Introduction	Application	Method Theory	Comparison	Cubic Convergence

Bernstein type inequalities of the Voronoi cell of the hexagonal lattice

Charles Ouyang

REU 2012

Charles Ouyang Bernstein type inequalities of the Voronoi cell of the hexagonal

Introduction	Application	Method Theory	Comparison	Cubic Convergence
•0000	000	0000000000		0000
- · /	N I 1			

Fourier Analysis on the Circle

Definition

A family of kernels $\{K_n\}_{n=1}^{\infty}$ is said to be a family of good kernels if it satisfies the following properties:

(i)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(x) dx = 1 \ \forall n \in \mathbb{N}$$

(ii) $\exists M > 0$ such that $\forall n \in \mathbb{N} \ \int_{-\pi}^{\pi} |K_n(x)| dx \le M$
(iii) $\forall \delta > 0 \ \int_{\delta \le |x| \le \pi} |K_n(x)| dx \to 0$ as $n \to \infty$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

2

Introduction ○●○○○	Application	Method Theory	Comparison O	Cubic Convergence
The Dirichle	et Kernel			

Definition

The *n*th Dirichlet kernel $D_n(x)$ is given by $\sum_{k=-n}^{n} e^{ikx}$

Proposition

$$D_n(x) = \sum_{k=-n}^n e^{ikx} = 1 + \sum_{k=1}^n \cos(kx) = \frac{\sin((n+\frac{1}{2})x)}{\sin(x+\frac{1}{2})}$$

Proposition

The Dirichlet kernel is not a good kernel.

イロト イヨト イヨト イヨト

Introduction 00000	Application	Method Theory	Comparison O	Cubic Convergence
Fourier Serie	es and Four	ier Coefficients	5	

Definition

The n^{th} Fourier coefficient $\hat{f}(n)$ is given by the integral

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-inx}\mathrm{d}x$$

Definition

The n^{th} -partial sum of the Fourier series of f is given by

$$S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}(n) e^{inx}$$

→ 御 → → 注 → → 注 →

Introduction	Application	Method Theory	Comparison	Cubic Convergence
00000	000	0000000000	0	0000

Lemma

The nth-partial sum can be written as a convolution of the original function with the nth Dirichlet kernel. That is,

$$S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}(n) e^{inx}$$

回 と く ヨ と く ヨ と

æ

Introduction 0000●	Application	Method Theory	Comparison O	Cubic Convergence
The Feiér	r kernel			

Definition

We define the n^{th} Fejér kernel to be

$$F_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$$

Proposition

The Fejér kernel is a good kernel.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

3

Introduction	Application	Method Theory	Comparison	Cubic Convergence
•	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Approximation to the identity

Theorem

Let $\{K_n\}_{n=1}^{\infty}$ be a family of good kernels, and f an integrable function on the circle. Then

$$\lim_{n\to\infty}(f*K_n)(x)=f(x)$$

whenever f is continuous at x. If f is continuous everywhere, then the above limit is uniform.

白 ト イヨト イヨト

Introduction	Application	Method Theory	Comparison	Cubic Convergence

Approximation to the identity

Proof.

Let x be a point of continuity of f. Consider

$$\begin{aligned} |(f * K_n)(x) - f(x)| &= |\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) f(x - y) \, dy - f(x)| \\ &= |\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) [f(x - y) - f(x)] \, dy| \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |K_n(y)[f(x - y) - f(x)]| \, dy \\ &\leq \frac{1}{2\pi} \int_{|y| < \delta} |K_n(y)f(x - y)| \, dy + \frac{1}{2\pi} \int_{|y| \ge \delta} |K_n(y)| \\ &\leq \frac{M\epsilon}{2\pi} + \frac{B}{2\pi} \int_{|y| \ge \delta} K_n(y) \, dy \end{aligned}$$

Introduction	Application ●○○	Method Theory	Comparison O	Cubic Convergence
Numerical A	Approach foi	r General NEP		

Introduction	Application ●○○	Method Theory	Comparison O	Cubic Convergence
Numerical	Approach fo	r General NEP		

- Essential tools (Schur, Generalized Schur) not available
- Sensitivity analysis, Round-off error analysis under study

コン・ イヨン イヨン

00000	•00	0000000000	0	0000
Numerical A	nnraach far	Conoral NED		

Numerical Approach for General NEP

- Essential tools (Schur, Generalized Schur) not available
- Sensitivity analysis, Round-off error analysis under study
- MATLAB can solve polynomial eigenvalue problems

