00000000000000000000000000000000000000	Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000000000000000000000000000000000000		00000		000		

A hybrid reordered Arnoldi method to accelerate PageRank computations

Danielle Parker

Final Presentation

Introduction ●000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

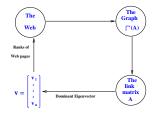


Figure: Model of Page Ranking

Introduction ooooooooooooooooooooooooooooooooooo	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References	
Background						

Definition

Given a matrix $A_{n\times n}$, the graph $\Gamma(A)$ is a directed graph with n nodes P_1, P_2, \dots, P_n such that

$$P_i$$
 has a link to $P_j \iff a_{ij} \neq 0$

Conversely, given a directed graph $\Gamma(A)$, the associated matrix A will be called the link matrix or adjacency matrix.

Introduction ooooooooooooooooooooooooooooooooooo	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References	
Background						

Definition

Given a matrix $A_{n\times n}$, the graph $\Gamma(A)$ is a directed graph with n nodes P_1, P_2, \dots, P_n such that

$$P_i$$
 has a link to $P_j \iff a_{ij} \neq 0$

Conversely, given a directed graph $\Gamma(A)$, the associated matrix A will be called the link matrix or adjacency matrix.

Definition

A directed graph is called **strongly connected** if there exists a path from each node to every other node.

Introduction Algorithms Arnoldi's Pro	Decess Arnoldi-based Algorithms 0 0000000 00000 000	Improvements	Conclusion	References
---------------------------------------	---	--------------	------------	------------

Background

Strongly Connected Vs. Weakly Connected

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \\ 0 & 1/3 & 1/3 & 1/3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 & 1/3 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \end{bmatrix}$$

Introduction 000●0000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements	Conclusion	References
Background					

Theorem

A matrix $A_{n\times n}$ is irreducible $\iff \Gamma(A)$ is strongly connected.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements	Conclusion	References
Background					

Definition

A matrix $A_{n\times n}$ is called **(row) stochastic** if it is nonnegative and the sum of the entries in each row is 1.

Introduction	000000	Arnoldi's Process	Arnoldi-based Algorithms O		Conclusion	References
	000		0000000 00000 000	000 00		

Background

Modeling the Web

Definition

A matrix $A_{n\times n}$ is called **(row) stochastic** if it is nonnegative and the sum of the entries in each row is 1.

Definition

A matrix $A_{n\times n}$ is called **reducible** if there is a permutation matrix $P_{n\times n}$ and an integer $1 \le r \le n-1$ such that

$$P^{\mathsf{T}}AP = \begin{bmatrix} C & D \\ 0 & E \end{bmatrix}$$

where 0 is an $(n-r) \times r$ block matrix. If a matrix A is not reducible, then it is called **irreducible**.

Introduction ooooo●oooo o	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

Definition

A nonnegative matrix $A_{n\times n}$ is called **primitive** if it is irreducible and has only one eigenvalue of maximum magnitude.

Introduction ooooo●oooo o	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements 00 000 00	Conclusion	References	
Background						

Definition

A nonnegative matrix $A_{n\times n}$ is called **primitive** if it is irreducible and has only one eigenvalue of maximum magnitude.

In modeling the web, we use a stochastic, primitive matrix to ensure that there is a unique dominant eigenvalue λ₁ of maximum magnitude 1, which is associated with the dominant eigenvector.

This dominant eigenvector is called the **PageRank vector**.

Introduction 000000000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

One problem is that our web matrix H is not stochastic because of dangling nodes.

Introduction 000000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References	
Background						

One problem is that our web matrix H is not stochastic because of dangling nodes.

Definition

Dangling nodes are nodes which have no outlinks, like a PDF or JPEG file.

Introduction 000000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References	
Background						

One problem is that our web matrix H is not stochastic because of dangling nodes.

Definition

Dangling nodes are nodes which have no outlinks, like a PDF or JPEG file.

A simple way to address this problem is by replacing the zero row, which occurs because the page has no outlinks, with a probabilistic vector.

Introduction ooooooo●oo o	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

From this, we get the definition

$$B = H + au^T$$
.

where
$$a_i = \begin{cases} 1 & \text{if page } i \text{ is a dangling node} \\ 0 & \text{otherwise} \end{cases}$$

and u^T is any probabilistic vector.

Introduction ooooooooooo ○	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements 00 000 00	Conclusion	References	
Background						

► A second problem is that the matrix B we just created may be a reducible matrix.

Introduction ooooooooooo ○	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

- ► A second problem is that the matrix B we just created may be a reducible matrix.
- To remedy this, we force every page to be reachable from every other page.

Introduction ooooooooooo o	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References	
Background						

- ► A second problem is that the matrix *B* we just created may be a reducible matrix.
- To remedy this, we force every page to be reachable from every other page.
- In reality, this is true, because at any time a user could jump from one page to another by using the URL of the page.

Introduction oooooooooo ○	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Background					

The chosen method to fix this problem is by adding a perturbation matrix to B, letting

$$G = \alpha B + (1 - \alpha)E$$

where 0 $< \alpha <$ 1 and

$$E = ee^T/n$$
 or $E = eu^T$

where *e* is a vector of ones.

Introduction oooooooooo ○	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Background					

The chosen method to fix this problem is by adding a perturbation matrix to B, letting

$$G = \alpha B + (1 - \alpha)E$$

where $0 < \alpha < 1$ and

$$E = ee^T/n$$
 or $E = eu^T$

where e is a vector of ones.

▶ We call this stochastic, irreducible matrix G the "Google matrix" and u^T the personalization vector.

Introduction	Arnoldi's Process	Arnoldi-based Algorithms o oooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Overview					

Past Methods

The Power Method

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Overview					

Past Methods

- ▶ The Power Method
- ▶ The Linear Approach

Introduction	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Overview					

Past Methods

- The Power Method
- The Linear Approach
- ► IAD

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Overview					

- The Power Method
- The Linear Approach
- ► IAD
- Combining reordering with Power, Linear, IAD

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Overview					

- The Power Method
- The Linear Approach
- IAD
- Combining reordering with Power, Linear, IAD
- Refined Arnoldi Algorithm

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Overview					

- The Power Method
- The Linear Approach
- IAD
- Combining reordering with Power, Linear, IAD
- Refined Arnoldi Algorithm
- Arnoldi Extrapolation Algorithm

Introduction ○○○○○○○○○○○ ●	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Overview					

- The Power Method
- The Linear Approach
- IAD
- Combining reordering with Power, Linear, IAD
- Refined Arnoldi Algorithm
- Arnoldi Extrapolation Algorithm
- Adaptive Arnoldi Algorithm

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Power Method					

The power method was the original approach used by Google's founders Sergey Brin and Larry Page in [1].

