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Graphs

Definition
A graph is a set of vertices along with a set of edges. Each edge
connects two vertices. Two vertices are said to be adjacent if there
is an edge connecting them.

Definition
H is a subgraph of G if H is a graph whose vertex set is a subset
of G ’s vertex set, and whose edge set is a subset of G ’s edge set.



Graph examples
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Figure: A subgraph of the previous graph



Complete graphs

Definition
A complete graph is a graph in which all vertices are adjacent. We
denote the complete graph with n vertices by Kn.
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Figure: K4



Complete bipartite graphs

Definition
A complete bipartite graph consists of two sets of vertices with all
vertices in one set adjacent to all vertices in the other set, and no
two vertices in the same set adjacent. We denote the complete
bipartite graph where the first vertex set has n elements and the
second vertex set has m elements by Kn,m.

•



111111111111

BBBBBBBBBBBBBBB

LLLLLLLLLLLLLLLLLLLL •

|||||||||||||||



111111111111

BBBBBBBBBBBBBBB •

rrrrrrrrrrrrrrrrrrrr

|||||||||||||||



111111111111

• • • • •

Figure: K3,5



Planar graphs

Definition
A planar graph is a graph that can be drawn on a plane without
any edges crossing.
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Figure: This graph is planar



Surfaces of crosscap k

The boundary of a Möbius band is a circle. A crosscap can be
added to a surface by removing a disc and connecting a Möbius
band by identifying the points on the boundary of the band with
the points on the boundary of the removed disc. The sphere has
crosscap 0, and the surface of crosscap k may be formed by adding
k crosscaps to the sphere. The surface of crosscap 1 is called the
projective plane. The surface of crosscap 2 is called the Klein
bottle.



Fundamental Polygons

Figure: Fundamental polygon of the Möbius band

Figure: Fundamental polygon of the projective plane

Figure: Fundamental polygon of the Klein bottle



Genus of a graph

Definition
A graph is said to have genus g if it can be drawn on a surface of
genus g with no edges crossing, but cannot be drawn on a surface
of a lesser genus with no edges crossing.

I The genus of the complete graph of n vertices is

γ(Kn) =
⌈

(n−3)(n−4)
12

⌉
.

I The genus of the complete bipartite graph whose first vertex
set has n elements and whose second vertex set has m
elements is γ(Kn,m) =

⌈
(m−2)(n−2)

4

⌉
.

I The genus of a graph is greater than or equal to the genus of
any of its subgraphs.



Non-orientable genus

Definition
A graph is said to have non-orientable genus or crosscap k if it can
be drawn on a surface of crosscap k with no edges crossing, but
cannot be drawn on a surface of a lesser crosscap with no edges
crossing.

I The non-orientable genus of the complete graph of n vertices

is γ̄(Kn) =
⌈

(n−3)(n−4)
6

⌉
, with the exception that γ̄(K7) = 3.

I The non-orientable genus of the complete bipartite graph
whose first vertex set has n elements and whose second vertex
set has m elements is γ̄(Kn,m) =

⌈
(m−2)(n−2)

2

⌉
.

I The non-orientable genus of a graph is greater than or equal
to the non-orientable genus of any of its subgraphs.



Rings

We can think of a ring as a set in which we can add and multiply
elements, multiplication distributes over addition, and we always
assume that addition is commutative and there is an additive
identity, 0. If the multiplication operation is commutative, then we
say that the ring is commutative. If there is a multiplicative
identity, then we say that the ring has unity. We will only be
discussing commutative rings with unity.



Zero-divisors

Definition
An element a ∈ R is called a zero-divisor if there exists a nonzero b
such that ab = 0.

Example

In the ring Z8, of the integers modulo 8, 6 is a zero-divisor because
6 · 4 = 24 ≡ 0.