通 と く き と く きょ

Numerical Approach for General NEP

- Essential tools (Schur, Generalized Schur) not available
- Sensitivity analysis, Round-off error analysis under study
- MATLAB can solve polynomial eigenvalue problems
- Common approach for polynomial EP is Linearization:

$$\begin{bmatrix} A(\lambda) & 0 \\ 0 & I \end{bmatrix} = E(\lambda)(B - \lambda C)F(\lambda).$$

 $\det E(\lambda) = K_1 \neq 0 \qquad \qquad \det F(\lambda) = K_2 \neq 0$

- 4 回 2 - 4 □ 2 - 4 □

Introduction	Application ○●○		Method Theor	y 0	Comparison O	Cubic Convergence
	1	~	~			

Numerical Approach for General NEP

Example

$$A(\lambda)x = (M\lambda^2 + C\lambda + K)x = 0.$$

Let $u = \lambda x$. Then, $\lambda M u + C u + K x = 0$.

Thus,

$$\begin{bmatrix} O & I \\ -K & -C \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} - \lambda \begin{bmatrix} I & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} = 0.$$

・ロン ・回と ・ヨン ・ヨン

æ

Introduction	Application ○○●	Method Theory	Comparison O	Cubic Convergence
Numerical A	Approach for	General NEP		

• Linearization (polynomial, rational)

回 と く ヨ と く ヨ と

Introduction	Application	Method Theory	Comparison	Cubic Convergence
	000			
Numerica	Approach	for General NI	FP	

- Linearization (polynomial, rational)
- Treat it in its original form

白 ト イヨト イヨト

Introduction	Application	Method Theory	Comparison O	Cubic Convergence
Numerica	L Approach	for General NI	ED	

- Linearization (polynomial, rational)
- Treat it in its original form
- Methods for dense, small problems

→ Ξ →

Introduction	Application ○○●	Method Theory	Comparison O	Cubic Convergence
Numerical <i>J</i>	Approach foi	General NEP		

- Linearization (polynomial, rational)
- Treat it in its original form
- Methods for dense, small problems
- Methods for sparse large problems

Introduction	Application ○○●	Method Theory	Comparison O	Cubic Convergence
Numerical <i>J</i>	Approach foi	General NEP		

- Linearization (polynomial, rational)
- Treat it in its original form
- Methods for dense, small problems
- Methods for sparse large problems
- Structure-preserving methods

Introduction	Application	Method Theory	Comparison O	Cubic Convergence
LU Factoriz	ation			

$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 4 & 7 & | & -9 \\ 2 & 5 & 8 & | & 2 \\ 3 & 6 & 10 & | & 7 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 4 & 7 & | & -9 \\ 0 & -3 & -6 & | & 20 \\ 0 & -6 & -11 & | & 34 \end{bmatrix}$$

Similarly, we have

$$\begin{bmatrix} 1 & 4 & 7 & | & -9 \\ 0 & -3 & -6 & | & 20 \\ 0 & -6 & -11 & | & 34 \end{bmatrix} \xrightarrow{R_3 - 2R_2} \begin{bmatrix} 1 & 4 & 7 & | & -9 \\ 0 & -3 & -6 & | & 20 \\ 0 & 0 & 1 & | & -6 \end{bmatrix}$$

The new system obtained is triangular:

$$x+4y+7z = -9$$

$$-3y-6z = 20$$

$$z = -6$$

æ

Introduction	Application	Method Theory ○●○○○○○○○○	Comparison O	Cubic Convergence
LU Factoriz	ation			

In general, for an $n \times n$ matrix A, we have that

$$L_{n-1}\cdots L_2 L_1 A = U, \qquad (3.1)$$

so that

$$A = LU$$
, with $L = (L_{n-1} \cdots L_2 L_1)^{-1}$.

If some pivots are zero, then PA = LU.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Application	Method Theory ○○●○○○○○○○	Comparison O	Cubic Convergence
RRLU Facto	orization			

General A

$$P_1AP_2 = LU$$
$$= \begin{bmatrix} L_{11} & 0 \\ L_{21} & I \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix}$$

Rank Deficient A

$$P_1AP_2 = LU$$
$$= \begin{bmatrix} L_{11} & 0\\ L_{21} & I \end{bmatrix} \begin{bmatrix} U_{11} & U_{12}\\ 0 & 0 \end{bmatrix}$$

