Local Rings of Order p^{6}

Charlie Scherer

October 24, 2008

Ideals

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition
Recall that an ideal is an additive subgroup, I, such that rl $\subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.

Ideals

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition
Recall that an ideal is an additive subgroup, I, such that rl $\subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.
(Warning: Axiom of Choice) All rings have a maximal ideal. Some rings have more than one.

Ideals

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition
Recall that an ideal is an additive subgroup, I, such that $r l \subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.
(Warning: Axiom of Choice) All rings have a maximal ideal. Some rings have more than one.
Examples:

1. $\mathbb{R}[X],(X)$

Ideals

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition
Recall that an ideal is an additive subgroup, I, such that $r l \subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.
(Warning: Axiom of Choice) All rings have a maximal ideal. Some rings have more than one.
Examples:

1. $\mathbb{R}[X],(X)$
2. $\mathbb{Z},(p)$ for any prime p

Ideals

All rings are assumed to be commutative and to have identity. R always denotes such a ring.

Definition
Recall that an ideal is an additive subgroup, I, such that $r l \subset I$ for all $r \in R$. A maximal ideal is a proper ideal, M, which is not contained in any other proper ideal.
(Warning: Axiom of Choice) All rings have a maximal ideal. Some rings have more than one.
Examples:

1. $\mathbb{R}[X],(X)$
2. $\mathbb{Z},(p)$ for any prime p
3. $\mathbb{Q},\{0\}$

Ideals, cont.

Definition
The product of two ideals, I and J , is

$$
\left\{\sum a_{i} b_{i} \mid a_{i} \in I \text { and } b_{i} \in J \text { for } i=1, \ldots, n \text { for some } n \in \mathbb{Z}^{+}\right\}
$$

Ideals, cont.

Definition
The product of two ideals, I and J , is

$$
\left\{\sum a_{i} b_{i} \mid a_{i} \in I \text { and } b_{i} \in J \text { for } i=1, \ldots, n \text { for some } n \in \mathbb{Z}^{+}\right\}
$$

Examples:

1. In $\mathbb{R}[X],(X)(X+1)=\left(X^{2}+X\right)$.

Ideals, cont.

Definition

The product of two ideals, I and J , is

$$
\left\{\sum a_{i} b_{i} \mid a_{i} \in I \text { and } b_{i} \in J \text { for } i=1, \ldots, n \text { for some } n \in \mathbb{Z}^{+}\right\}
$$

Examples:

1. $\ln \mathbb{R}[X],(X)(X+1)=\left(X^{2}+X\right)$.
2. In $\mathbb{Q}[X, Y, Z](X, Y)(Y, Z)=\left(X Y, X Z, Y^{2}, Y Z\right)$.

Ideals, cont.

Definition

The product of two ideals, I and J , is

$$
\left\{\sum a_{i} b_{i} \mid a_{i} \in I \text { and } b_{i} \in J \text { for } i=1, \ldots, n \text { for some } n \in \mathbb{Z}^{+}\right\}
$$

Examples:

1. $\ln \mathbb{R}[X],(X)(X+1)=\left(X^{2}+X\right)$.
2. In $\mathbb{Q}[X, Y, Z](X, Y)(Y, Z)=\left(X Y, X Z, Y^{2}, Y Z\right)$.
3. $\ln \mathbb{Z}_{6},(2)(2)=(2)$.

Ideals, cont.

Definition

The product of two ideals, I and J , is

$$
\left\{\sum a_{i} b_{i} \mid a_{i} \in I \text { and } b_{i} \in J \text { for } i=1, \ldots, n \text { for some } n \in \mathbb{Z}^{+}\right\}
$$

Examples:

1. $\ln \mathbb{R}[X],(X)(X+1)=\left(X^{2}+X\right)$.
2. In $\mathbb{Q}[X, Y, Z](X, Y)(Y, Z)=\left(X Y, X Z, Y^{2}, Y Z\right)$.
3. $\ln \mathbb{Z}_{6},(2)(2)=(2)$.
$I J \subset I \cap J$, in particular, $I^{2} \subset I$ containment may or may not be strict.

Local Rings

Definition
A local ring denoted, (R, M), is a ring with a unique maximal ideal, M.

Local Rings

Definition

A local ring denoted, (R, M), is a ring with a unique maximal ideal, M.
(Warning: Axiom of Choice) Every non-unit is contained in some maximal ideal.

Local Rings, cont.

Examples of local rings:

1. $\mathbb{R}[X]$ is not a local ring.

Local Rings, cont.

Examples of local rings:

1. $\mathbb{R}[X]$ is not a local ring.
2. \mathbb{Z} is not a local ring.

