Recursive Sequences and Groups

Christina Mendoza

Saint Ambrose University

REU Missouri State University July 31, 2009

A look inside Recursive Sequences and Groups

Outline

(1) Characteristic Polynomial
(2) Examples
(3) Results

4 Some open questions

Outline

(1) Characteristic Polynomial

(2) Examples

(3) Results

4 Some open questions

Outline

(1) Characteristic Polynomial

(2) Examples

(3) Results
4. Some open questions

Outline

(1) Characteristic Polynomial
(2) Examples
(3) Results
(4) Some open questions

The Fibonacci Sequence and its characteristic polynomial

$$
\begin{aligned}
& \qquad \begin{array}{l}
f_{n}=f_{n-1}+f_{n-2} \\
0,1,1,2,3,4,8,13, \ldots
\end{array} \\
& r^{n}=f_{n} \\
& \text { - } r^{n}=r^{n-1}+r^{n-2} \\
& \text { - } r^{2}=r+1 \\
& \text { - } r^{2}-r-1=0 \\
& p(x)=x^{2}-x-1
\end{aligned}
$$

Using the Quadratic Formula:

- $x_{1}=(1+\sqrt{5}) / 2$
- $x_{2}=(1-\sqrt{5}) / 2$
- $f_{n}=\alpha x_{1}^{n}+\beta x_{2}^{n}$
- $\alpha+\beta=0$
- $\alpha(1+\sqrt{5}) / 2+\beta(1-\sqrt{5}) / 2=1$
- $f_{n}=(1 / \sqrt{5})((1+\sqrt{5}) / 2)^{n}-(1 / \sqrt{5})((1-\sqrt{5}) / 2)^{n}$

Fibonacci and the group Z_{3}
$0,1,1,2,0,2,2,1,0,1, \ldots$.

- Period is 8
- $x^{2}-x-1 \mid x^{d}-1$
- $\left(x^{8}-1\right)=\left(x^{2}-x-1\right)\left(x^{6}+x^{5}+2 x^{4}+2 x^{2}+2 x+1\right)$
- So the coefficients determine the characteristic polynomial, which in turn determines the period.

Coefficients and the fibonacci recursion

$$
\begin{gathered}
f_{n}=2 f_{n-1}+f_{n-2} \\
p(x)=x^{2}-2 x-1
\end{gathered}
$$

What does this mean in a group operation?

- $\psi: Z_{m} \longrightarrow Z_{m}$, given by:
$\psi(x)=2 x$ is a homomorphism
- Try using group homomorphisms rather than exponents for the coefficients

Using homomorphisms as coefficients

- $Z_{n}=\langle x\rangle$ and $Z_{2}=\langle y\rangle$
- $D_{2 n} \cong Z_{n} \rtimes Z_{2}$
- $\varphi: Z_{2} \longrightarrow \operatorname{Aut}\left(Z_{n}\right)$
- $\varphi(y)(h)=h^{-1}$
- $\psi_{i}: D_{2 n} \rightarrow D_{2 n}$
- $f_{n}=\psi_{i}\left(f_{n-1}\right) f_{n-2}$
- $\psi_{i}((a, b))=\left(x^{i}, 1\right)(a, b)\left(x^{-i}, 1\right)$

Using $f_{0}=(x, 1)$ and $f_{1}=(1, y)$, as our initial terms, the first six terms of our sequence are:

$$
(x, 1),(1, y),\left(x^{2 i-1}, y\right),\left(x^{4 i-1}, 1\right),\left(x^{6 i-2}, y\right),\left(x^{4 i-1}, y\right)
$$

And the next term?

$$
\begin{aligned}
f_{6 k} & =(x, 1) \\
f_{6 k+1} & =\left(x^{4 k i}, y\right) \\
f_{6 k+2} & =\left(x^{(4 k+2) i-1}, y\right) \\
f_{6 k+3} & =\left(x^{4 i-1}, 1\right) \\
f_{6 k+4} & =\left(x^{(4 k+6) i-2}, y\right) \\
f_{6 k+5} & =\left(x^{(4 k+4) i-1}, y\right)
\end{aligned}
$$

Period is $6 k$ or $6 k+3$, for the smallest k

Finding the Period

If $n \mid 4 i-2$ and $n \mid(4 k+6) i-2$,
then we easily see that the period is $6 k+3$. But:

$$
(4 k+6) i-2=4 k i+6 i-2=(4 k i+2 i)+(4 i-2)
$$

so it is obvious that n need only divide $2 i(2 k+1)$. However, if n is odd, then $n \mid(2 k+1)$ is sufficient. This is due to the fact that if $n \mid 4 i-2$, where n is odd, we actually have $n \mid 2 i-1$. So if $n \mid 2 i-1$, then $n \mid / 2 i$. Furthermore, if n does not satisfy the above case, then the period is $6 k$, for the smallest k such that $4 k i=\ln$, where $I \in Z$ and n and i are given.