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Power Method					

► The power method was the original approach used by Google's founders Sergey Brin and Larry Page in [1].

Ranking Pages

Given a number of web pages *n* the **rank** $r_k(P_j)$ of a given page P_j at step *k* can be determined iteratively by the formula

$$r_k(P_j) = \sum_{P_i \in B_{P_j}} \frac{r_{k-1}(P_i)}{|P_i|},$$

where the number of outlinks of a page P is given by |P|, B_{P_j} is the set of all pages P with links to P_j and i, j = 1, 2, ..., n, $i \neq j$.

Introduction 000000000 0	•	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References	
Power Metho	bd						

▶ If
$$v_k = [r_k(P_1) \quad r_k(P_2) \quad \dots \quad r_k(P_n)]^T$$
, then the previous equation can be written as

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References	
Power Method						

▶ If
$$v_k = [r_k(P_1) \quad r_k(P_2) \quad \dots \quad r_k(P_n)]^T$$
, then the previous equation can be written as

Power Method

$$v_k^T = v_{k-1}^T H$$
 where $H_{ij} = \begin{cases} \frac{1}{|P_i|} & \text{if } P_j \text{ has a link from } P_i \\ 0 & \text{otherwise} \end{cases}$

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Power Method					

► The equation v_k^T = v_{k-1}^T H, where k = 0, 1, 2, ... and H is the web matrix, is simply the power method being used to compute the left dominant eigenvector of H.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Power Method					

- ► The equation v_k^T = v_{k-1}^TH, where k = 0, 1, 2, ... and H is the web matrix, is simply the power method being used to compute the left dominant eigenvector of H.
- The eigenvector,

$$v = \lim_{k \to \infty} v_k,$$

is called the PageRank vector.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000 000	Improvements 00 000 00	Conclusion	References

Implementation of the Power Method

The power method is implemented by

$$\mathbf{v}_{k+1}^T = \mathbf{v}_k^T \mathbf{G} = \alpha \mathbf{v}_k^T \mathbf{H} + [\alpha \mathbf{v}_k^T \mathbf{a} + (1 - \alpha)] \mathbf{e}^T / \mathbf{n}$$

where $G = \alpha B + (1 - \alpha)E$ and $B = H + au^T$

Introduction 0000000000 0	• • • • •	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
D 14.1						

Implementation of the Power Method

The power method is implemented by

$$\mathbf{v}_{k+1}^{\mathsf{T}} = \mathbf{v}_k^{\mathsf{T}} \mathbf{G} = \alpha \mathbf{v}_k^{\mathsf{T}} \mathbf{H} + [\alpha \mathbf{v}_k^{\mathsf{T}} \mathbf{a} + (1 - \alpha)] \mathbf{e}^{\mathsf{T}} / \mathbf{n}$$

where $G = \alpha B + (1 - \alpha)E$ and $B = H + au^T$

▶ Instead of implementing $v_k^T G$ we choose to use the equivalent equation $\alpha v_k^T H + [\alpha v_k^T a + (1 - \alpha)]e^T / n$ which is much cheaper to implement than the original equation since it restores sparsity to the matrix.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o oooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References

Convergence of the Power Method

► To ensure convergence of power method, we need to require that the eigenvalues of *H* satisfy

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|.$$

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Devuer Method					

Convergence of the Power Method

► To ensure convergence of power method, we need to require that the eigenvalues of *H* satisfy

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|.$$

We call λ₁ the dominant eigenvalue and λ₂ (also denoted by α) the subdominant eigenvalue.

Introduction 0000000000 0	• • • • •	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Dewer Method						

Power Method

Convergence of the Power Method

► To ensure convergence of power method, we need to require that the eigenvalues of H satisfy

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|.$$

- We call λ₁ the dominant eigenvalue and λ₂ (also denoted by α) the subdominant eigenvalue.
- Note the explicit inequality between λ₁ and λ₂. This is sufficient because, while convergence will usually be achieved even if there is more than one dominant eigenvalue, it may be extremely slow, since the rate of convergence is λ₂/λ₁.

Introduction 0000000000 0	• • • • •	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements	Conclusion	References	
Devery Masthaul							

Power Method

Convergence of the Power Method

 The ideal case for this problem is when λ₂ is far from λ₁. However, this would mean that G is not a realistic model of the web. The closer λ₂ is to 1, the more realistic the model is. For some methods, such as the power method, large values of λ₂ slow the convergence time considerably. For this reason, λ₂ is usually chosen to be 0.85.

Introduction 0000000000 0	O 1 1 1	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements 00 000 00	Conclusion	References
Devery Mashard						

Power Method

Convergence of the Power Method

- The ideal case for this problem is when λ₂ is far from λ₁. However, this would mean that G is not a realistic model of the web. The closer λ₂ is to 1, the more realistic the model is. For some methods, such as the power method, large values of λ₂ slow the convergence time considerably. For this reason, λ₂ is usually chosen to be 0.85.
- ► The main drawback of the power method is the slow convergence it exhibits when λ₂ is close to λ₁ (when λ₂ → 1). Because of this, other methods have been considered.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements 00 000 00	Conclusion	References
Reordering					

Changing the order of the rows and columns of a matrix will not change the structure of the links of the matrix, just the numbering of the nodes.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements	Conclusion	References
Reordering					

- Changing the order of the rows and columns of a matrix will not change the structure of the links of the matrix, just the numbering of the nodes.
- ▶ This led to the idea that reordering the matrix by decreasing row and column degree could drastically simplify computations.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements 00 000 00	Conclusion	References
Reordering					

- Changing the order of the rows and columns of a matrix will not change the structure of the links of the matrix, just the numbering of the nodes.
- This led to the idea that reordering the matrix by decreasing row and column degree could drastically simplify computations.
- ▶ Reordering has been shown to increase the distance between λ_1 and λ_2 . It has not yet been proven why.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements	Conclusion	References
Reordering					

- Changing the order of the rows and columns of a matrix will not change the structure of the links of the matrix, just the numbering of the nodes.
- This led to the idea that reordering the matrix by decreasing row and column degree could drastically simplify computations.
- ▶ Reordering has been shown to increase the distance between λ_1 and λ_2 . It has not yet been proven why.
- Reordering has been used in conjunction with other methods to improve their convergence time, such as the power method, the linear approach, and IAD. It has been shown to significantly improve the rate of convergence in the power method in [10].

