Recursive Sequences and Groups

Christina Mendoza

Saint Ambrose University

REU Missouri State University July 31, 2009

A look inside Recursive Sequences and Groups

Christina Mendoza Recursive Sequences and Groups

Image: A math a math

э

∃ >

Outline

2 Examples

э

∃ >

< 同 ▶

< ∃ >

Outline

2 Examples

< 同 ▶

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Outline

2 Examples

< 同 ▶

글 🖌 🖌 글 🕨

Outline

2 Examples

P

글 > - < 글 >

The Fibonacci Sequence and its characteristic polynomial

$$f_n = f_{n-1} + f_{n-2}$$

0, 1, 1, 2, 3, 4, 8, 13,

$$r^n = f_n$$

•
$$r^{n} = r^{n-1} + r^{n-2}$$

• $r^{2} = r + 1$
• $r^{2} - r - 1 = 0$
 $p(x) = x^{2} - x - 1$

Using the Quadratic Formula:

•
$$x_1 = (1 + \sqrt{5})/2$$

• $x_2 = (1 - \sqrt{5})/2$
• $f_n = \alpha x_1^n + \beta x_2^n$
• $\alpha + \beta = 0$
• $\alpha (1 + \sqrt{5})/2 + \beta (1 - \sqrt{5})/2 = 1$
• $f_n = (1/\sqrt{5})((1 + \sqrt{5})/2)^n - (1/\sqrt{5})((1 - \sqrt{5})/2)^n$

<ロ> <同> <同> < 同> < 同>

Fibonacci and the group Z_3 0, 1, 1, 2, 0, 2, 2, 1, 0, 1,

- Period is 8
- $x^2 x 1 \mid x^d 1$
- $(x^8 1) = (x^2 x 1)(x^6 + x^5 + 2x^4 + 2x^2 + 2x + 1)$
- So the coefficients determine the characteristic polynomial, which in turn determines the period.

Coefficients and the fibonacci recursion

$$f_n = 2f_{n-1} + f_{n-2}$$

$$p(x) = x^2 - 2x - 1$$
What does this mean in a group operation

?

•
$$\psi: Z_m \longrightarrow Z_m$$
, given by:

 $\psi(x) = 2x$ is a homomorphism

 Try using group homomorphisms rather than exponents for the coefficients

Using homomorphisms as coefficients

•
$$Z_n = \langle x \rangle$$
 and $Z_2 = \langle y \rangle$

•
$$D_{2n}\cong Z_n\rtimes Z_2$$

•
$$\varphi: Z_2 \longrightarrow Aut(Z_n)$$

•
$$\varphi(y)(h) = h^{-1}$$

•
$$\psi_i: D_{2n} \to D_{2n}$$

•
$$f_n = \psi_i(f_{n-1})f_{n-2}$$

•
$$\psi_i((a,b)) = (x^i,1)(a,b)(x^{-i},1)$$

æ

・ 御 と 《 臣 と 《 臣 と

Using $f_0 = (x, 1)$ and $f_1 = (1, y)$, as our initial terms, the first six terms of our sequence are:

$$(x, 1), (1, y), (x^{2i-1}, y), (x^{4i-1}, 1), (x^{6i-2}, y), (x^{4i-1}, y)$$

And the next term?

э

A D

$$f_{6k} = (x, 1)$$

$$f_{6k+1} = (x^{4ki}, y)$$

$$f_{6k+2} = (x^{(4k+2)i-1}, y)$$

$$f_{6k+3} = (x^{4i-1}, 1)$$

$$f_{6k+4} = (x^{(4k+6)i-2}, y)$$

$$f_{6k+5} = (x^{(4k+4)i-1}, y)$$

Period is 6k or 6k + 3, for the smallest k

<ロ> <同> <同> < 同> < 同>

Finding the Period

If $n \mid 4i - 2$ and $n \mid (4k + 6)i - 2$, then we easily see that the period is 6k + 3. But:

$$(4k+6)i - 2 = 4ki + 6i - 2 = (4ki + 2i) + (4i - 2)$$

so it is obvious that *n* need only divide 2i(2k + 1). However, if *n* is odd, then $n \mid (2k + 1)$ is sufficient. This is due to the fact that if $n \mid 4i - 2$, where *n* is odd, we actually have $n \mid 2i - 1$. So if $n \mid 2i - 1$, then $n \mid /2i$. Furthermore, if *n* does not satisfy the above case, then the period is 6k, for the smallest *k* such that 4ki = ln, where $l \in Z$ and *n* and *i* are given.