Local Rings, cont.

Examples of local rings:

1. $\mathbb{R}[X]$ is not a local ring.
2. \mathbb{Z} is not a local ring.
3. \mathbb{Q} is a field. All fields are local rings.

Local Rings, cont.

Examples of local rings:

1. $\mathbb{R}[X]$ is not a local ring.
2. \mathbb{Z} is not a local ring.
3. \mathbb{Q} is a field. All fields are local rings.
4. $R_{G}=\frac{\mathbb{Z}_{p}\left[X_{1}, \ldots, X_{n}\right]}{\left(X_{i} X_{j}\right)}$ is a local ring of order p^{n+1} whose maximal ideal is $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Local Rings, cont.

Examples of local rings:

1. $\mathbb{R}[X]$ is not a local ring.
2. \mathbb{Z} is not a local ring.
3. \mathbb{Q} is a field. All fields are local rings.
4. $R_{G}=\frac{\mathbb{Z}_{p}\left[X_{1}, \ldots, X_{n}\right]}{\left(X_{i} X_{j}\right)}$ is a local ring of order p^{n+1} whose maximal ideal is $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
5. $R_{g^{2}}=\frac{\mathbb{Z}_{p}[X, Y]}{\left(X^{2}, f(Y)\right)}$ is a local ring where $f(Y)$ is a polynomial of degree n, irreducible modulo p. Its order is $p^{2 n}$ and it's maximal ideal is (X).

Galois Rings

Definition

Let p be a prime and k be a positive integer and suppose that $f(X)$ is a polynomial of degree r irreducible modulo p. Then we call $\frac{\mathbb{Z}_{p^{k}}[X]}{(f(X))}$ a Galois ring and denote it $G\left(p^{k}, r\right)$.

Galois Rings

Definition

Let p be a prime and k be a positive integer and suppose that $f(X)$ is a polynomial of degree r irreducible modulo p. Then we call $\frac{\mathbb{Z}_{p^{k}}[X]}{(f(X))}$ a Galois ring and denote it $G\left(p^{k}, r\right)$.
Examples:

1. $G\left(p^{k}, 1\right)=\mathbb{Z}_{p^{k}}$.

Galois Rings

Definition

Let p be a prime and k be a positive integer and suppose that $f(X)$ is a polynomial of degree r irreducible modulo p. Then we call $\frac{\mathbb{Z}_{p^{k}}[X]}{(f(X))}$ a Galois ring and denote it $G\left(p^{k}, r\right)$.
Examples:

1. $G\left(p^{k}, 1\right)=\mathbb{Z}_{p^{k}}$.
2. $G(p, r)=\mathbb{F}_{p^{r}}$.

Facts About Local Rings

Let (R, M) be a finite local ring.
Lemma (Nakayama)
If I is an ideal of R then $I M=I$ iff $I=0$.

Facts About Local Rings

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then $I M=I$ iff $I=0$.
This means we can form the sequence of nested ideals, $M \supsetneqq M^{2} \supsetneqq \cdots \supsetneqq M^{t-1} \supsetneqq M^{t}=0$.

Facts About Local Rings

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then $I M=I$ iff $I=0$.
This means we can form the sequence of nested ideals, $M \supsetneqq M^{2} \supsetneqq \cdots \supsetneqq M^{t-1} \supsetneqq M^{t}=0$.
Lemma
M^{k} / M^{k+1} is a vector space over R / M for all positive integers k.

Facts About Local Rings

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then $I M=I$ iff $I=0$.
This means we can form the sequence of nested ideals, $M \supsetneqq M^{2} \supsetneqq \cdots \supsetneqq M^{t-1} \supsetneqq M^{t}=0$.
Lemma
M^{k} / M^{k+1} is a vector space over R / M for all positive integers k.
Corollary
Any two minimal generating sets for M^{k} are the same size, $\operatorname{dim}_{R / M} M^{k} / M^{k+1}$.

Facts About Local Rings

Let (R, M) be a finite local ring.

Lemma (Nakayama)

If I is an ideal of R then $I M=I$ iff $I=0$.
This means we can form the sequence of nested ideals, $M \supsetneqq M^{2} \supsetneqq \cdots \supsetneqq M^{t-1} \supsetneqq M^{t}=0$.
Lemma
M^{k} / M^{k+1} is a vector space over R / M for all positive integers k.
Corollary
Any two minimal generating sets for M^{k} are the same size, $\operatorname{dim}_{R / M} M^{k} / M^{k+1}$.

Corollary
$|R|=|R / M|^{q}$ for some prime p and positive integer q.