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Reordering					

Reordering by Dangling Nodes

After reordering our web matrix H by dangling nodes, it can be rewritten as

$$H = egin{bmatrix} H_{11} & H_{12} \ 0 & 0 \end{bmatrix}$$

where H_{11} is a square matrix that represents the links from nondangling nodes to nondangling nodes and H_{12} is a square matrix that represents the links from nondangling nodes to dangling nodes.

	Introduction	•	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
000	Ŭ						

Reordering Example

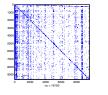


Figure: Matrix without reordering (left) and with reordering (right)

Introduction 0000000000 0	Arnoldi's Process •0000	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements	Conclusion	References	
Background						

Definition

Let A be a matrix of order n and let $u \neq 0$ be an n vector. Then the sequence

 u,Au,A^2u,A^3u,\ldots

is a Krylov sequence based on A and u.

Introduction 0000000000 0	Arnoldi's Process •0000	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements	Conclusion	References	
Background						

Definition

Let A be a matrix of order n and let $u \neq 0$ be an n vector. Then the sequence

 u,Au,A^2u,A^3u,\ldots

is a Krylov sequence based on A and u.

Definition

We call the matrix

$$K_k(A, u) = [u \operatorname{Au} A^2 u \dots A^{k-1} u]$$

the kth Krylov matrix.

Introduction 0000000000 0	Arnoldi's Process ⊙●○○○	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References
Background					

Definition

The space

$$\mathcal{K}_k(A, u) = \mathcal{R}[\mathcal{K}_k(A, u)]$$

is called the kth Krylov subspace.

Introduction 000000000000000000000000000000000000	Arnoldi's Process ⊙●○○○	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

Definition

The space

$$\mathcal{K}_k(A, u) = \mathcal{R}[\mathcal{K}_k(A, u)]$$

is called the kth Krylov subspace.

More simply, the Krylov subspace is the column space of the Krylov matrix.

Introduction 0000000000 0	Arnoldi's Process 00●00	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

Krylov subspaces offer swift convergence of an approximation to the dominant eigenvector within the subspace.

Introduction 0000000000 0	Arnoldi's Process 00●00	Arnoldi-based Algorithms O OOOOOOO OOOOO OOOO	Improvements 00 000 00	Conclusion	References
Background					

- Krylov subspaces offer swift convergence of an approximation to the dominant eigenvector within the subspace.
- One advantage of Krylov subspaces is that you keep all the information (the A^ku's) that you have already generated. In the power method, this valuable information from the previously generated vectors is thrown away.

Introduction 0000000000 0	Arnoldi's Process 000●0	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

► Arnoldi's process is used to generate an orthonormal basis of K_k(A, u).

Introduction 0000000000 0	Arnoldi's Process 000●0	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

- Arnoldi's process is used to generate an orthonormal basis of K_k(A, u).
- Arnoldi's process can be written in matrix form by

$$AQ_k = Q_k H_k + h_{k+1,k} q_{k+1} e_k$$

or

$$AQ_k = Q_{k+1}\tilde{H}_k$$

where $Q_m = (q_1, q_2, ..., q_m)$ and is orthogonal, m = k, k + 1, e_k is the *k*th coordinate vector of dimension *k*, and \tilde{H}_k is the $(k + 1) \times k$ upper Hessenberg matrix identical to H_k except for an additional row of zeroes, where the only nonzero entry is $h_{k+1,k}$.

A hybrid reordered Arnoldi method to accelerate PageRank computations

Introduction 0000000000 0	Arnoldi's Process 0000●	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

▶ The equation $AQ_k = Q_kH_k + h_{k+1,k}q_{k+1}e_k$ gives us the relationship

$$H_m = Q_m^T A Q_m$$

A hybrid reordered Arnoldi method to accelerate PageRank computations

Introduction 0000000000 0	Arnoldi's Process 0000●	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements 00 000 00	Conclusion	References
Background					

▶ The equation $AQ_k = Q_kH_k + h_{k+1,k}q_{k+1}e_k$ gives us the relationship

$$H_m = Q_m^T A Q_m$$

► This, together with AQ_k = Q_{k+1} H̃_k gives us an approximate similarity transformation, which is what is used in the iterative Arnoldi algorithm since the approximate eigenvalues are much cheaper to calculate than the exact eigenvalues.

Introduction	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
		00000	00		

Restarted Arnoldi's

Ritz Values and Ritz Vectors

Definition Let $x_i^{(k)}$, $y_i^{(k)}$, i = 1, 2, ..., m denote the eigenpairs of H_k and λ_i , ϕ_i denote the eigenpairs of A. Then $x_i^{(k)}$ are the **Ritz values** of A in $K_k(A, u)$. These Ritz values approximate λ_i and the vectors

$$\phi_i^{(k)} = Q_k y_i^{(k)}$$

which approximate ϕ_i , are called the **Ritz vectors** of A in $K_k(A, u)$.

Introduction Algorit	hms Arnoldi's Process	Arnoldi-based Algorithms • • • • • • • • • • • • •	Improvements	Conclusion	References	
		0000				

Restarted Arnoldi's

Ritz Values and Ritz Vectors

Definition Let $x_i^{(k)}$, $y_i^{(k)}$, i = 1, 2, ..., m denote the eigenpairs of H_k and λ_i , ϕ_i denote the eigenpairs of A. Then $x_i^{(k)}$ are the **Ritz values** of A in $K_k(A, u)$. These Ritz values approximate λ_i and the vectors

$$\phi_i^{(k)} = Q_k y_i^{(k)}$$

which approximate ϕ_i , are called the **Ritz vectors** of A in $K_k(A, u)$.

The Ritz values of H will converge to the eigenvalues of A as k → ∞; however, this does not necessarily imply that the Ritz vectors of H are converging to the eigenvectors of A.

|--|

Refined Ritz Values and Refined Ritz Vectors

► A newer idea is to use refined Ritz vectors, which have been shown to converge to the eigenvectors of A if the Ritz values are converging to the eigenvalues of A.

	Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms • • • • • • • • • • • • •	Improvements 00 000 00	Conclusion	References
--	---------------------------------	--	-------------------	---	---------------------------------	------------	------------

Refined Ritz Values and Refined Ritz Vectors

- ► A newer idea is to use refined Ritz vectors, which have been shown to converge to the eigenvectors of A if the Ritz values are converging to the eigenvalues of A.
- It has also been shown that algorithms using refined Ritz vectors converge more rapidly than those with normal Ritz vectors in [7].

