Introduction	Method Theory	Existence	Algorithm	Comparison	Cubic Convergence	Applications	Conclusion

Smooth Factorizations in Dynamical Systems

Andrew Binder

July 29, 2009

Andrew Binder Smooth Factorizations in Dynamical Systems

3 × 4 3 ×

Standard Eigenvalue Problem

Definition

The standard eigenvalue problem is of the form

 $Ax = \lambda x$

where A is a matrix, λ is an eigenvalue, and x is the corresponding eigenvector. The eigenvalues must satisfy the characteristic equation

$$\det(A - \lambda I) = 0.$$

(4月) (4日) (4日)

Nonlinear Eigenvalue Problem

Definition

The nonlinear eigenproblem is a generalization of the standard eigenvalue problem. The nonlinear problem is of the form

$$A(\lambda)x = 0$$
 or $y^*A(\lambda) = 0$

where $A(\lambda)$ is a matrix whose entries are functions dependent on the value λ , λ is the nonlinear eigenvalue, and x and y^* are the right and left nonlinear eigenvectors respectively. If $A(\lambda) = B - \lambda I$, the problem reduces to the standard eigenvalue problem. The nonlinear eigenvalues must be the solutions of the characteristic equation

$$\det A(\lambda) = 0.$$

- 4 同 2 4 日 2 4 日 2

 Introduction
 Method Theory
 Existence
 Algorithm
 Comparison
 Cubic Convergence
 Applications
 Conclusion

 Quadratic Eigenproblem
 Solution
 Solution</

Example

Quadratic Eigenproblem:

$$A_2\lambda^2 + A_1\lambda + A_0 = 0$$

・ロト ・回ト ・ヨト ・ヨト

 Introduction
 Method Theory
 Existence
 Algorithm
 Comparison
 Cubic Convergence
 Applications
 Conclusion

 Quadratic Eigenproblem
 Solution
 Solution</

Example

Quadratic Eigenproblem:

$$A_2\lambda^2 + A_1\lambda + A_0 = 0$$

Applications:

• Structural Dynamics

- - 4 回 ト - 4 回 ト

 Introduction
 Method Theory
 Existence
 Algorithm
 Comparison
 Cubic Convergence
 Applications
 Conclusion

 Quadratic Eigenproblem
 Solution
 Solution</

Example

Quadratic Eigenproblem:

$$A_2\lambda^2 + A_1\lambda + A_0 = 0$$

Applications:

- Structural Dynamics
- Vibrational Problems

- 4 回 2 - 4 □ 2 - 4 □

Introduction ooo Nethod Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion Quadratic Eigenproblem

Example

Quadratic Eigenproblem:

$$A_2\lambda^2 + A_1\lambda + A_0 = 0$$

Applications:

- Structural Dynamics
- Vibrational Problems
- Fluid Dynamics

- - 4 回 ト - 4 回 ト

Introduction OCO
Method Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion Matrix Decomposition

Definition

Matrix decomposition is the factorization of a matrix into the product of new matrices.

イロト イヨト イヨト イヨト

 Introduction
 Method Theory
 Existence
 Algorithm
 Comparison
 Clubic Convergence
 Applications
 Conclusion

 Matrix Decomposition
 Matrix Decompositio

Definition

Matrix decomposition is the factorization of a matrix into the product of new matrices.

- QR Decomposition.
- LU Decomposition.

| 4 回 2 4 U = 2 4 U =

Rank Deficient A

$$P_1AP_2 = LU$$
$$= \begin{bmatrix} L_{11} & 0\\ L_{21} & I \end{bmatrix} \begin{bmatrix} U_{11} & U_{12}\\ 0 & 0 \end{bmatrix}$$

イロン イヨン イヨン イヨン

Rank Deficient A

$$P_1AP_2 = LU$$
$$= \begin{bmatrix} L_{11} & 0 \\ L_{21} & I \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & 0 \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 2 & 4 & 5 \\ 2 & 4 & 3 \\ 3 & 6 & 1 \end{bmatrix}$$