Initial Conditions:

$$f_0 = (x, 1), f_1 = (1, y); f_0 = (1, y), f_1 = (x, 1)$$

 $f_0 = (1, y) = f_1$

•
$$f_n = f_{n-2}\psi_i(f_{n-1})$$

• $f_n = f_{n-1}\psi_i(f_{n-2})$
• $f_n = \psi_i(f_{n-2})f_{n-1}$
• $f_n = \psi_i(f_{n-1})f_{n-2}$

< ロ > < 部 > < 注 > < 注 > < </p>

Initial Conditions:

$$f_0 = (x, 1), f_1 = (1, y); f_0 = (1, y), f_1 = (x, 1)$$

 $f_0 = (1, y) = f_1$

•
$$\psi_i((a,b)) = (x^i, 1)(a,b)(x^{-i}, 1)$$

• $\psi_j((a,b)) = (x^j, 1)(a,b)(x^{-j}, 1)$

•
$$f_n = \psi_j(f_{n-2})\psi_i(f_{n-1})$$

• $f_n = \psi_j(f_{n-1})\psi_i(f_{n-2})$
• $f_n = \psi_i(f_{n-2})\psi_j(f_{n-1})$
• $f_n = \psi_i(f_{n-1})\psi_j(f_{n-2})$

When
$$i = j$$

• Period is easily found

•
$$f_n = \psi_j(f_{n-2})\psi_i(f_{n-1})$$

= $\psi_i(f_{n-2})\psi_i(f_{n-1}) = \psi_i(f_{n-2}f_{n-1})$
• $f_n = \psi_i(f_{n-1})\psi_i(f_{n-2})$

$$=\psi_{i}(f_{n-1})\psi_{i}(f_{n-2})=\psi_{i}(f_{n-1}f_{n-2})$$

•
$$f_n = \psi_i(f_{n-2})\psi_j(f_{n-1})$$

= $\psi_i(f_{n-2})\psi_i(f_{n-1}) = \psi_i(f_{n-2}f_{n-1})$

•
$$f_n = \psi_i(f_{n-1})\psi_j(f_{n-2})$$

= $f_n = \psi_i(f_{n-1})\psi_i(f_{n-2}) = \psi_i(f_{n-1}f_{n-2})$

Example?

Image: Image:

æ

≪ ≣ ⊁

Check It Out!

$$f_0 = (x, 1), f_1 = (1, y)$$

When i = j:

$$f_{n} = \psi_{i}(f_{n-1})\psi_{j}(f_{n-2}) = \psi_{i}(f_{n-1}f_{n-2})$$

$$f_{6k} = (x,1)$$

$$f_{6k+1} = (x^{4k(i+j)}, y) = (x^{8ki}, y)$$

$$f_{6k+2} = (x^{4k(i+j)+2i-1}, y) = (x^{8ki-2i-1}, y)$$

$$f_{6k+3} = (x^{4i-2j-1}, 1) = (x^{2i-1}, 1)$$

$$f_{6k+4} = (x^{4k(i+j)+6i-2}, y) = (x^{8ki+6i-2}, y)$$

$$f_{6k+5} = (x^{4k(i+j)+4i+2j-1}, y) = (x^{8ki+6i-1}, y)$$

PERIOD?

<ロ> <同> <同> < 同> < 同>

When $i \neq j$

- Period can be found in the exact some way
- More variables means trouble
- Simplier means would be nice

< 同 ▶

What If?

- **(**) What if φ was defined differently?
 - How would redefining φ affect the sequence?
- **2** What if ψ was defined differently?
 - How would other homomorphisms affect the sequence?
- What if the degree of our sequence was three or four, instead of two?
- What if we use another group?