Continuous Threshold Policy Harvesting in Predator-Prey Models

Jon Bohn and Kaitlin Speer

Department of Mathematics, University of Wisconsin - Madison Department of Mathematics, Baylor University

July 30, 2009

Continuous Threshold Policy Harvesting in Predator-Prey Models

Harvesting Model # 1

We begin with the predator-prey model given by:

$$\dot{x} = x(1-x) - \frac{axy}{1+mx} - H(x)$$

$$\dot{y} = y\left(-d + \frac{bx}{1+mx}\right),$$
(1)

with a rational Threshold Policy Harvesting model:

$$H(x) = \begin{cases} 0 & \text{if } x < T \\ \frac{h(x-T)}{h+x-T} & \text{if } x \ge T. \end{cases}$$
(2)

Here, d = the death rate, a = capture rate, m = half saturation constant, b = prey conversion rate, h = harvesting constant, and T = threshold constant.

Model Comparison

Continuous Threshold Policy Harvesting in Predator-Prey Models

Diffusion Model

Questions

Nonlinear Systems

Nonlinear systems can be studied locally or globally.

Continuous Threshold Policy Harvesting in Predator-Prey Models

Nonlinear Systems

Nonlinear systems can be studied locally or globally. Local: Studying the system locally shows how the solutions behave around equilibria and periodic orbits.

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \overset{linearization}{\Longrightarrow} \dot{\mathbf{x}} = A\mathbf{x}$$

where

$$A = J(\mathbf{x_0}) = \begin{bmatrix} \frac{\partial \dot{x}_1}{\partial x_1} & \cdots & \frac{\partial \dot{x}_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \dot{x}_n}{\partial x_1} & \cdots & \frac{\partial \dot{x}_n}{\partial x_n} \end{bmatrix} \Big|_{\mathbf{x_0}}$$

Continuous Threshold Policy Harvesting in Predator-Prey Models

Equilibrium Points when x < T

By solving the system of equations shown below, we computed the possible equilibrium points, or the values at which the system experiences stasis. Thus, solving

$$0 = x(1-x) - \frac{axy}{1+mx} - H(x)$$

$$0 = y\left(-d + \frac{bx}{1+mx}\right)$$

when x < T, with x, y > 0, gives

$$P_1 = \left(rac{d}{b-dm}, rac{b}{a}\left[rac{b-d(m+1)}{(b-dm)^2}
ight]
ight).$$

When y = 0,

$$P_2 = (1, 0).$$

Since x and y must be nonnegative, the parameters of each point must satisfy the condition that b > d(m+1).

Equilibrium Points when $x \ge T$

In the case where $x \ge T$, when x, y > 0,

$$P_3 = \left(\frac{d}{b-dm}, \frac{hb(T-\frac{d}{b-dm})}{ad(h-T+\frac{d}{b-dm})} - \frac{b(d-b+dm)}{a(b-dm)^2}\right)$$

and when y = 0, the abscissa of P_4 is the solution of

$$x^{3} + (h - T - 1)x^{2} + Tx - Th = 0.$$

To determine the behavior and stability of the equilibrium points, we perform a trace-determinant analysis and an eigenvalue analysis on each point. For this, we call upon [1]:

Theorem 2 [Eigenvalue Analysis]

Let $\delta = \det A$ and $\tau =$ trace A and consider the linear system

$$\dot{x} = Ax$$

- (a) If $\delta < 0$ there are two real eigenvalues of opposite sign. Then the system experiences a saddle.
- (b) If $\delta > 0$ and $\tau^2 4\delta \ge 0$ then there are two real eigenvalues of the same sign as τ and the equilibrium point is a node. It is stable if $\tau > 0$ and unstable if $\tau < 0$
- (c) If $\delta > 0, \tau^2 4\delta < 0$, and $\tau \neq 0$ then there are two complex conjugate eigenvalues $\lambda = a \pm ib$ and the equilibrium point is a focus.
- (d) If $\delta > 0$ and $\tau = 0$, then there are two purely imaginary complex conjugate eigenvalues and the equilibrium point is a center.

Likewise, the trace-determinant analysis we perform consists of similar statements.

Theorem 3 [Trace-Determinant Analysis]

Let $\delta = \det A$ and $\tau = \operatorname{trace} A$ and consider the linear system

$$\dot{x} = Ax$$

(I) If $\delta < 0$ then (1) has a saddle at the equilibrium point.

- (II) If $\delta > 0$ and $\tau^2 4\delta \ge 0$ then (1) has a node at the equilibrium point; it is stable if $\tau < 0$ and unstable if $\tau > 0$.
- (III) If $\delta > 0, \tau^2 4\delta < 0$, and $\tau \neq 0$ then (1) has a focus at the equilibrium point; it is stable if $\tau < 0$ and unstable if $\tau > 0$.

(IV) If $\delta > 0$ and $\tau = 0$, then (1) has a center at the equilibrium point.

Using the principles from Theorem 2, we found that P_1 can never be a saddle since $\delta_{P_1} < 0$ requires that b < d(m+1). Likewise, if b > d(m+1) and $\tau_{P_1}^2 - 4\delta_{P_1} \ge 0$, then P_1 is a node.

Figure: Node

If $b < \frac{dm(m+1)}{m-1}$, then the node is stable.

If b > d(m+1) and $\tau_{P_1}^2 - 4\delta_{P_1} < 0$, then P_1 is a focus. As before, if $b < \frac{dm(m+1)}{m-1}$, then the focus is stable.