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms • • • • • • • • • • • • •	Improvements	Conclusion	References

Refined Ritz Values and Refined Ritz Vectors

- ► A newer idea is to use refined Ritz vectors, which have been shown to converge to the eigenvectors of A if the Ritz values are converging to the eigenvalues of A.
- It has also been shown that algorithms using refined Ritz vectors converge more rapidly than those with normal Ritz vectors in [7].
- ▶ By using refined Ritz vectors, we ensure that, not only are the eigenvalues of *H* converging to the eigenvalues of *A*, the eigenvectors of *H* are also converging to the eigenvectors of *A*.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0 0 0 0 0 0 0 0 0 0 0 0	Improvements 00 000 00	Conclusion	References

Singular Value Decomposition

Definition

For any given matrix $A_{m \times n}$ there exists a decomposition

 $A = U \Sigma V^T$

such that U is an m \times m orthogonal matrix, Σ is an m \times n diagonal matrix, and V is an n \times n orthogonal matrix.

The diagonal values of Σ are called the singular values of A.

The column vectors of U are the left singular vectors of A.

The column vectors of V are the right singular vectors of A.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms 0 0 0 0 0 0 0 0 0 0 0 0 0	Improvements 00 000 00	Conclusion	References	
Refined Arnoldi	i's						

Solving for Refined Ritz Vectors

 Refined Ritz vectors can be computed by solving the singular value decomposition

$$\tilde{H} - \tilde{I} = U \Sigma V^T$$

where the eigenvalue is not needed in \tilde{H} - \tilde{I} since the eigenvalue for which we are computing the vector in the PageRank problem is equal to 1, which was noted by [6].

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms 0 0 0 0 0 0 0 0 0 0 0 0 0	Improvements 00 000 00	Conclusion	References	
Refined Arnoldi	i's						

Solving for Refined Ritz Vectors

 Refined Ritz vectors can be computed by solving the singular value decomposition

$$\tilde{H} - \tilde{I} = U \Sigma V^T$$

where the eigenvalue is not needed in \tilde{H} - \tilde{I} since the eigenvalue for which we are computing the vector in the PageRank problem is equal to 1, which was noted by [6].

In general, singular value decompositions are very computationally expensive to implement. However, the matrix *H* is very small, usually seven or eight rows and columns or less.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Improvements	Conclusion	References
Refined Arnoldi	's					

Theorem

Theorem Let the $z_i^{(k)}$ be the right singular vectors of $\tilde{H}_k - x_i^{(k)}\tilde{I}$ associated with $\sigma_{\min}(\tilde{H}_k - x_i^{(k)}\tilde{I})$. Then the following relations hold:

$$u_{i}^{(k)} = Q_{k}z_{i}^{(k)}$$
$$\|(A - x_{i}^{(k)}I)u_{i}^{(k)}\| = \sigma_{min}(\tilde{H}_{k} - x_{i}^{(k)}\tilde{I})$$
$$= \sqrt{\|(\tilde{H}_{k} - x_{i}^{(k)}\tilde{I})z_{i}^{(k)}\|^{2} + h_{k+1,k}^{2}|e_{k}z_{i}^{(k)}||^{2}}$$

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms O OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOO	Improvements 00 000 00	Conclusion	References
Refined Arnoldi	i's					

Theorem

The vector $u^{(k)}$ is in $\mathcal{K}_k(A, u)$, regardless of the value of $z_i^{(k)}$, since Q_k is an orthonormal basis for $\mathcal{K}_k(A, u)$.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Improvements 00 000 00	Conclusion	References	
Refined Arnold	i's						

Pseudocode

refinedArnoldi(A, q, k)

1: Repeat

2:
$$[Q_{k+1}, H_{k+1,k}] = Arnoldi(A, q, k)$$

3: Compute
$$H_{k,k}v_M = \theta_M v_M$$

4: Compute
$$H_{k+1,k}$$
 - $\theta_M \tilde{I} = U \Sigma V^7$

5: Set
$$v = V_{*k}$$

6: Set
$$q = Q_k v$$

7: Until
$$\sigma_{min}(H_{k+1,k} - \theta_M \tilde{I}) < \epsilon$$

where \tilde{I} is the identity matrix augmented with a row of zeroes, V_{*k} is the *k*th column of *V*, $H_{k,k}$ is obtained by excluding the last row from $H_{k+1,k}$, and θ_M is the dominant eigenvalue of $H_{k,k}$ and v_M is the associated dominant eigenvector.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Improvements 00 000 00	Conclusion	References
Refined Arnold	i's					

Pseudocode

However, from [6], since we know $\theta_M = 1$, we can simplify our algorithm:

refinedArnoldi(A, q, k)

1: Repeat

2:
$$[Q_{k+1}, H_{k+1,k}] = \operatorname{Arnoldi}(A, q, k)$$

3: Compute
$$H_{k+1,k}$$
 - $I = U\Sigma V$

4: Set
$$v = V_{*k}$$

5: Set
$$q = Q_k v$$

6: Until
$$\sigma_{\min}(H_{k+1,k} - \tilde{I}) < \epsilon$$

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms ○ ○○○○○○ ●○○○○ ○○○	Improvements 00 000 00	Conclusion	References
Arnoldi Extrapo	olation					

Arnoldi Extrapolation

▶ In [11], a new algorithm is proposed, using an extrapolation procedure to improve the starting vector *q*, making the algorithm converge faster.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms ○ ○○○○○○ ●○○○○ ○○○	Improvements 00 000 00	Conclusion	References
Arnoldi Extrapo	olation					

Arnoldi Extrapolation

- ▶ In [11], a new algorithm is proposed, using an extrapolation procedure to improve the starting vector *q*, making the algorithm converge faster.
- ► This extrapolation procedure is also used in the iterative Arnoldi algorithm to improve *q* on each iteration.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms ○ ○○○○○○ ●○○○○ ○○○	Improvements 00 000 00	Conclusion	References
Arnoldi Extrapo	olation					

Arnoldi Extrapolation

- ▶ In [11], a new algorithm is proposed, using an extrapolation procedure to improve the starting vector *q*, making the algorithm converge faster.
- ► This extrapolation procedure is also used in the iterative Arnoldi algorithm to improve *q* on each iteration.
- ▶ This method has been shown to converge faster than the power method and the refined Arnoldi method where $\alpha \rightarrow 1$.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms 0 0 0 0 0 0 0 0 0 0 0 0 0	Improvements	Conclusion	References	
Arnoldi Extrapo	olation						