イロン イヨン イヨン イヨン

Rank Deficient A

$$P_1AP_2 = LU$$
$$= \begin{bmatrix} L_{11} & 0 \\ L_{21} & I \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & 0 \end{bmatrix}$$

Example

$$P_1 A P_2 = \begin{bmatrix} 6 & 1 & 3 \\ 4 & 5 & 2 \\ 4 & 3 & 2 \end{bmatrix}$$

イロン イヨン イヨン イヨン

Rank Deficient A

$$P_1AP_2 = LU$$
$$= \begin{bmatrix} L_{11} & 0 \\ L_{21} & I \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & 0 \end{bmatrix}$$

Example

$$LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{2}{3} & 1 & 0 \\ \frac{2}{3} & \frac{7}{13} & 1 \end{bmatrix} \begin{bmatrix} 6 & 1 & 3 \\ 0 & 4\frac{1}{3} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

イロン イヨン イヨン イヨン

Rank Deficient A

$$AP = QR$$
$$= Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$$

Andrew Binder Smooth Factorizations in Dynamical Systems

・ロト ・回ト ・ヨト ・ヨト

ъ

Goal

• Find a λ so that det $A(\lambda) = 0$

イロン イヨン イヨン イヨン

Goal

• Find a λ so that det $A(\lambda) = 0$

Plan

- Guess the nonlinear eigenvalue
- Perform rank revealing decomposition
- Minimize lower right block
- Repeat steps using new guess until eigenvalue is found

- 4 同 2 4 日 2 4 日 2

Introduction Method Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion

Newton's Minimization Technique

Problem

•
$$f(x) = 0$$

•
$$f(\lambda) = ||U_{22}(\lambda)||_F^2 \approx ||U_{22}(\lambda_0) + U'_{22}(\lambda_0)(\lambda - \lambda_0)||_F^2 = 0$$

Iterative Method

•
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

イロン イヨン イヨン イヨン

Newton's Minimization Technique

Problem

•
$$f'(x) = 0$$

•
$$f'(\lambda) = \frac{d}{d\lambda} ||U_{22}(\lambda)||_F^2 \approx \frac{d}{d\lambda} ||U_{22}(\lambda_0) + U'_{22}(\lambda_0)(\lambda - \lambda_0)||_F^2 = 0$$

Iterative Method

•
$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

イロン イヨン イヨン イヨン

Introduction Method Theory Conclusion Comparison Cubic Convergence Applications Conclusion

Lemma

All full column rank matrices $A(\lambda) \in C^k$ with nonsingular leading principle submatrices have a unique $L(\lambda)U(\lambda) \in C^k$ decomposition.

Proof.

- Assume $A(\lambda) = L(\lambda)U(\lambda)$
- Determine entries of $L(\lambda)$ and $U(\lambda)$

イロト イポト イヨト イヨト

Introduction Method Theory Convergence Algorithm Comparison Cubic Convergence Applications Conclusion

Theorem

Let $A(\lambda) \in C^k$ such that $A(\lambda_0)$ is nonsingular. Assume there's a permutation matrix P such that $PA(\lambda_0) = L_0U_0$, where L_0 is unit lower triangular and U_0 is upper triangular. Then, there is a neighborhood $N(\lambda_0)$ such that

$$PA(\lambda) = L(\lambda)U(\lambda) \ \forall \ \lambda \in N(\lambda_0),$$

with $L(\lambda_0) = L_0$, $U(\lambda_0) = U_0$; $L(\lambda)$, $U(\lambda) \in C^k$, $L(\lambda)$ unit lower triangular matrix, and $U(\lambda)$ upper triangular.

Proof.

- Locally perturb $A(\lambda_0)$ using Taylor's Theorem
- Create lower triangular matrices so that the perturbation becomes upper triangular.