Figure: Focus

Continuous Threshold Policy Harvesting in Predator-Prey Models

Finally,
$$P_1$$
 is a center if $b = \frac{md(m+1)}{m-1}$.

Figure: Center

Continuous Threshold Policy Harvesting in Predator-Prey Models

Hopf Bifurcation

When P_3 satisfies the conditions to be a center, the system exhibits a Hopf Bifurcation.

Continuous Threshold Policy Harvesting in Predator-Prey Models

Diffusion Model

Questions

Heteroclinic Orbit

Additionally, we detected a heteroclinic orbit going from P_4 as a saddle point toward the periodic orbits of the Hopf bifurcation.

(Harvesting Model # 2)

Harvesting Model # 2

We use the same system of equations as before,

$$\dot{x} = x(1-x) - \frac{axy}{1+mx} - H(x) \dot{y} = y\left(-d + \frac{bx}{1+mx}\right),$$
(3)

with a slightly different Threshold Policy Harvesting model:

$$H(x) = \begin{cases} 0 & \text{if } x < T_1 \\ \frac{h(x - T_1)}{T_2 - T_1} & \text{if } T_1 \le x < T_2 \\ h & \text{if } x \ge T_2. \end{cases}$$
(4)

As before, d = the death rate, a = capture rate, m = half saturation constant, b = prey conversion rate, h = harvesting constant, $T_1 =$ the initial threshold constant, and $T_2 =$ the final threshold constant.

Rational vs. Piecewise Linear

Continuous Threshold Policy Harvesting in Predator-Prey Models

Equilibrium Points when $T_1 \le x \le T_2$

By solving the same system of equations as in the first model, we computed the possible equilibrium points of the second model. Solving this, when $T_1 \le x \le T_2$, with x, y > 0, gives

$$P_5 = \left(\frac{d}{b-dm}, \frac{b}{a}\left[\frac{b-dm-d}{(b-dm)^2} - \frac{h(d-T_1(b-dm))}{d(b-dm)(T_2-T_1)}\right]\right).$$

When y = 0,

wł

$$P_6 = (x_+^*, 0) \text{ and } P_7 = (x_-^*, 0),$$

here $x_{\pm}^* = \frac{T_2 - T_1 - h \pm \sqrt{(h - T_2 + T_1)^2 + 4hT_1(T_2 - T_1)}}{2(T_2 - T_1)}.$

Since x and y must be nonnegative, the parameters of each point must satisfy the conditions that

$$b>dm$$
 and $h<rac{d(b-dm-d)(b-dm)(T_2-T_1)}{d-T_1(b-dm)}$

Equilibrium Points when $x \ge T_2$

In the case where $x \ge T_2$, when x, y > 0,

$$P_8 = \left(\frac{d}{b-dm}, \frac{b}{a}\left[\frac{b-dm-d}{(b-dm)^2} - \frac{h}{d}\right]\right),$$

and when y = 0,

Bifurcations and Heteroclinic Orbits

- When P_5 satisfies the conditions to be a center, then the system exhibits a Hopf Bifurcation when d=1.25.
- In P₈, P₉, and P₁₀, both a fold bifurcation and a transcritical bifurcation were detected at h=0.25 and h=0.22, respectively.
- Heteroclinic orbits are present, connecting equilibrium points to the periodic orbits coming out from Hopf bifurcations.

Diffusive Predator-Prey Model

We took a model similar to that of system (1), (4) and added a diffusion term to the predator species to get a new model:

$$egin{aligned} rac{du}{dt} &= u(1-u) - rac{auv}{1+mu} - H(u) \ rac{dv}{dt} &= v(-d+rac{bu}{1+mu}) + V_{xx}. \end{aligned}$$

Using a change of variables, we made this system into an ODE:

$$\dot{u} = \frac{du}{dz} = \frac{1}{s} \left(u(1-u) - \frac{auv}{1+mu} - H(u) \right)$$

$$\dot{v} = \frac{dv}{dz} = w$$

$$\dot{w} = \frac{dw}{dz} = sw + v(d - \frac{bu}{1+mu}),$$

$$(5)$$

Discussion

- We seek to illustrate how the different harvesting functions affect the qualitative behaior of the solutions and the stability of the equilibria by:
 - Analyzing the equilibrium points and their properties for both models
 - When x, y > 0.
- In such a case,
 - We always have $x = \frac{d}{b-dm}$
 - The corresponding y values satisfy:

$$y_1 \ge y_3 \ge y_5 \ge y_8 \tag{6}$$

when

$$\frac{T(b-dm)-d}{(b-dm)(h-T)+d} \geq \frac{T_1(b-dm)-d}{(b-dm)(T_2-T_1)}.$$

21 / 24

Discussion

- We found two main types of behavior in the group of equilibria:
 - All equilibria on the x-axis can be nodes or saddles but never centers or foci
 - All other equilibria can be nodes, foci, and centers, but not saddles.
- The equilibria of the second model correspond directly to the equilibria of the first model:

(Diffusion Model)

Questions

22 / 24

Possible Extensions

- Harvesting on both predators and prey
- Combining threshold policy harvesting with other types of harvesting (i.e. seasonal harvesting)
- Including an infectious disease, especially concerning a risk of mortality of one or both species
- Considering more than two species

Are there any questions?

Continuous Threshold Policy Harvesting in Predator-Prey Models

Harvesting Model # 2

Diffusion Model

24 / 24

L. Perko, Differential Equations and Dynamical Systems, Texts in Appl. Math. Vol 7, Springer Verlag (2006).