Initial Assumptions

By making the assumption that the approximation generated by the Arnoldi-type algorithm, denoted $x^{(k-1)}$, can be expressed as a linear combination of the first three eigenvectors we get the following formulas:

$$x^{(k-1)} = x_1 + \alpha_2 \lambda_2 x_2 + \alpha_3 \lambda_3 x_3$$

$$x^{(k)} = Ax^{(k-1)} = x_1 + \alpha_2 \lambda_2^2 x_2 + \alpha_3 \lambda_3^2 x_3$$

$$x_{1} = \frac{x^{(k+1)} - (\lambda_{2} + \lambda_{3})x^{(k)} + \lambda_{2}\lambda_{3}x^{(k-1)}}{(1 - \lambda_{2})(1 - \lambda_{3})}$$
$$\hat{x}_{1} = \frac{x^{(k+1)} - (\lambda_{2} + \lambda_{3})x^{(k)} + \lambda_{2}\lambda_{3}x^{(k-1)}}{(1 - \lambda_{3})x^{(k)} + \lambda_{3}\lambda_{3}x^{(k-1)}}$$

$$x_1 = \frac{1}{\|x^{(k+1)} - (\lambda_2 + \lambda_3)x^{(k)} + \lambda_2\lambda_3x^{(k-1)}\|}$$

1

..

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms	Improvements 00 000 00	Conclusion	References
Arnoldi Extrapo	olation					

Approximations

The final formula provides a good approximation to the PageRank vector.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms	Improvements 00 000 00	Conclusion	References
Arnoldi Extrapo	olation					

Approximations

- The final formula provides a good approximation to the PageRank vector.
- ► Instead of using the actual values of \(\lambda_2\) and \(\lambda_3\), we will use the approximations generated by the Arnoldi-type method.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms O O O O O O O O O O O O O	Improvements 00 000 00	Conclusion	References
Arnoldi Extrapo	olation					

Approximations

- The final formula provides a good approximation to the PageRank vector.
- ► Instead of using the actual values of \(\lambda_2\) and \(\lambda_3\), we will use the approximations generated by the Arnoldi-type method.
- ▶ This also means that the smallest *m* that we can use in the Arnoldi process is 3, since we need the second and third approximate eigenvalues for the equation.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms o o o o o o o o o	Improvements	Conclusion	References
Arnoldi Extrapo	olation					

Cases to Consider

There are two cases that we must consider:

Case 1: $\tilde{\lambda}_2$ and $\tilde{\lambda}_3$ are real

In this case, we will use

$$\tilde{x}_{1} = \frac{x^{(k+1)} - (\tilde{\lambda}_{2} + \tilde{\lambda}_{3})x^{(k)} + \tilde{\lambda}_{2}\tilde{\lambda}_{3}x^{(k-1)}}{\left\|x^{(k+1)} - (\tilde{\lambda}_{2} + \tilde{\lambda}_{3})x^{(k)} + \tilde{\lambda}_{2}\tilde{\lambda}_{3}x^{(k-1)}\right\|_{1}}$$

as our approximation.

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 0000	00 000 00		
	1.11					

Arnoldi Extrapolation

Cases to Consider

Case 2:
$$\lambda_2$$
 and λ_3 are conjugate

In this case, we will use

$$\tilde{x}_{1} = \frac{x^{(k+1)} - 2Re(\tilde{\lambda}_{2})x^{(k)} + |\tilde{\lambda}_{2}|^{2}x^{(k-1)}}{\left\|x^{(k+1)} - 2Re(\tilde{\lambda}_{2})x^{(k)} + |\tilde{\lambda}_{2}|^{2}x^{(k-1)}\right\|_{1}}$$

as our approximation, where $\operatorname{Re}(\tilde{\lambda}_2)$ denotes the real part of $\tilde{\lambda}_2$.

Introduction		Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	0000000			000		
			00000	00		
			000			
Adaptively Acc	elerated Arnol	di's				

In [12], a new adaptively accelerated Arnoldi method is proposed. This method uses the weighted inner product to speed up convergence. It is proposed to change the weights based on the current residual.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Improvements	Conclusion	References	
Adaptively Acc	elerated Arnol	di's					

Definition

Let $G_{n\times n}$ be a symmetric positive definite matrix and x and y be two vectors. Then a **G-inner product** is defined as

$$(x,y)_G = x^T G y$$

This inner product is well defined if and only if the matrix G is symmetric positive definite.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Improvements	Conclusion	References	
Adaptively Acc	elerated Arnol	di's					

Definition

Let $G_{n\times n}$ be a symmetric positive definite matrix and x and y be two vectors. Then a **G-inner product** is defined as

$$(x,y)_G = x^T G y$$

This inner product is well defined if and only if the matrix G is symmetric positive definite.

Definition

Let G and x be defined as before. Then the norm associated with the G-inner product is defined by

$$\|x\|_{G} = \sqrt{(x,x)_{G}} = \sqrt{x^{T}Gx}$$

which is called the **G-norm**.

A hybrid reordered Arnoldi method to accelerate PageRank computations

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000 000		0 0000000 00000 00●	00 000 00		
Adaptivaly Aca	امسم اسمعمام	d?'s				

Adaptively Accelerated Algorithm

In order to strengthen the weights of the components which converge slowly, we can define \u03c6_i by

$$\omega_i = \frac{\left|\tilde{r}_i\right|}{\left\|\tilde{r}\right\|_1}$$

where \tilde{r} is the residual computed by the last accelerated Arnoldi process and $\sum_{i=1}^{n} \omega_i = 1$.

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 00●	00 000 00		
Adaptivoly Acc	olorated Arnol	dile				

Adaptively Accelerated Algorithm

In order to strengthen the weights of the components which converge slowly, we can define \u03c6_i by

$$\omega_i = \frac{\left|\tilde{r}_i\right|}{\left\|\tilde{r}\right\|_1}$$

where \tilde{r} is the residual computed by the last accelerated Arnoldi process and $\sum_{i=1}^{n} \omega_i = 1$.

The idea is to give a larger weight to the r_i that are converging slowly, in order to accelerate the convergence of the algorithm.

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 00●	00 000 00		
Adaptivoly Acc	olorated Arnol	dile				

Adaptively Accelerated Algorithm

In order to strengthen the weights of the components which converge slowly, we can define \u03c6_i by

$$\omega_i = \frac{\left|\tilde{r}_i\right|}{\left\|\tilde{r}\right\|_1}$$

where \tilde{r} is the residual computed by the last accelerated Arnoldi process and $\sum_{i=1}^{n} \omega_i = 1$.