 Introduction
 Method Theory
 Existence
 Algorithm
 Comparison
 Cubic Convergence
 Applications
 Conclusion

 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000

Smooth Decomposition of a General Matrix

Theorem

Let $A(\lambda) \in C^k$ be a $n \times n$ matrix such that $A(\lambda_0)$ has a column rank of n - m, $m \leq n - 1$. Assume there are permutation matrices P_1 , P_2 such that $P_1A(\lambda_0)P_2 = L_0U_0$, where L_0 is a block unit lower triangular matrix and U_0 is a block upper triangular matrix. Then, there is a neighborhood $N(\lambda_0)$ such that

$$P_1A(\lambda)P_2 = L(\lambda)U(\lambda) \ \forall \ \lambda \in N(\lambda_0),$$

with $L(\lambda_0) = L_0$, $U(\lambda_0) = U_0$; $L(\lambda)$, $U(\lambda) \in C^k$, $L(\lambda)$ a block unit lower triangular matrix, $U(\lambda)$ a block upper triangular matrix.

イロト イポト イヨト イヨト

Step 1: Given an initial approximation λ_0 to λ_* Step 2: Compute

$$A(\lambda_i)$$
 and $A'(\lambda_i), i = 0, 1, \cdots$

Step 3: Compute the LU decomposition with complete column pivoting of $A(\lambda_i)$:

$$P_1A(\lambda_i)P_2 = L(\lambda_i)U(\lambda_i)$$

(1) マン・ション・ (1) マン・

Introduction Method Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion

Step 4: Compute

$$U_{2,2}'(\lambda_i) = (L_i^{-1} P_1 A'(\lambda_i) P_2)_{2,2} - (L_i^{-1} P_1 A'(\lambda_i) P_2)_{2,1} (U_{1,1}^{(i)^{-1}} U_{1,2}^{(i)})$$

Step 5: Compute

$$\lambda_{i+1} = \lambda_i - \frac{(\operatorname{col} U'_{2,2}(\lambda_i))^H \cdot \operatorname{col} U_{2,2}(\lambda_i)}{||U'_{2,2}(\lambda_i)||_F^2}.$$

Step 6: If the desired accuracy is attained, stop the iteration. Otherwise, repeat steps 2-6.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Method Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion QR Algorithm for Computation of Nonlinear Eigenvalues

Step 3: Compute the *LU* decomposition with complete column pivoting of $A(\lambda_i)$:

 $A(\lambda_i)P = Q(\lambda_i)R(\lambda_i)$

Step 5: Compute

$$\lambda_{i+1} = \lambda_i - \frac{(\operatorname{col} R'_{2,2}(\lambda_i))^H \cdot \operatorname{col} R_{2,2}(\lambda_i)}{||R'_{2,2}(\lambda_i)||_F^2}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 Introduction
 Method Theory
 Existence
 Algorithm
 Comparison
 Cubic Convergence
 Applications
 Conclusion

 0000
 0000
 0000
 0000
 00000
 00000
 000000
 000000

Theory of Numerical Rank Determination

Property

Let AP = QR be a rank revealing decomposition. Then, the diagonals of R have the property that

 $|r_{1,1}| \geq \cdots \geq |r_{t,t}| >> |r_{t+1,t+1}| \geq \cdots \geq |r_{n,n}|.$

(人間) (人) (人) (人)

Introduction Method Theory Constraints Comparison Cubic Convergence Applications Conclusion

Theory of Numerical Rank Determination

Property

Let AP = QR be a rank revealing decomposition. Then, the diagonals of R have the property that

$$|\mathbf{r}_{1,1}| \geq \cdots \geq |\mathbf{r}_{t,t}| >> |\mathbf{r}_{t+1,t+1}| \geq \cdots \geq |\mathbf{r}_{n,n}|.$$

 $|r_{t+1,t+1}| \le \epsilon |r_{1,1}| \le |r_{t,t}|$

- 4 同 6 4 日 6 4 日 6

Introduction Method Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion

Theory of Numerical Rank Determination

Property

Let AP = QR be a rank revealing decomposition. Then, the diagonals of R have the property that

$$|r_{1,1}| \geq \cdots \geq |r_{t,t}| >> |r_{t+1,t+1}| \geq \cdots \geq |r_{n,n}|.$$

$$\frac{|r_{t+1,t+1}|}{|r_{1,1}|} \le \epsilon \le \frac{|r_{t,t}|}{|r_{1,1}|}.$$