Zero-divisor graph

Definition
The zero-divisor graph of a ring R, denoted Γ(R), is the graph
formed by taking all of the zero-divisors, except 0, of R as vertices
and connecting two vertices iff their product is zero.
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Figure: The zero-divisor graph of Z6

9

iiiiiiiiiiiiiiiiiiiiii

nnnnnnnnnnnnnnn

||||||||

BBBBBBBB

PPPPPPPPPPPPPPP

UUUUUUUUUUUUUUUUUUUUUUU

3 6 12 15 21 24

18

UUUUUUUUUUUUUUUUUUUUUU

PPPPPPPPPPPPPPP

BBBBBBBB

||||||||

nnnnnnnnnnnnnnn

iiiiiiiiiiiiiiiiiiiiiii

Figure: The zero-divisor graph of Z27



Local rings

Definition

I A subset I ⊆ R is called an ideal if it is nonempty, closed
under addition and additive inverses, and if for any a ∈ I and
b ∈ R, ab is in I .

I A proper ideal of a ring is an ideal which is not the entire ring.

I A maximal ideal is a proper ideal which is not contained in
any other proper ideal.

I A local ring is a ring which has only one maximal ideal.



What we’ve been up to

We have been attempting to classify all finite rings with
zero-divisor graphs of crosscap 2.



Methodology

I The residue field of a local ring R is the field obtained by
modding out by the maximal ideal m.

I If I is an ideal and n is a natural number, then I n is the ideal
formed by taking all finite sums of products of n elements of I .

I The index of nilpotency of a local ring R with maximal ideal
m is the least natural number n such that mn is the zero ideal.

I In a finite local ring, all of the elements of the maximal ideal
are zero-divisors and all of the elements not in the maximal
ideal are units (i.e. they have a multiplicative inverse).



There are no local rings of crosscap 2

I If the index of nilpotency of a local ring is 2, then all products
of elements of the maximal ideal are zero. Therefore, the
zero-divisor graph is complete, and so since there are no
complete graphs of crosscap 2, we only have to consider the
case where the index of nilpotency is greater than 2.

I If the residue field has order of at least 4, and the index of
nilpotency is greater than 2, then the crosscap of the
zero-divisor graph is greater than 4.

I We have gone through the rings of residue field of order 2 or 3
and small index of nilpotency (the index of nilpotency
provides a lower bound on the crosscap), and found that there
aren’t any of crosscap 2.

I This gives us that there are no local rings of crosscap 2.
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Nonlocal rings

I By the Chinese Remainder Theorem, any finite commutative
ring with unity can be decomposed into a direct product of
local rings.

I If we have a product of two rings, R × S , then the product of
any two elements of the form (a, 0) and (0, b), where a ranges
over all nonzero elements of R and b ranges over all nonzero
elements of S , will be zero. Thus we at least have a
K|R|−1,|S |−1 as a subgraph of the zero-divisor graph of R × S .
If R and S are fields, then these will be the only ways to get
zero, so the zero-divisor graph will be precisely K|R|−1,|S|−1. In
this case we get crosscap 2 only in the cases of F4 × F7 (with
a K3,6) and F5 × F5 (with a K4,4).

I If R and S aren’t fields, then (a, b) · (c , d) = 0 ⇐⇒ ac = 0
and bd = 0. In this case the zero-divisor graph is more
complicated, and we’ve found several cases which have
crosscap 2.
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Euler’s formula

I When a graph is embedded in a surface, the components of
the surface enclosed by the edges are called the faces of the
embedding. If every face is homeomorphic to an open disc,
then the embedding is called a 2-cell embedding.

I Euler’s formula tells us that for any 2-cell embedding of a
graph in an orientable surface of genus g ,
V − E + F = 2− 2g , where V is the number of vertices in G ,
E is the number of edges, and F is the number of faces, and
for any 2-cell embedding of a graph in a non-orientable
surface of crosscap k , V − E + F = 2− k .