Facts About Local Rings

Let (R, M) be a finite local ring.
Lemma (Nakayama)
If I is an ideal of R then $I M=I$ iff $I=0$.
This means we can form the sequence of nested ideals, $M \supsetneqq M^{2} \supsetneqq \cdots \supsetneqq M^{t-1} \supsetneqq M^{t}=0$.
Lemma
M^{k} / M^{k+1} is a vector space over R / M for all positive integers k.
Corollary
Any two minimal generating sets for M^{k} are the same size, $\operatorname{dim}_{R / M} M^{k} / M^{k+1}$.

Corollary
$|R|=|R / M|^{q}$ for some prime p and positive integer q.
Corollary
$|R|=p^{n}$ for some prime p and positive integer n.

The Structure Theorem

Theorem (General Structure Theorem)
Let (R, M) be a local ring of characteristic p^{k}. Let $r=\left[R / M: \mathbb{Z}_{p}\right]$ and suppose M is minimally generated by $x_{1}, x_{2}, \ldots, x_{n}$. Then:

1. $G\left(p^{k}, r\right) \leq R$ and $G\left(p^{k}, r\right)$ is the largest Galois ring in R.
2. $G\left(p^{k}, r\right)\left[X_{1}, X_{2}, \ldots, X_{n}\right] \rightarrow R$ in such a way that $X_{i} \mapsto x_{i}$ for $i=1,2, \ldots, n$

The Structure Theorem, cont.

Example:
Suppose we want to know which rings of order p^{5} have characteristic p and have $M^{2}=0 \ldots$

The Structure Theorem, cont.

Example:
Suppose we want to know which rings of order p^{5} have characteristic p and have $M^{2}=0 \ldots$

1. We know $|R|=|R / M|^{q}$ therefore $q=5,(q=1 \Longleftrightarrow R$ is a field).

The Structure Theorem, cont.

Example:
Suppose we want to know which rings of order p^{5} have characteristic p and have $M^{2}=0 \ldots$

1. We know $|R|=|R / M|^{q}$ therefore $q=5,(q=1 \Longleftrightarrow R$ is a field).
2. Take $q=5$ and get $\left|M / M^{2}\right|=|M|=p^{4}$ since $M^{1+k} / M^{2+k}=0$.

The Structure Theorem, cont.

Example:
Suppose we want to know which rings of order p^{5} have characteristic p and have $M^{2}=0 \ldots$

1. We know $|R|=|R / M|^{q}$ therefore $q=5,(q=1 \Longleftrightarrow R$ is a field).
2. Take $q=5$ and get $\left|M / M^{2}\right|=|M|=p^{4}$ since $M^{1+k} / M^{2+k}=0$.
3. Thus $G(p, 1)\left[X_{1}, X_{2}, X_{3}, X_{4}\right]=\mathbb{Z}_{p}\left[X_{1}, X_{2}, X_{3}, X_{4}\right] \rightarrow R$.

The Structure Theorem, cont.

Example:
Suppose we want to know which rings of order p^{5} have characteristic p and have $M^{2}=0 \ldots$

1. We know $|R|=|R / M|^{q}$ therefore $q=5,(q=1 \Longleftrightarrow R$ is a field).
2. Take $q=5$ and get $\left|M / M^{2}\right|=|M|=p^{4}$ since $M^{1+k} / M^{2+k}=0$.
3. Thus $G(p, 1)\left[X_{1}, X_{2}, X_{3}, X_{4}\right]=\mathbb{Z}_{p}\left[X_{1}, X_{2}, X_{3}, X_{4}\right] \rightarrow R$.
4. Since $M^{2}=0, \frac{\mathbb{Z}_{\rho}\left[X_{1}, X_{2}, X_{3}, X_{4}\right]}{\left(X_{i} X_{j}\right)} \rightarrow R$

The Structure Theorem, cont.

Example:
Suppose we want to know which rings of order p^{5} have characteristic p and have $M^{2}=0 \ldots$

1. We know $|R|=|R / M|^{q}$ therefore $q=5,(q=1 \Longleftrightarrow R$ is a field).
2. Take $q=5$ and get $\left|M / M^{2}\right|=|M|=p^{4}$ since $M^{1+k} / M^{2+k}=0$.
3. Thus $G(p, 1)\left[X_{1}, X_{2}, X_{3}, X_{4}\right]=\mathbb{Z}_{p}\left[X_{1}, X_{2}, X_{3}, X_{4}\right] \rightarrow R$.
4. Since $M^{2}=0, \frac{\mathbb{Z}_{\rho}\left[X_{1}, X_{2}, X_{3}, X_{4}\right]}{\left(X_{i} X_{j}\right)} \rightarrow R$
5. Conclude these two are actually isomorphic.