- ▶ The idea is to give a larger weight to the *r_i* that are converging slowly, in order to accelerate the convergence of the algorithm.
- ► Thus, *G* is given by

$$G = diag \left\{ rac{\left\| ilde{r}_i
ight\|}{\left\| ilde{r}
ight\|_1}
ight\}$$

This adaptive changing of the residual is what leads the the faster convergence of the adaptively accelerated Arnoldi algorithm.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements ●○ ○○ ○○	Conclusion	References
Subdominant E	igenvalue					

In [3], high stepping orderings are applied, after the matrix satisfies "Property R", to reduce the magnitude of λ₂. We found that the ordering we are using is more efficient than this reordering.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 000	Improvements ● O ○ O ○ O	Conclusion	References
Subdominant E	igenvalue					

- In [3], high stepping orderings are applied, after the matrix satisfies "Property R", to reduce the magnitude of λ₂. We found that the ordering we are using is more efficient than this reordering.
- In [8], some upper bounds on the magnitude of λ₂ are given for irreducible, stochastic matrices; however, this only works after the matrix has been partitioned with IAD, which doesn't apply to our matrices.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 000	Improvements ● O ○ O ○ O	Conclusion	References
Subdominant E	igenvalue					

- In [3], high stepping orderings are applied, after the matrix satisfies "Property R", to reduce the magnitude of λ₂. We found that the ordering we are using is more efficient than this reordering.
- In [8], some upper bounds on the magnitude of λ₂ are given for irreducible, stochastic matrices; however, this only works after the matrix has been partitioned with IAD, which doesn't apply to our matrices.
- ▶ In [5], they show that if the rows of a matrix are *n*-dimensional, random variables with $|cov(a_{ij}, b_{ik})| \le \frac{c}{n^3}$, then $|\lambda_2| \to 0$ as $n \to \inf$. When we tried this, we found that the covariance was always 0, so this method would not work for us.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements ○● ○○ ○○	Conclusion	References
Subdominant E	igenvalue					

In [4], they reorder the matrix into NCD form with partitioned diagonal blocks formed by using the strongly connected components. Then, using ILU as a preconditioner, different Krylov subspace methods are used. We chose to use our reordering instead of this, since we believe it is more efficient.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements ○● ○○ ○○	Conclusion	References
Subdominant E	igenvalue					

- In [4], they reorder the matrix into NCD form with partitioned diagonal blocks formed by using the strongly connected components. Then, using ILU as a preconditioner, different Krylov subspace methods are used. We chose to use our reordering instead of this, since we believe it is more efficient.
- In [2], bounds are given on the subdominant eigenvalue of stochastic matrices with nonnegative eigenvalues. This does not apply to us, since our eigenvalues can be negative or even complex.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements ○○ ●○○ ○○	Conclusion	References
Reordering Hyb	rid					

Reordered Refined Arnoldi

Since reordering significantly sped up the convergence time of the power method in [10], we decided to apply it to the Refined Arnoldi algorithm to see if the convergence time of it could be sped up as well.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements ●○○ ○○	Conclusion	References
Reordering Hyb	orid					

Reordered Refined Arnoldi

- Since reordering significantly sped up the convergence time of the power method in [10], we decided to apply it to the Refined Arnoldi algorithm to see if the convergence time of it could be sped up as well.
- The reordering we used was by decreasing row and column degree. In our tests, this was shown to move λ₂ farthest away from λ₁, thus maximizing the convergence speed.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements ●○○ ○○	Conclusion	References
Reordering Hyb	orid					

Reordered Refined Arnoldi

- Since reordering significantly sped up the convergence time of the power method in [10], we decided to apply it to the Refined Arnoldi algorithm to see if the convergence time of it could be sped up as well.
- The reordering we used was by decreasing row and column degree. In our tests, this was shown to move λ₂ farthest away from λ₁, thus maximizing the convergence speed.
- The results of this reordering vs. not reordering are shown in the following tables.

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements ○○ ○●○ ○○	Conclusion	References	
Reordering Hyb	rid						

	California	Stanford	CNR	Stanford-Berkley
Without Reordering	.04092	5.26132	6.97566	9.40766
With Reordering	.02372	1.4956	2.01628	3.95372
Speedup	42.0%	71.6%	71.1%	56.0%

Table: Comparison of CPU times with $\alpha = .85$ and m = 5

	California	Stanford	CNR	Stanford-Berkley
Without Reordering	.04486	8.07578	10.43478	13.9722
With Reordering	.02678	1.48892	1.98436	3.93864
Speedup	40.3%	81.6%	81.0%	71.8%

Table: Comparison of CPU times with $\alpha = .90$ and m = 5

Introduction 0000000000 0		Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements ○○ ○○● ○○	Conclusion	References	
Reordering Hyb	orid						

	California	Stanford	CNR	Stanford-Berkley
Without Reordering	.07072	15.87858	21.43492	26.11446
With Reordering	.03278	1.53726	1.99698	4.45082
Speedup	53.6%	90.3%	90.7%	83.0%

Table: Comparison of CPU times with $\alpha = .95$ and m = 5

	California	Stanford	CNR	Stanford-Berkley
Without Reordering	.17402	62.59826	90.77086	109.47492
With Reordering	.03468	1.74194	2.02384	4.56164
Speedup	80.1%	97.2%	97.8%	95.8%

Table: Comparison of CPU times with $\alpha = .99$ and m = 5

Introduction 0000000000 0	Algorithms 000000 000	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000 000	Improvements ○○ ●○	Conclusion	References
New Initial Gue	SS					
New In	itial Gu	Jess				

We tried to improve the initial guess of the Arnoldi-based algorithms by using the column sum of the web matrix H.

Introduction 0000000000 0	Algorithms 000000 000	Arnoldi's Process	Arnoldi-based Algorithms O OOOOOOOO OOOOO OOOO OOO	Improvements ○○ ●○	Conclusion	References
New Initial Gue	SS					
New In	itial Gu	Jess				

- ▶ We tried to improve the initial guess of the Arnoldi-based algorithms by using the column sum of the web matrix *H*.
- The only matrix that this helped the majority of the time was the Stanford web matrix.

Introduction 0000000000 0	Algorithms 000000 000	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements ○○ ●○	Conclusion	References
New Initial Gue	SS					
New In	itial Gu	Jess				

- We tried to improve the initial guess of the Arnoldi-based algorithms by using the column sum of the web matrix H.
- The only matrix that this helped the majority of the time was the Stanford web matrix.
- ► The results of this are shown in the following tables.