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

00000	000		o	0000
		of a Matrix		

Theorem

74100

Let $A(\lambda) \in C^2$ be a $n \times n$ matrix such that $A(\lambda_0)$ has a column rank of n - m, $m \leq n - 1$. Assume there are permutation matrices P_1 , P_2 such that $P_1A(\lambda_0)P_2 = L_0U_0$, where L_0 is a block unit lower triangular matrix and U_0 is a block upper triangular matrix. Then, there is a neighborhood $N(\lambda_0)$ such that

$$P_1A(\lambda)P_2 = L(\lambda)U(\lambda), \quad \forall \ \lambda \in N(\lambda_0),$$

with $L(\lambda_0) = L_0$, $U(\lambda_0) = U_0$; $L(\lambda)$ a block unit lower triangular matrix, $U(\lambda)$ a block upper triangular matrix, with $U_{22}(\lambda)$ differentiable at $\lambda = \lambda_0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Application	Method Theory	Comparison O	Cubic Convergence
Main Idea				

Let λ^* be an eigenvalue of $A(\lambda)_{n \times n}$ with rank $A(\lambda^*) = n - m$ $P_1^*A(\lambda^*)P_2^* = L(\lambda^*)U(\lambda^*),$

where

$$U(\lambda^{*}) = \begin{bmatrix} U_{11}(\lambda^{*}) & U_{12}(\lambda^{*}) \\ 0 & 0 \end{bmatrix}.$$

Let λ_{0} be close to λ^{*} , and $P_{1}^{0}A(\lambda_{0})P_{2}^{0} = L(\lambda_{0})U(\lambda_{0})$, with
 $U(\lambda_{0}) = \begin{bmatrix} U_{11}(\lambda_{0}) & U_{12}(\lambda_{0}) \\ 0 & U_{22}(\lambda_{0}) \end{bmatrix}, \quad ||U_{22}||_{F} \ll ||U_{11} - U_{12}||_{F}.$

From the theorem above,

$$P_1A(\lambda)P_2 = L(\lambda)U(\lambda), \quad \forall \lambda \in N(\lambda_0).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Goal

• Improve λ_0 as an approximation to λ^* .

イロト イヨト イヨト イヨト

3

Goal

• Improve λ_0 as an approximation to λ^* .

Plan

- Give initial guess λ_0
- Perform rank revealing decomposition
- Minimize lower right block: $||U_{22}(\lambda)||_F \to 0$.
- Repeat until convergence

イロト イヨト イヨト イヨト

Introduction	Application	Method Theory ○○○○○●○○○○	Comparison O	Cubic Convergence
Minimizatio	n Techniqu	e		

$$||U_{22}(\lambda)||_{F}^{2} \approx ||U_{22}(\lambda_{0}) + U_{22}'(\lambda_{0})(\lambda - \lambda_{0})||_{F}^{2}$$

Choose next iterate λ_1 so that

$$||U_{2,2}(\lambda_0) + U'_{2,2}(\lambda_0)(\lambda_1 - \lambda_0)||_F^2 = \min_{\lambda} ||U_{2,2}(\lambda_0) + U'_{2,2}(\lambda_0)(\lambda - \lambda_0)||_F^2.$$

・ロン ・四と ・ヨン ・ヨン

æ

Introduction 00000	Application	Method Theory ○○○○○○●○○○	Comparison O	Cubic Convergence
Minimizatio	n using New			

Letting
$$f(\lambda) = ||U_{2,2}(\lambda_0) + U'_{2,2}(\lambda_0)(\lambda - \lambda_0)||_F^2$$

Iterate:

$$\lambda_{i+1} = \lambda_i - \frac{f'(\lambda_i)}{f''(\lambda_i)},$$

where

$$f'(\lambda_i) = 2(\operatorname{col} U'_{2,2}(\lambda_i))^H \cdot \operatorname{col} U_{2,2}(\lambda_i),$$

$$f''(\lambda_i) = 2||U'_{2,2}(\lambda_i)||_F^2.$$

Step 1: Given an initial approximation λ_0 to λ_* Step 2: Compute

$$A(\lambda_i)$$
 and $A'(\lambda_i), i = 0, 1, \cdots$

Step 3: Compute the *LU* decomposition with complete pivoting of $A(\lambda_i)$:

$$P_1A(\lambda_i)P_2 = L(\lambda_i)U(\lambda_i)$$

イロン イヨン イヨン イヨン

Step 4: Compute

$$U_{2,2}'(\lambda_i) = (L_i^{-1} P_1 A'(\lambda_i) P_2)_{2,2} - (L_i^{-1} P_1 A'(\lambda_i) P_2)_{2,1} (U_{1,1}^{(i)^{-1}} U_{1,2}^{(i)})$$

Step 5: Compute

$$\lambda_{i+1} = \lambda_i - \frac{(\operatorname{col} U'_{2,2}(\lambda_i))^H \cdot \operatorname{col} U_{2,2}(\lambda_i)}{||U'_{2,2}(\lambda_i)||_F^2}.$$

Step 6: If tolerance is satisfied, stop. Otherwise, repeat steps 2-6.