Initial Conditions:

$$
\begin{aligned}
f_{0}=(x, 1), f_{1}=(1, y) ; f_{0} & =(1, y), f_{1}=(x, 1) \\
f_{0}=(1, y) & =f_{1}
\end{aligned}
$$

- $f_{n}=f_{n-2} \psi_{i}\left(f_{n-1}\right)$
- $f_{n}=f_{n-1} \psi_{i}\left(f_{n-2}\right)$
- $f_{n}=\psi_{i}\left(f_{n-2}\right) f_{n-1}$
- $f_{n}=\psi_{i}\left(f_{n-1}\right) f_{n-2}$

Initial Conditions:

$$
\begin{gathered}
f_{0}=(x, 1), f_{1}=(1, y) ; f_{0}=(1, y), f_{1}=(x, 1) \\
f_{0}=(1, y)=f_{1}
\end{gathered}
$$

(1) $\psi_{i}((a, b))=\left(x^{i}, 1\right)(a, b)\left(x^{-i}, 1\right)$
(2) $\psi_{j}((a, b))=\left(x^{j}, 1\right)(a, b)\left(x^{-j}, 1\right)$

- $f_{n}=\psi_{j}\left(f_{n-2}\right) \psi_{i}\left(f_{n-1}\right)$
- $f_{n}=\psi_{j}\left(f_{n-1}\right) \psi_{i}\left(f_{n-2}\right)$
- $f_{n}=\psi_{i}\left(f_{n-2}\right) \psi_{j}\left(f_{n-1}\right)$
- $f_{n}=\psi_{i}\left(f_{n-1}\right) \psi_{j}\left(f_{n-2}\right)$

When $i=j$

- Period is easily found
- $f_{n}=\psi_{j}\left(f_{n-2}\right) \psi_{i}\left(f_{n-1}\right)$
$=\psi_{i}\left(f_{n-2}\right) \psi_{i}\left(f_{n-1}\right)=\psi_{i}\left(f_{n-2} f_{n-1}\right)$
- $f_{n}=\psi_{j}\left(f_{n-1}\right) \psi_{i}\left(f_{n-2}\right)$
$=\psi_{i}\left(f_{n-1}\right) \psi_{i}\left(f_{n-2}\right)=\psi_{i}\left(f_{n-1} f_{n-2}\right)$
- $f_{n}=\psi_{i}\left(f_{n-2}\right) \psi_{j}\left(f_{n-1}\right)$
$=\psi_{i}\left(f_{n-2}\right) \psi_{i}\left(f_{n-1}\right)=\psi_{i}\left(f_{n-2} f_{n-1}\right)$
- $f_{n}=\psi_{i}\left(f_{n-1}\right) \psi_{j}\left(f_{n-2}\right)$
$=f_{n}=\psi_{i}\left(f_{n-1}\right) \psi_{i}\left(f_{n-2}\right)=\psi_{i}\left(f_{n-1} f_{n-2}\right)$
Example?

Check It Out!

$$
f_{0}=(x, 1), f_{1}=(1, y)
$$

When $i=j$:

$$
\begin{aligned}
f_{n} & =\psi_{i}\left(f_{n-1}\right) \psi_{j}\left(f_{n-2}\right)=\psi_{i}\left(f_{n-1} f_{n-2}\right) \\
f_{6 k} & =(x, 1) \\
f_{6 k+1} & =\left(x^{4 k(i+j)}, y\right)=\left(x^{8 k i}, y\right) \\
f_{6 k+2} & =\left(x^{4 k(i+j)+2 i-1}, y\right)=\left(x^{8 k i-2 i-1}, y\right) \\
f_{6 k+3} & =\left(x^{4 i-2 j-1}, 1\right)=\left(x^{2 i-1}, 1\right) \\
f_{6 k+4} & =\left(x^{4 k(i+j)+6 i-2}, y\right)=\left(x^{8 k i+6 i-2}, y\right) \\
f_{6 k+5} & =\left(x^{4 k(i+j)+4 i+2 j-1}, y\right)=\left(x^{8 k i+6 i-1}, y\right)
\end{aligned}
$$

PERIOD?

When $i \neq j$

- Period can be found in the exact some way
- More variables means trouble
- Simplier means would be nice

What If?

(1) What if φ was defined differently?

- How would redefining φ affect the sequence?
(2) What if ψ was defined differently?
- How would other homomorphisms affect the sequence?
(3) What if the degree of our sequence was three or four, instead of two?
(9) What if we use another group?