		Algorithms	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References	
New I	nitial Gue	ess						Ī

	$\alpha = 0.85$	$\alpha = 0.90$	$\alpha = 0.95$	$\alpha = 0.99$
Without New Initial Guess	5.26132	8.07578	15.87858	62.59826
With New Initial Guess	5.4839	7.70132	11.85016	54.8347
Speedup	-4.2%	4.6%	25.4%	12.4%

Table: Comparison of CPU times of Refined Arnoldi algorithm on Stanford matrix with m = 5

	$\alpha = 0.85$	$\alpha = 0.90$	$\alpha = 0.95$	$\alpha = 0.99$
Without New Initial Guess	6.69214	6.19414	8.8023	29.38416
With New Initial Guess	2.97144	4.39606	6.5456	103.97394
Speedup	55.6%	29.0%	25.6%	-253.8%

Table: Comparison of CPU times of Extrapolated Arnoldi algorithm on Stanford matrix with m = 3

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms O OOOOOOO OOOOO OOO	Improvements 00 000 00	Conclusion	References

We observed that the reordering algorithm we use separates λ₂ from λ₁ the most, thus giving us the fastest convergence time.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements 00 000 00	Conclusion	References

- We observed that the reordering algorithm we use separates λ₂ from λ₁ the most, thus giving us the fastest convergence time.
- We also observed that combining reordering with the refined Arnoldi algorithm significantly improves the convergence time of the algorithm.

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000	Improvements	Conclusion	References

- We observed that the reordering algorithm we use separates λ₂ from λ₁ the most, thus giving us the fastest convergence time.
- We also observed that combining reordering with the refined Arnoldi algorithm significantly improves the convergence time of the algorithm.
- After studying the generalized Arnoldi, we observed that there is no significant improvement over the refined Arnoldi algorithm presented in [6].

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000 0000 000	Improvements 00 000 00	Conclusion	References

- We observed that the reordering algorithm we use separates λ₂ from λ₁ the most, thus giving us the fastest convergence time.
- We also observed that combining reordering with the refined Arnoldi algorithm significantly improves the convergence time of the algorithm.
- After studying the generalized Arnoldi, we observed that there is no significant improvement over the refined Arnoldi algorithm presented in [6].
- Changing the initial guess vector to the sum of the columns of the web matrix did not significantly improve the convergence time, except on the Stanford matrix. In most other cases, it actually converged more slowly than when the initial guess was a random vector.

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 0000	00 000 00		

• Why does λ_2 separate from λ_1 when a matrix is reordered?

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 000	00 000 00		

- Why does λ_2 separate from λ_1 when a matrix is reordered?
- Is it possible to associate our reordering with some explicit permutation matrices and/or similarity transformations?

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
000000000000000000000000000000000000000	000000	00000	0 0000000 00000 0000	00 000 00		

- Why does λ_2 separate from λ_1 when a matrix is reordered?
- Is it possible to associate our reordering with some explicit permutation matrices and/or similarity transformations?
- ▶ Is it possible to construct an ordered Schur factorization $Q^T A Q = T$, where the entries in the block upper triangular matrix T are all nonnegative? If so, we can apply some results on the spectral radius of the nonnegative matrix B (whose dominant eigenvalue is λ_2).

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
000000000000000000000000000000000000000	000000	00000	0 0000000 00000 0000	00 000 00		

- Why does λ_2 separate from λ_1 when a matrix is reordered?
- Is it possible to associate our reordering with some explicit permutation matrices and/or similarity transformations?
- Is it possible to construct an ordered Schur factorization Q^TAQ = T, where the entries in the block upper triangular matrix T are all nonnegative? If so, we can apply some results on the spectral radius of the nonnegative matrix B (whose dominant eigenvalue is λ₂).
- Is there any relationship between our reordering and preconditioning via ILU?

Introduction 00000000000 0	Arnoldi's Process	Arnoldi-based Algorithms o ooooooo ooooo oooo	Improvements	Conclusion	References

References I

- S. Brin, L.Page, R. Motwami, T. Winograd "The PageRank citation ranking: bringing order to the web". Technical Report 1999-0120, Standford University (1999).
- LJ. CvetKovic, V. Kostic. J.M. Pena "Eigenvalue Localization and Refinements for Matrices Related to Positivity". SIAM. (2011).
- T. Dayar "State Space Orderings for Gauss-Seidel in Markov Chains Revisited". SIAM. (1998).
- T. Dayar, W. Stewart "Comparison of Partitioning Techniques for Two-level Iterative Solvers on Large, Sparse Markov Chains". SIAM. (2000).

Introduction 0000000000 0	Arnoldi's Process	Arnoldi-based Algorithms	00	Conclusion	References
		00000 000	00		

References II

- G. Goldberg and M. Neumann "Distribution of Subdominant Eigenvalues of Matrices with Random Rows". SIAM. (2003).
- G. H. Golub, C. Greif "An Arnoldi-Type Algorithm for Computing Page Rank". BIT Numerical Mathematics. (2006).
- Z. Jia "Refined Iterative Algorithms Based on Arnoldi's Process for Large Unsymmetric Eigenproblems". Linear Algebra and its Applications 259:1-23. Elsevier Science Inc. (1997).
- S. Kirkland "A cycle-based bound for subdominant eigenvalues of stochastic matrices". Linear and Multilinear Algebra. (2009).

Introduction 000000000000000000000000000000000000	Arnoldi's Process	Arnoldi-based Algorithms O OOOOOOO OOOOO OOOO	Improvements 00 000 00	Conclusion	References

References III

- S. Kirkland "Girth and Subdominant Eigenvalues for Stochastic Matrices". Electronic Journal of Linear Algebra. (2005).
- S. Osborne, J. Rebaza, E. Wiggins "On Accelerating the PageRank Computation". Internet Mathematics Vo. 6, No. 2: 157-171.(2009).

G. Wu, Y. Wei. "An Arnoldi-Extrapolation algorithm for computing PageRank". Journal of Computational and Applied Mathematics 234:3196-3212. (2010).

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000 000		0 0000000 00000 000	00 000 00		

References IV

J. Yin, G. Yin, M. Ng "On adaptively accelerated Arnoldi method for computing PageRank". Numerical Linear Algebra with Applications 19:73-85. Wiley Online Library (2012).