Convergence is quadratic

イロト イポト イヨト イヨト

Introduction	Application	Method Theory	Comparison	Cubic Convergence
00000	000	0000000000		0000
Numerica	al Rank Dete	ermination		

Property

Let $P_1^k A(\lambda^{(k)}) P_2^k = L(\lambda^{(k)}) U(\lambda^{(k)})$ Then, the diagonals of U satisfy

$$\min_{1\leq i\leq n-m}|u_{ii}(\lambda^{(k)})| \gg \max_{n-m+1\leq i,j\leq n}|u_{ij}(\lambda^{(k)})|$$

◆□> ◆□> ◆目> ◆目> ◆目> = 三 のへで

Introduction	Application	Method Theory ○○○○○○○○●	Comparison O	Cubic Convergence
Numerical F	Rank Detern	nination		

Property

Let $P_1^k A(\lambda^{(k)}) P_2^k = L(\lambda^{(k)}) U(\lambda^{(k)})$ Then, the diagonals of U satisfy

$$\min_{1\leq i\leq n-m} |u_{ii}(\lambda^{(k)})| \gg \max_{n-m+1\leq i,j\leq n} |u_{ij}(\lambda^{(k)})|$$

Choose threshold $\epsilon > 0$ so that

$$\max_{n-m+1\leq i,j\leq n} |u_{ij}(\lambda^{(k)})| \leq \epsilon \max_{1\leq i\leq n-m} |u_{ii}(\lambda^{(k)})| \leq \min_{1\leq i\leq n-m} |u_{ii}(\lambda^{(k)})|$$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Introduction	Application	Method Theory	Comparison •	Cubic Convergence
100 x 100	Time Com	narison		

Table: Time [ms] Comparison of Algorithm Performance

Nonlinear	LU	QR	Ratio of Averages
Matrix	Average	Average	(QR / LU)
Q	391.154	1696.066	4.336
Q, E	362.494	1630.445	4.498
Q, S	393.234	1634.839	4.157
Q, E, S	389.039	1650.813	4.243

$$A(\lambda) = A_0 + A_1\lambda + A_2\lambda^2 + A_3\sin(\lambda) + A_4\cos(\lambda) + A_5e^{\lambda}.$$

 A_i are random constant matrices.

(4回) (4回) (4回)

Introduction	Application	Method Theory	Comparison O	Cubic Convergence ●○○○
NI 1 (A . I I		

Newton Steffensen Method

Cubic Convergence Iterative Formula

Applying Steffensen's acceleration method to Newton's root finding method generates an iterative formula with cubic convergence. Let $f(x_*) = 0$ and let x_0 be sufficiently close to x_* , then the successive iterative approximations are determined by

$$x_{n+1} = x_n - \frac{f^2(x_n)}{f'(x_n)(f(x_n) - f(x_n^*))}$$

where

$$x_n^* = x_n - \frac{f(x_n)}{f'(x_n)}.$$

伺 ト イミト イミト

Introduction	Application	Method Theory	Comparison O	Cubic Convergence ○●○○
Newton	Steffensen	Method		

$$x_{n+1} = x_n - \frac{f'^2(x_n)}{f''(x_n)(f'(x_n) - f'(x_n^*))}$$

where

$$x_n^* = x_n - \frac{f'(x_n)}{f''(x_n)}.$$

•
$$f'(\lambda) = (\operatorname{col} U'_{2,2}(\lambda_i))^H \cdot \operatorname{col} U_{2,2}(\lambda_i)$$

• $f''(\lambda) = ||U'_{2,2}(\lambda_i)||_F^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

	0
	0000

Table: Cubic Algorithm Error Convergence

Iteration	Error	
1	0.3212	
2	0.1340	
3	$1.7791 * 10^{-4}$	
4	$5.1172 * 10^{-13}$	

→ 御 → → 注 → → 注 →

æ

Introduction	Application	Method Theory	Comparison O	Cubic Convergence
Some Refer	ences			

[1] T. Betcke, N. J. Higham, V. Mehrmann, C. Schrder and F. Tisseur *"NLEVP: A collection of nonlinear eigenvalue problems"* MIMS Eprints **40** (2008) .

[2] F. Tisseur and K. Meerbergen, *"The Quadratic Eigenvalue Problem"*. SIAM Review, **43** (2001) 235-286

[3] E.K. Chu, T.M. Hwang, W.W. Ling, C.T. Wu, *"Vibration of fast trains, palindromic eigenvalue problems and structure preserving doubling algorithms"*. J. Computational and Applied Math. **219** (2008) 237–252.

・ 同 ト ・ ヨ ト ・ ヨ ト