・ロト ・回ト ・ヨト

Table: Time [ms] Comparison of 4 x 4 Algorithm Performance

Nonlinear	LU	QR	Ratio of Averages
Matrix	Average	Average	(QR / LU)
Q	4.369	16.141	3.695
Q, E	4.445	15.943	3.587
Q, S	4.472	16.088	3.597
Q, E, S	4.568	16.332	3.575

イロン イヨン イヨン イヨン

Table: Time [ms] Comparison of 10 x 10 Algorithm Performance

Nonlinear	LU	QR	Ratio of Averages
Matrix	Average	Average	(QR / LU)
Q	9.632	44.052	4.574
Q, E	9.829	44.035	4.480
Q, S	10.088	44.643	4.425
Q, E, S	10.166	46.169	4.541

イロト イヨト イヨト イヨト

Table: Time [ms] Comparison of 100 x 100 Algorithm Performance

Nonlinear	LU	QR	Ratio of Averages
Matrix	Average	Average	(QR / LU)
Q	391.154	1696.066	4.336
Q, E	362.494	1630.445	4.498
Q, S	393.234	1634.839	4.157
Q, E, S	389.039	1650.813	4.243

イロト イヨト イヨト イヨト

Introduction	Method Theory	Existence	Algorithm	Comparison ○○○●	Cubic Convergence	Applications	Conclusion
Iteratio	on Compa	arison					

Table: Average Iteration Comparison of 10 x 10 Algorithm Performance

Nonlinear		LU	QR		
Matrix	Number Time/Iter [ms]		Number	Time/Iter [ms]	
Q	4.40	2.19	4.28	10.29	
Q, E	4.44	2.21	4.26	10.32	
Q, S	4.51	2.24	4.29	10.42	
Q, E, S	4.38	2.32	4.27	10.81	

< E → < E →</p>

Newton Steffensen Method

Cubic Convergence Iterative Formula

Applying Steffensen's acceleration method to Newton's root finding method generates an iterative formula with cubic convergence. Let $f(x_*) = 0$ and let x_0 be sufficiently close to x_* , then the successive iterative approximations are determined by

$$x_{n+1} = x_n - \frac{f^2(x_n)}{f'(x_n)(f(x_n) - f(x_n^*))}$$

where

$$x_n^* = x_n - \frac{f(x_n)}{f'(x_n)}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Method Theory Existence OOO Algorithm Comparison OOO Convergence Applications Conclusion

Newton Steffensen Method

$$x_{n+1} = x_n - \frac{f'^2(x_n)}{f''(x_n)(f'(x_n) - f'(x_n^*))}$$

where

$$x_n^* = x_n - \frac{f'(x_n)}{f''(x_n)}.$$

•
$$f'(\lambda) = (\operatorname{col} U'_{2,2}(\lambda_i))^H \cdot \operatorname{col} U_{2,2}(\lambda_i)$$

• $f''(\lambda) = ||U'_{2,2}(\lambda_i)||_F^2$

イロン イヨン イヨン イヨン

Table: Time [ms] Comparison of 10 \times 10 Cubic Convergence Algorithm Performance

Nonlinear	LU	QR	Ratio of Averages
Matrix	Average	Average	(QR / LU)
Q	12.323	57.906	4.699
Q, E	12.124	57.504	4.743
Q, S	13.311	62.117	4.667
Q, E, S	12.422	59.012	4.751

- - 4 回 ト - 4 回 ト

Cubic Iteration Comparison

Table: Average Iteration Comparison of 10 x 10 Cubic Convergence Algorithm Performance

Nonlinear		LU	QR		
Matrix	Number Time/Iter [ms]		Number	Time/Iter [ms]	
Q	3.26	3.775	3.13	18.480	
Q, E	3.19	3.799	3.11	18.511	
Q, S	3.48	3.823	3.23	19.052	
Q, E, S	3.18	3.884	3.12	18.826	

