Strictly
Positive
Definite
Functions or
the Circle
the Circle

Charles Ouyang

Introduction

The Necessar Condition

A Sufficient Condition

Conclusion

Strictly Positive Definite Functions on the Circle

Charles Ouyang

Princeton University

Missouri State REU 2012

Charles Ouyang Strictly Positive Definite Functions on the Circle

イロン イヨン イヨン イヨン

Э

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Definition

A continuous function $f : [0, \pi] \to \mathbb{R}$ is said to be positive definite on S^1 if, for every $N \in \mathbb{N}$ and every set of N points x_1, \ldots, x_N on S^1 , the $N \times N$ matrix A with ij entry $A_{ij} = (f(d(x_i, x_j)))$ is nonnegative definite, i.e.

$$c^{T}Ac = \sum_{i=1}^{N} \sum_{j=1}^{N} c_{i}c_{j}f(d(x_{i}, x_{j})) \geq 0, \ c = (c_{1}, ..., c_{N}) \in \mathbb{R}^{N},$$

where $d(x, y) = \operatorname{Arccos}(x \cdot y)$ is the usual geodesic distance between two points.

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Definition

We say a function f is strictly positive definite on the circle if the previous inequality is strict and $c_1, ..., c_N$ are not all identically zero.

Theorem (Schoenberg)

All positive definite functions on S^m are those of the form

$$f(t) = \sum_{k=0}^{\infty} a_k P_k^{(\lambda)}(cost)$$

where $\lambda = \frac{(m-1)}{2}$, $a_k \ge 0$, $\sum a_k < \infty$ and $P_k^{(\lambda)}$ are the standard Gegenbauer polynomials normalized so that $P_k^{(\lambda)}(1) = 1$.

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Definition

Let \mathbb{Z}_+ be the set of nonnegative integers. A subset K of \mathbb{Z}_+ is said to induce strict-positive-definiteness (which we shall abbreviate as S.P.D.) on the circle if the function

$$t\mapsto \sum_{k\in K}rac{P_k^{(\lambda)}(cost)}{2^k}$$

is strictly positive definite on S^1 .

Theorem (Chen, Menegatto, and Sun)

It is both necessary and sufficient that K contain infinitely many odd and infinitely many even integers to induce S.P.D. on S^m for $m \ge 2$.

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Remark

However, for the case of the circle, this no longer holds, as it has been verified that the set of positive integers of the form 4k and 4k + 1 does not induce S.P.D. on the circle.

We wish to find a necessary and sufficient conditions for K to induce S.P.D. on the circle.

Equivalent probelm

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Theorem

The following problem is equivalent to K inducing S.P.D. on the circle:

For what K does one have the property that for any N, and any N distinct points $0 \le x_1, ..., x_n < 1$, and any $k \in K$ satisfying

$$\sum_{j=1}^{N} c_j e^{2\pi i k x_j} = 0$$

implies the c_i 's must be zero.

The Necessary Condition

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Definition

A subset *K* of \mathbb{Z} is said to be ubiquitous modulo (or ubiquitous), if for every positive integer *N* ($N \ge 2$) and every *j* ($0 \le j \le N-1$), there exists a $k \in K$ such that $k \equiv j \pmod{N}$.

Proposition

Let $K \subset \mathbb{Z}$ be ubiquitous. Then given any integer $N (N \ge 2)$ and $j (0 \le j \le N - 1)$, there exists infinitely many $k \in K$ such that $k \equiv j \pmod{N}$.

Proof.

Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Fix an $N \in \mathbb{N}$ $(N \ge 2)$ and a $(0 \le j \le N - 1)$. We show that for every natural number p, there is a $k \in K$, $|k| \ge pN$, such that $k \equiv j \pmod{N}$. Since K is ubiquitous, there is a $k \in K$ such that

 $l_{i} = m N l_{i} + i (m r)$

$$k \equiv pN + j (mod \, 3pN).$$

That is to say, there is a $q \in \mathbb{Z}$ such that $k = q \cdot (3pN) + pN + j = (3pq + p)N + j$, thus implying $k \equiv j \pmod{N}$. From here, one can easily see that $|k| \ge pN$. The proof is complete upon noting that p is an arbitrary natural number.

イロト イポト イヨト イヨト

The Necessary Condition

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Lemma

Let N be a natural number, and let $\theta_j := p_j/q_j (1 \le j \le N)$ be N distinctive rational numbers in [0,1). Let Q (Q \ge N) be a common multiple of $q_j (1 \le j \le N)$. Let $K \subset \mathbb{Z}$. Assume that for each l = 0, 1, ..., N - 1, there is a $k \in K$, such that $k \equiv l(modQ)$. Then the N functions

$$e^{2\pi i k x_1}, \ldots, e^{2\pi i k x_N}$$

are linearly independent on K over the field of complex numbers.

イロト イポト イヨト イヨト

Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Proof.

Suppose that $c_1, ..., c_N$ are N complex numbers such that

$$\sum_{j=1}^N c_j e^{2\pi i k \theta_j} = 0, \qquad \forall k \in K.$$

We show that all the c_j 's are zero. For each l = 0, 1, ..., N - 1, select a $k \in K$, such that $k \equiv l \pmod{Q}$. That is, k = sQ + l, where s is an integer. We then have, for each l = 0, 1, ..., N - 1,

$$\sum_{j=1}^{N} c_j e^{2\pi i k \theta_j} = \sum_{j=1}^{N} c_j e^{2\pi i k (sQ+l) \frac{P_j}{q_j}} = \sum_{j=1}^{N} c_j e^{2\pi i l \frac{P_j}{q_j}} = 0$$

> Charles Ouyang

Proof.