I Manipulating these formulas gives us that g = E−V−F+2
2 for

any 2-cell embedding of a graph in an orientable surface and
k = E − V − F + 2 for any 2-cell embedding of a graph in a
non-orientable surface.
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Bounds on genus
I For any given graph, it is easy to count the number of vertices

and edges it has, but we don’t know the number of faces an
embedding will have until we find the embedding. However,
we know that there has to be at least one face (the outside of
the graph is considered a face), and we know that each face
must have at least three edges (when there are at least three
edges), and each edge can only be in the boundary of two
faces. Assuming E ≥ 3, this gives us the bounds 1 ≤ F ≤ 2

3E .

I Plugging this into Euler’s formula we get that

1
3E − V + 2

2
≤ g ≤ E − V + 1

2

for any 2-cell embedding of a graph in an orientable surface
and

1

3
E − V + 2 ≤ k ≤ E − V + 1

for any 2-cell embedding of a graph in a non-orientable
surface.
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Maximal and minimal genus of a local ring of fixed order

The question has been asked, given a fixed prime power pn, will a
local ring of that order with a zero-divisor graph of the greatest
possible genus have a strictly greater genus than a local ring, which
isn’t a field, with a zero-divisor graph of the least possible genus, or
is it possible that all local rings of order pn have the same genus.

I Note that if n = 1, then pn is prime, and all rings of prime
order are fields, and have empty, and therefore planar,
zero-divisor graphs.

I If n = 2 and if R is a local ring, not a field, of order p2, then
the maximal ideal will have order p and the square of the
maximal ideal will be zero, so the zero-divisor graph will be
Kp−1.

I So if n = 1 or n = 2, all rings of order pn will have the same
zero-divisor graph, and in particular their zero-divisor graphs
will have the same genus.
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Maximal genus of a local ring of fixed order

If we have any ring of order pn, the order of the maximal ideal will
be pn−1, and thus the ring will have exactly pn−1 zero-divisors and
the zero-divisor graph will have pn−1 − 1 vertices. Thus the
zero-divisor graph is a subgraph of Kpn−1−1. If we consider the ring

R = Zp [X1,...,Xn−1]
/

(X1,...,Xn−1)2 , then we have |R| = pn and
Γ(R) = Kpn−1−1 and

γ(Γ(R)) =
⌈

(pn−1−4)(pn−1−5)
12

⌉
=
⌈

p2n−2−9pn−1+20
12

⌉
, and this is the

maximal genus of a ring of order pn.



Zpn

We can use Zpn to obtain an upper bound on the minimal genus of
the zero-divisor graph of a ring of order pn. We can compute the
number of edges in the zero-divisor graph of Zpn by

E =

(
pb

n
2
c − 1

2

)
+

d n
2
e−1∑

i=1

(pn−i − pn−i−1)(pi − 1)

which simplifies to

E =
n − 1

2
pn − n

2
pn−1 − 1

2
pb

n
2
c + 1

and since we know that there will be pn−1 − 1 vertices, plugging
this into the inequality we obtain from Euler’s formula we get that

g ≤
⌊

n − 1

4
pn − n + 2

4
pn−1 − 1

4
pb

n
2
c +

3

2

⌋
where g is the genus of any orientable surface in which Γ(Zpn) has
an embedding.



Maximal and minimal genus

So if we let g be the minimal genus of any ring of order pn, not a
field, and G be the maximal genus of any ring of order pn we get
the bound

g ≤
⌊

n − 1

4
pn − n + 2

4
pn−1 − 1

4
pb

n
2
c +

3

2

⌋
while

G =

⌈
p2n−2 − 9pn−1 + 20

12

⌉
and we have that whenever n ≥ 3, the bound for g is strictly less
than G unless pn is 8 or 27. When pn is 8, we do have that K4 is
planar, so g = G . However, when pn is 27, we have that the genus
of K8 is 2 while Γ(Z27) is planar, so g < G , and when pn is not 8
or 27, and n > 2, the bounds we’ve established give us that
g < G . The case of nonorientable embeddings is similar, and the
result is analogous.