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
0000000000 0	000000	00000	0 0000000 00000 000	00 000 00		

Arnoldi's Method

Arnoldi(A, q, k) 1: $q_1 = q / ||q||_2$ 2: for i = 1 to k $z = Aq_i$ 3: 4: for i = 1 to j $h_{i,i} = q_i^T z$ 5: 6: $z = z - h_{i,i}q_i$ 7: end for $h_{i,i} = \|z\|_2$ 8: 9: if $h_{i+1,i} = 0$, quit 10: $q_{i+1} = z/h_{i+1,i}$ 11: end for

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 000	00 000 00		

Restarted Arnoldi's Method

```
restartedArnoldi(A, q, k)
```

- 1: Repeat
- 2: $[Q_{k+1}, H_{k+1,k}] = Arnoldi(A, q, k)$
- 3: Compute $H_{k,k}v_M = \theta_M v_M$

4: Set
$$q = Q_k v_M$$

5: Until
$$\|Aq - q\|_2 < \epsilon$$

where $H_{k,k}$ is obtained by excluding the last row from $H_{k+1,k}$, θ_M is the dominant eigenvalue, v_M is the associated dominant eigenvector, and ϵ is a predetermined tolerance.

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
000000000000000000000000000000000000000	000000	00000	0 0000000 00000 000	00 000 00		

Extrapolation Method

extrap(A,
$$x^{(k-1)}$$
, $\tilde{\lambda}_2$, $\tilde{\lambda}_3$, tol)
1: $x^{(k)} = Ax^{(k-1)}$
2: $r = \frac{\|x^{(k)} - x^{(k-1)}\|_1}{\|x^{(k-1)}\|_1}$
3: if tol $< r < 1e - 2$
4: if $\tilde{\lambda}_2$ and $\tilde{\lambda}_3$ are real
5: $x^{(k+1)} = Ax^{(k)}$
6: $x^{(k)} = x^{(k+1)} - (\tilde{\lambda}_2 + \tilde{\lambda}_3)x^{(k)} + \tilde{\lambda}_2\tilde{\lambda}_3x^{(k-1)}$
7: end if

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 0000	00 000 00		

Extrapolation Method, cont.

extrap(A,
$$x^{(k-1)}$$
, $\tilde{\lambda}_2$, $\tilde{\lambda}_3$, k, tol)
8: if $\tilde{\lambda}_2$ and $\tilde{\lambda}_2$ are conjugate
9: $x^{(k+1)} = Ax^{(k)}$
10: $x^{(k)} = x^{(k+1)} - 2Re(\tilde{\lambda}_2)x^{(k)} + |\tilde{\lambda}_2|^2x^{(k-1)}$
11: end if
12: $n = ||x^{(k)}||_1$
13: $x^{(k)} = \frac{x^{(k)}}{n}$
14: $k = k + 1$
15: end if

Introduction 00000000000 0		Arnoldi's Process	Arnoldi-based Algorithms 0 0000000 00000	Improvements 00 000 00	Conclusion	References
(1		000			

Initial Conditions for Algorithm

Before we run the main code of the algorithm, we must set some initial conditions:

```
m = 3

k = 0

r = 1

r_0 = r

restart = 0

\alpha = 0.85

\beta = \alpha - 0.2

maxit = 6

tolnorm = 0.1

n = 1
```

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 0000	00 000 00		

Extrapolation Algorithm

extrapArn(A, v, m, β , maxit, restart, tolnorm)

1: while restart < maxim t and r > tol2: x = Av $r = \frac{\|x - v\|_1}{\|v\|_1}$ 3: $x = \frac{x}{\|x\|_1}$ 4: if $\frac{r}{r_0} > \beta$ 5: 6: restart = restart + 17: end if 8: v = x9: k = k + 110: $r_0 = r$ 11: end while

A hybrid reordered Arnoldi method to accelerate PageRank computations

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 0000	00 000 00		

Extrapolation Algorithm, cont.

extrapArn(A, v, m, β , maxit, restart, tolnorm) 12: while r > tol $[Q_{m+1}, \tilde{H}_m] = \text{Arnoldi}(A, x, m)$ 13: 14: Compute eigenpairs of H and select $\tilde{\lambda}_2$ and $\tilde{\lambda}_3$ Compute SVD: $\tilde{H}_m - \tilde{I} = U \Sigma V^T$ 15: 16: $v = Q_m V(:, m)$ $x = Q_{m+1}(\tilde{H}V(:,m))$ 17: $r = \frac{\|x - v\|_1}{\|v\|_1}$ 18: 19: $x = \frac{x}{\|x\|_1}$ 20: restart = 021: $r_0 = r$ 22: n = 1:

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 000	00 000 00		

Extrapolation Algorithm, cont.

			,	'	/
23:	while $r > tc$	l and	$n \ge t_0$	olnorm	
24:	[x, r, k,	n] =	extrap	$o(A, x, \lambda_2)$	$_2$, λ_3 , k, tol)
25:	if $\frac{r}{r_0} >$	β			
26:	res	tart :	= resta	rrt+1	
27:	end if				
28:	$r_0 = r$				
29:	end while				
30:	end while				

extrapArn(A, v, m, β , maxit, restart, tolnorm)

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000 00000 0000	00 000 00		

The Generalized Arnoldi Method

 $GArnoldi(A, G, q_0, m)$

1:
$$\tilde{q}_1 = \frac{q_0}{\|q_0\|_G}$$

2: for $j = 1, 2, ..., m$
3: $w = A\tilde{q}_j$
4: for $k = 1, 2, ..., j$
5: $\tilde{h}_{k,j} = (w, \tilde{q}_k)_G$
6: $w = w - \tilde{h}_{k,j}\tilde{q}_k$
7: end for
8: $\tilde{h}_{j+1,j} = \|w\|_G$
9: if $h_{j+1,j} = 0$
10: stop and exit
10: else
11: $q_{j+1} = \frac{w}{\tilde{h}_{j+1,j}}$
12: end for
13: end for

Introduction	Algorithms	Arnoldi's Process	Arnoldi-based Algorithms	Improvements	Conclusion	References
	000000		0 0000000	00 000		
			00000 000			

Adaptively Accelerated Algorithm

adaptiveArnoldi(A, G, g, m, tol 1: while true $\begin{bmatrix} Q_{m+1}, H_{m+1,m} \end{bmatrix} = \mathsf{GArnoldi}(\mathsf{A}, \mathsf{G}, \mathsf{q}, \mathsf{m}) \\ \tilde{H}_{m+1,m} - \tilde{I} = U \Sigma V^T$ 2: 3: 4: $q = Q_m v_m$ 5: $r = \sigma_m Q_{m+1} u_m$ if $||r||_1 < \text{tol}$ 6: 7: stop and exit 8: end if $G = \operatorname{diag}\left\{\frac{|r_i|}{\|r\|_1}\right\}$ 9:

10: end while