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

The $N \times N$ Vandermonde matrix with *jl*-entries $e^{2\pi i l \frac{p-j}{q_j}}$ $(1 \le j \le N, 0 \le l \le N-1)$ and N distinct complex numbers $e^{2\pi i l \frac{p-j}{q_j}}$ $(1 \le j \le N)$ in the second row has nonzero determinant. Hence, all the c_j 's are zero.

The Necessary Condition

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Theorem

Let $K \subset \mathbb{Z}$. The following two statements are equivalent:

(i) For every natural number N and every set of N distinct rational numbers θ_j (j = 1, ..., N) in [0, 1), the N functions as shown earlier are linearly independent on K over the field of complex numbers.

(ii) The subset K of \mathbb{Z} is ubiquitous.

イロト イポト イヨト イヨト

Strictly Positive Definite Functions on

the Circle

Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Proof.

From the previous lemma, we have that (ii) \implies (i). To show the converse, suppose K were not ubiquitous. Then there is a N > 1 and a nonnegative integer I ($0 \le I \le N - 1$) for which there is no $k \in K$ such that $k \equiv I \pmod{N}$. For

j = 1, ..., N, let $c_j := e^{-2\pi i \frac{j}{N}}$ and $\theta_j := \frac{j}{N}$. Write each $k \in K$ in the form $k = \mu N + \nu$, where $\nu \neq I$. From this, we obtain

$$\sum_{j=1}^{N} c_{j} e^{2\pi i k \theta_{j}} = \sum_{j=1}^{N} e^{-2\pi i \frac{lj}{N}} \cdot e^{2\pi i (\mu N + \nu) \frac{j}{N}} = \sum_{j=1}^{N} e^{2\pi i (\frac{\nu}{N} - \frac{l}{N}) j}$$

$$= e^{2\pi i (\frac{\nu - l}{N})} \cdot \frac{1 - e^{2\pi i (\frac{\nu - l}{N})N}}{1 - e^{2\pi i (\frac{\nu - l}{N})}} = 0$$

Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Corollary

Let $K \subset \mathbb{Z}_+$. In order that K induce S.P.D. on the circle, it is necessary that \overline{K} be ubiquitous.

Proof.

Suppose \overline{K} were not ubiquitous. Then by the previous theorem, there exists a N ($N \ge 2$) distinct rational numbers θ_j in [0, 1) such that the N functions given previously are linearly dependent on \overline{K} over the field of complex numbers. By the earlier proposition and theorem, the subset $K \subset \mathbb{Z}_+$ does not induce S.P.D. on the circle.

<ロ> (日) (日) (日) (日) (日)

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Definition

Let K be a subset of \mathbb{Z} . If $\tau_1, ..., \tau_M$ are arbitrary real numbers, if $\theta_1, ..., \theta_M$ are irrational numbers such that the (M + 1) numbers $1, \theta_1, ..., \theta_M$ are linearly independent over the field of rational numbers, and if for every given $\epsilon > 0$, there is an integer $k \in K$ and there are integers $m_1, ..., m_M$ such that

$$|k\theta_j - m - \tau_j| < \epsilon \text{ for } j = 1, ..., M,$$

then one says K has the Kronecker approximation property.

(ロ) (同) (E) (E) (E)

Equidistribution

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Definition

A sequence of numbers $\xi_1, \xi_2, ..., \xi_n, ...,$ in [0,1) is said to be equidistributed if for every interval (a,b) \subset [0,1),

$$\lim_{N\to\infty}\frac{\#\{1\leq n\leq N:\xi_n\in(a,b)\}}{N}=b-a$$

Theorem (Weyl)

If γ is irrational, then the sequence of fractional parts $\langle \gamma \rangle$, $\langle 2\gamma \rangle$, $\langle 3\gamma \rangle$, ... is equidistributed in [0,1).

(ロ) (同) (E) (E) (E)

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Theorem (Weyl's criterion)

A sequence of real numbers $\xi_1, \xi_2, ...$ in [0,1) is equidistributed if and only if for all integers $k \neq 0$ one has

$$\frac{1}{N}\sum_{n=1}^{N}e^{2\pi ik\xi_n}\to 0$$

(日) (同) (E) (E) (E)

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Theorem

Let K be a subset of \mathbb{Z}_+ . In order that K induce S.P.D. on S^1 it is sufficient that for every $N \ge 2$ and every j = 1, ..., N - 1 the set $\overline{K} \cap \mathbb{Z}_N^j$ has the Kronecker approximation property.

(日) (同) (E) (E) (E)

Methods

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

Remark

We have tried to following methods:

(i) Diophantine Approximations

(ii) Chinese Remainder Theorem

(iii) Complex Analysis

(iv) Almost Periodic Functions

イロト イヨト イヨト イヨト

References

Strictly Positive Definite Functions on the Circle

> Charles Ouyang

Introduction

The Necessary Condition

A Sufficient Condition

Conclusion

[1] H. Bohr, *Almost Periodic Functions*, Chelsea Publishing Co., N.Y., 1951.

[2] A. Pinkus, "Strictly Hermitian Positive Definite Functions", Journal d'Analyse Math., 2004.

[3] I.J. Schoenberg, "*Positive Definite Functions on Spheres*", Duke Journal of Mathematics, 1940.

[4] E. Stein, R. Shakarchi, *Real Analysis: Measure Theory, Integration Theory and Hilbert Spaces*, Princeton University Press, New Jersey, 2003.

[5] X. Sun, *"Strictly Positive Definite Functions on the Unit Circle"*, Mathematics of Computation, 2004.

[6] Y. Xu and E.W. Cheney "'Strictly Positive Definite Functions on Spheres", Proceedings of the AMS, 1992.