- - 4 回 ト - 4 回 ト

Introduction	Method Theory	Existence	Algorithm	Comparison	Cubic Convergence	Applications	Conclusion
Cost							

Lines where the most time was spent								
Line Number	Code	Calls	Total Time	% Time	Time Plot			
59	$[Q, R, P] = apqr(\lambda k);$	5033	43.345 s	95.4%				
82	dR22 = Knt'*QAP*Knt - Knt'*QAP	5033	0.859 s	1.9%	I.			
76	QAP = Q'*dAk*P;	5033	0.223 s	0.5%				
92	guess = guess - coldR22'*colR2	5033	0.158 s	0.3%				
50	Ak = Mnot + Mone*guess + Mtwo*	5033	0.118 s	0.3%				
All other lines			0.724 s	1.6%	I			
Totals			45.426 s	100%				

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Goal

• Approximate $f'(x_n^*)$ using previously calculated values.

(4回) (4回) (4回)

Goal

- Approximate $f'(x_n^*)$ using previously calculated values.
- Add another term in the Taylor's Series expansion approximation.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Super Quadratic Convergence

Goal

- Approximate $f'(x_n^*)$ using previously calculated values.
- Add another term in the Taylor's Series expansion approximation.
- Solve for $f'(x_n^*)$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

• Vibrating rail track resting on sleepers (lateral supports)

イロト イヨト イヨト イヨト

- Vibrating rail track resting on sleepers (lateral supports)
- Initially modeled as a partial differential equation

イロト イポト イヨト イヨト

- Vibrating rail track resting on sleepers (lateral supports)
- Initially modeled as a partial differential equation
- $\bullet\,$ Discretized and turned into a quadratic eigenvalue problem with 10 \times 10 matrices

イロト イポト イヨト イヨト

- Vibrating rail track resting on sleepers (lateral supports)
- Initially modeled as a partial differential equation
- $\bullet\,$ Discretized and turned into a quadratic eigenvalue problem with 10 \times 10 matrices
- Eigenvalues are explicitly known. There exist multiple eigenvalues.

イロト イポト イヨト イヨト

Introduction Method Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion Vibrating Train Tracks Conclusion Conclusion

- Vibrating rail track resting on sleepers (lateral supports)
- Initially modeled as a partial differential equation
- $\bullet\,$ Discretized and turned into a quadratic eigenvalue problem with 10 \times 10 matrices
- Eigenvalues are explicitly known. There exist multiple eigenvalues.
- Algorithm was successful within an error tolerance of 10^{-15}

イロト イポト イヨト イヨト

 Introduction
 Method Theory
 Existence
 Algorithm
 Comparison
 Cubic Convergence
 Applications

 0000
 0000
 0000
 0000
 0000
 00000
 Applications

Vibrating Train Tracks

	F 0.66	0	0	0	-0.25	0.31	0.31	-0.25	0	0 Τ	
	0	0.66	0	0	0.31	-0.25	0	0	0.31	-0.25	
	0	0	0.66	-0.25	0	0	0.31	0	-0.25	0.31	
	0	0	0	0.57	0	0	-0.13	0.31	0.22	0.12	
11 _	0	0	0	0	0.42	-0.01	0.12	0.22	-0.15	0.12	
0 =	0	0	0	0	0	0.42	-0.14	0.13	0.11	0.22	
	0	0	0	0	0	0	0.25	-0.08	0.25	-0.08	
	0	0	0	0	0	0	0	-0.22	0	0.22	
	0	0	0	0	0	0	0	0	0	0	
	Lο	0	0	0	0	0	0	0	0	0	

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Conclusion

- Analyze the super quadratic algorithm
- Take advantage of matrix structure such as symmetry
- Determine all eigenvalues in a region
- MATLAB polynomial nonlinear eigenvalue solver

- 4 同 6 4 日 6 4 日 6