charR R

p3 0 0 0 0 p G(p,3)[X ]
(X 2)

p3 0 0 0 0 p2 G (p2, 3)

p4 0 0 0 0 p G(p,2)[X ,Y ]
(X 2,XY ,Y 2)

p4 0 0 0 0 p2 G(p2,2)[X ,Y ]
(X 2,pX ,Y−p)

∼= G(p2,2)[X ]
(X 2,pX )

p4 p2 0 0 0 p G(p,2)[X ]
(X 3)

p4 p2 0 0 0 p2 G(p2,2)[X ]
(X 3,X 2−p)

G(p2,2)[X ]
(X 3,X 2−np)

n /∈ (U(Zp2))2

p4 p2 0 0 0 p3 G (p2, 3)

p5 0 0 0 0 p G(p,1)[X1,X2,X3,X4,X5]
(XiXj )i,j=1,2,3,4,5

p5 0 0 0 0 p2 G(p2,1)[X1,X2,X3,X4,X5]
(XiXj ,X5−p)i,j=1,2,3,4,5

p5 p3 p2 p 0 p G(p,1)[X1,X2]
(X1X2,X 2

2 ,X
5
1 )

p5 p4 p3 p2 p p G(p,1)[X ]
(X 6)



A Specific Case

What about when |M| = p5, |M2| = p and charR = p?

1. Identify all rings of this type with a matrix with entries from
Zp.

2. Identify isomorphisms of these rings with matrices of the same
type.

3. A question of ring isomorphisms becomes a question of linear
algebra!
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A Specific Case, Step 1

Given (R,M) of characteristic p such that |R| = p6, |M| = p5 and
|M2| = p, we know:

1. M = (x1, x2, x3, x4)

2. M2 = (y)

3. Therefore xixj = ni ,jy for some ni ,j ∈ Zp.

So define N = (ni ,j) and we get a correspondence between rings
and matrices over Zp.
Let x̄ = (x1 x2 x3 x4) and note that x̄>x̄ = yN.
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A Specific Case, Step 2

Given an isomorphism (R,M)
φ→ (R ′,M ′), we know that

φ[M] = M ′ so that:

1. xi 7→
∑

pi ,jx
′
j + riy

′.

2. We can assume ri = 0 for all i = 1, 2, 3, 4.

3. y 7→ qy ′ for non-zero q ∈ Zp.

Note that P(x1 x2 x3 x4)> = (φ(x1)φ(x2)φ(x3)φ(x4))> so that
Px̄>x̄P> = qy ′N ′.
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A Specific Case, Step 3

Thus we have that (R,M) ∼= (R ′,M ′) iff there exists some P and q
so that:
P>NP = qN ′.

Luckily this forms an equivalence relation on the n × n matrices
over Zp, called projective congruence. So the question becomes:
What is a representative set for the equivalence classes?
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A Specific Case, cont.

Lemma
Suppose p 6= 2 and let f be a non-square modulo Fpk . Then any
symmetric n × n matrix, N, over Fq

p is projectively congruent to a
matrix of the form:Ir−1 0 0

0 a 0
0 0 0


where r is the rank of N and a = 1 or a = f .

This lemma tells us how to pick representatives of each
isomorphism class of the types of rings we’re interested.
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Looking Towards the Future

1. Finish classifying local rings of order p6.

2. Generalize this technique to classify local rings such that
M3 = 0.