Abridged Catalogue

$\|M\|$	$\left\|M^{2}\right\|$	$M^{3} \mid$	$\left\|M^{4}\right\|$	$\left\|M^{5}\right\|$	charR	R
p^{3}	0	0	0	0	p	$\frac{G(p, 3)[X]}{\left(X^{2}\right)}$
p^{3}	0	0	0	0	p^{2}	$G\left(p^{2}, 3\right)$
p^{4}	0	0	0	0	p	$\frac{G(p, 2)[X, Y]}{\left(X^{2}, X Y, Y^{2}\right)}$
p^{4}	0	0	0	0	p^{2}	$\frac{G\left(p^{2}, 2\right)[X, Y]}{\left(X^{2}, p X, Y-p\right)} \cong \frac{G\left(p^{2}, 2\right)[X]}{\left(X^{2}, p X\right)}$
p^{4}	p^{2}	0	0	0	p	$\frac{G(p, 2)[X]}{\left(X^{3}\right)}$
p^{4}	p^{2}	0	0	0	p^{2}	$\begin{gathered} \frac{G\left(p^{2}, 2\right)[X]}{\left(X^{3}, X^{2}-p\right)} \\ \frac{G\left(p^{2}, 2\right)[X]}{\left(X^{3}, X^{2}-n p\right)} n \notin\left(U\left(\mathbb{Z}_{p^{2}}\right)\right)^{2} \end{gathered}$
p^{4}	p^{2}	0	0	0	p^{3}	$G\left(p^{2}, 3\right)$
p^{5}	0	0	0	0	p	$\frac{G(p, 1)\left[X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right]}{\left(X_{i} X_{j}\right)_{i, j=1,2,3,4,5}}$
p^{5}	0	0	0	0	p^{2}	$\frac{G\left(p^{2}, 1\right)\left[{ }_{1}, x_{1}, x_{2}, x_{3}, x_{4}, X_{5}\right]}{\left(X_{i} x_{j}, X_{5}-p\right)_{i, j=1,2,3,4,5}}$
p^{5}	p^{3}	p^{2}	p	0	p	$\frac{G(p, 1)\left[X_{1}, X_{2}\right]}{\left(X_{1} X_{2}, X_{2}^{2}, X_{1}^{5}\right)}$
p^{5}	p^{4}	p^{3}	p^{2}	p	p	$\frac{\left.\frac{G(p, 1)}{\left(X^{6}\right)}\right]}{}$

A Specific Case

What about when $|M|=p^{5},\left|M^{2}\right|=p$ and char $R=p$?

1. Identify all rings of this type with a matrix with entries from \mathbb{Z}_{p}.

A Specific Case

What about when $|M|=p^{5},\left|M^{2}\right|=p$ and char $R=p$?

1. Identify all rings of this type with a matrix with entries from \mathbb{Z}_{p}.
2. Identify isomorphisms of these rings with matrices of the same type.

A Specific Case

What about when $|M|=p^{5},\left|M^{2}\right|=p$ and char $R=p$?

1. Identify all rings of this type with a matrix with entries from \mathbb{Z}_{p}.
2. Identify isomorphisms of these rings with matrices of the same type.
3. A question of ring isomorphisms becomes a question of linear algebra!

A Specific Case, Step 1

Given (R, M) of characteristic p such that $|R|=p^{6},|M|=p^{5}$ and $\left|M^{2}\right|=p$, we know:

A Specific Case, Step 1

Given (R, M) of characteristic p such that $|R|=p^{6},|M|=p^{5}$ and $\left|M^{2}\right|=p$, we know:

1. $M=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

A Specific Case, Step 1

Given (R, M) of characteristic p such that $|R|=p^{6},|M|=p^{5}$ and $\left|M^{2}\right|=p$, we know:

1. $M=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
2. $M^{2}=(y)$

A Specific Case, Step 1

Given (R, M) of characteristic p such that $|R|=p^{6},|M|=p^{5}$ and $\left|M^{2}\right|=p$, we know:

1. $M=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
2. $M^{2}=(y)$
3. Therefore $x_{i} x_{j}=n_{i, j} y$ for some $n_{i, j} \in \mathbb{Z}_{p}$.

A Specific Case, Step 1

Given (R, M) of characteristic p such that $|R|=p^{6},|M|=p^{5}$ and $\left|M^{2}\right|=p$, we know:

1. $M=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
2. $M^{2}=(y)$
3. Therefore $x_{i} x_{j}=n_{i, j} y$ for some $n_{i, j} \in \mathbb{Z}_{p}$.

So define $N=\left(n_{i, j}\right)$ and we get a correspondence between rings and matrices over \mathbb{Z}_{p}.
Let $\bar{x}=\left(x_{1} x_{2} x_{3} x_{4}\right)$ and note that $\bar{x}^{\top} \bar{x}=y N$.

A Specific Case, Step 2

Given an isomorphism $(R, M) \xrightarrow{\phi}\left(R^{\prime}, M^{\prime}\right)$, we know that $\phi[M]=M^{\prime}$ so that:

A Specific Case, Step 2

Given an isomorphism $(R, M) \xrightarrow{\phi}\left(R^{\prime}, M^{\prime}\right)$, we know that $\phi[M]=M^{\prime}$ so that:

1. $x_{i} \mapsto \sum p_{i, j} x_{j}^{\prime}+r_{i} y^{\prime}$.

A Specific Case, Step 2

Given an isomorphism $(R, M) \xrightarrow{\phi}\left(R^{\prime}, M^{\prime}\right)$, we know that $\phi[M]=M^{\prime}$ so that:

1. $x_{i} \mapsto \sum p_{i, j} x_{j}^{\prime}+r_{i} y^{\prime}$.
2. We can assume $r_{i}=0$ for all $i=1,2,3,4$.

A Specific Case, Step 2

Given an isomorphism $(R, M) \xrightarrow{\phi}\left(R^{\prime}, M^{\prime}\right)$, we know that $\phi[M]=M^{\prime}$ so that:

1. $x_{i} \mapsto \sum p_{i, j} x_{j}^{\prime}+r_{i} y^{\prime}$.
2. We can assume $r_{i}=0$ for all $i=1,2,3,4$.
3. $y \mapsto q y^{\prime}$ for non-zero $q \in \mathbb{Z}_{p}$.

A Specific Case, Step 2

Given an isomorphism $(R, M) \xrightarrow{\phi}\left(R^{\prime}, M^{\prime}\right)$, we know that $\phi[M]=M^{\prime}$ so that:

1. $x_{i} \mapsto \sum p_{i, j} x_{j}^{\prime}+r_{i} y^{\prime}$.
2. We can assume $r_{i}=0$ for all $i=1,2,3,4$.
3. $y \mapsto q y^{\prime}$ for non-zero $q \in \mathbb{Z}_{p}$.

Note that $P\left(x_{1} x_{2} x_{3} x_{4}\right)^{\top}=\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right)^{\top}$ so that $P \bar{x}^{\top} \bar{x} P^{\top}=q y^{\prime} N^{\prime}$.

A Specific Case, Step 3

Thus we have that $(R, M) \cong\left(R^{\prime}, M^{\prime}\right)$ iff there exists some P and q so that:
$P^{\top} N P=q N^{\prime}$.

A Specific Case, Step 3

Thus we have that $(R, M) \cong\left(R^{\prime}, M^{\prime}\right)$ iff there exists some P and q so that:
$P^{\top} N P=q N^{\prime}$.
Luckily this forms an equivalence relation on the $n \times n$ matrices over \mathbb{Z}_{p}, called projective congruence. So the question becomes:

A Specific Case, Step 3

Thus we have that $(R, M) \cong\left(R^{\prime}, M^{\prime}\right)$ iff there exists some P and q so that:
$P^{\top} N P=q N^{\prime}$.
Luckily this forms an equivalence relation on the $n \times n$ matrices over \mathbb{Z}_{p}, called projective congruence. So the question becomes:
What is a representative set for the equivalence classes?

A Specific Case, cont.

Lemma

Suppose $p \neq 2$ and let f be a non-square modulo $\mathbb{F}_{p^{k}}$. Then any symmetric $n \times n$ matrix, N, over \mathbb{F}_{p}^{q} is projectively congruent to a matrix of the form:
$\left[\begin{array}{ccc}\mathbf{I}_{r-1} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 0\end{array}\right]$
where r is the rank of N and $a=1$ or $a=f$.

A Specific Case, cont.

Lemma

Suppose $p \neq 2$ and let f be a non-square modulo $\mathbb{F}_{p^{k}}$. Then any symmetric $n \times n$ matrix, N, over \mathbb{F}_{p}^{q} is projectively congruent to a matrix of the form:
$\left[\begin{array}{ccc}\mathbf{I}_{r-1} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 0\end{array}\right]$
where r is the rank of N and $a=1$ or $a=f$.
This lemma tells us how to pick representatives of each isomorphism class of the types of rings we're interested.

Looking Towards the Future

1. Finish classifying local rings of order p^{6}.
2. Generalize this technique to classify local rings such that $M^{3}=0$.
