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Group Theory Review

Definition

A Group is a set G along with a binary operation (denoted * )
that satisfies the following:

∀a, b ∈ G , a ∗ b ∈ G

∀a, b, c ∈ G , we have a ∗ (b ∗ c) = (a ∗ b) ∗ c
∃ element e ∈ G such that ∀a ∈ G , e ∗ a = a ∗ e = a

∀a ∈ G there exists a (unique) a−1 such that a ∗ a−1 = e

Example

The integers are a group under the binary operation of addition.
They clearly are closed and associative under addition, and ∀a ∈ Z,
0 + a = a + 0 = a. Finally, if a ∈ Z, then (−a) + a = 0 = e, so
(−a) is the inverse of a.
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Abelian groups

Definition

If all the elements of a group G commute with each other; i.e.,
ab = ba ∀a, b ∈ G , then we say that the group G is abelian.

Example (Examples of abelian groups)

The integers modulo n, for arbitrary n ∈ N. They are denoted
Zn = {0, 1, . . . n − 1}.
The even integers are an abelian group under addition - the
odd integers are not even a group.

Any cyclic group; that is, a group generated by one element,
is also abelian. Zn is an example of a cyclic group, generated
by the single element 1.
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The Direct Product

Definition

Let G , H be two groups. Then we define the direct product of G
and H to be G × H := {(g , h) | g ∈ G , h ∈ H}.

Fact

The order (number of elements in) G × H equals the order of G
times the order of H; i.e., |G × H| = |G | · |H|.

Example

The group Z4 × Z2 is an abelian group consisting of eight
elements: {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}.
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Dihedral Group: D8

An example of a group which is non-abelian is the dihedral group
with 8 elements, D8:

D8 is the group of symmetries of a square. We denote the 90◦

rotation as r and the horizontal reflection as s, writing the group
as follows:

D8 = 〈r , s|r4 = s2 = 1, srs−1 = r−1〉
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Subgroups

Definition

A subset H of a group G is said to be a subgroup of G (denoted
H < G ) if H is a group under same operation as G.

A quick way to test whether a subset of a group is in fact a
subgroup is the following: H ⊂ G is a subgroup if it satisfies the
following:

1 H is non-empty.

2 ∀ a,b ∈ H we have a ∗ b−1 ∈ H.

Example

Given G = Z and H = 2Z, (i.e., the set of even integers) it can
easily be shown H < G .
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Subgroup of D8

To provide another example of a subgroup, we consider subsets of
D8. We can show that 〈r〉, i.e. the set which includes only the
powers of rotations {1, r , r2, r3} is a subgroup of D8:

Proof.

1 Clearly, 〈r〉 is non-empty

2 Now we must show, ∀a, b ∈ 〈r〉 we have a ∗ b−1 ∈ 〈r〉. So let
r i , r j be in 〈r〉.

3 Then (r j)−1 = r4−j , and so we have r i (r j)−1 = r i+4−j ∈ 〈r〉.
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Definition

The subgroup lattice of a group G , denoted Γ(G ), is the graph
whose vertices are the subgroups of G , with two subgroups being
connected by an edge if and only if one is contained in the other
with no intermediate subgroups. That is to say, if N, H are
subgroups of G , then N − H is an edge in Γ(G ) ⇔ H ⊂ N and
there is no other K < G such that H ⊂ K ⊂ N.

We include examples of Γ(Z6) and Γ(D8) below.
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Subgroup Lattice Examples

Figure : The subgroup lattices of Z6 (left), and D8 (right).
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Our Predecessors

In their paper Finite Groups with Planar Subgroup Lattices,
Bohanon and Reid classified all the finite groups whose subgroup
lattices were planar; i.e., could be drawn on the plane with no
edges crossing. Our goal is to classify all finite groups whose
subgroup lattices have genus one, both oriented and
non-orientable; that is to say, those subgroup lattices which can be
embedded in the torus and the projective plane, respectively.
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Genus Definition

Definition

The (oriented) genus of a graph G, which we denote γ(G ) is the
lowest number of handles that must be added to the surface of a
sphere in order that the graph be embeddable in that surface.

Figure : A torus (Left) with one handle and a 3-torus (Right) with three
handles.
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The torus and its 2-D representation

We here provide a way of visualizing the representation of the torus
in two dimensions:

Figure : We thus identify both edges of the two-dimensional surface, first
the top and bottom, and then the two sides
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Methods of Graph Elimination

We wish to rule out graphs and show that they must have genus
greater than one. What tools do we have at our disposal?

1 Lower Bound

2 Obstructions

3 Subgroup graphs and the Lattice Isomorphism Theorem,
which we state below:

Theorem (Lattice Isomorphism Theorem)

If H is a normal subgroup of G , then there is a copy of Γ(G/H)
contained in Γ(G ).
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Genus Lowerbound

Theorem (Euler)

If V denotes the number of vertices in the polyhedron G, E the
number of edges, and F the number of faces, then
V − E + F = 2− 2γ(G ).

We can use this theorem to derive the following lower bound on
the genus of a subgroup graph:

Corollary

γ(G ) ≥ d1 + E
4 −

V
2 e.

We include the proof immediately following.
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Corollary

γ(G ) ≥ d1 + E
4 −

V
2 e.

Proof.

Denote the number of n − sided faces by Fn. Since we are
dealing with embeddings of subgroup graphs, there are no

triangles. So F =
n∑

i=1
Fi = F4 + F5 + · · · .

Note
n∑

i=1
iFi = 2E

Thus 2E ≥ 4F4 + 4F5 + · · · = 4F

Therefore F ≤ E
2

Thus 2− 2γ(G ) ≤ V − E + E
2 = V − E

2 , which simplifies to

γ(G ) ≥ 1 + E
4 −

V
2 .

Sarah McGinnis, Jeremy Berry, E.J. Sanchez Subgroup Graphs of Non-Orientable and Oriented Genus One



Introduction Oriented Genus Non-orientable Genus

Corollary

γ(G ) ≥ d1 + E
4 −

V
2 e.

Proof.

Denote the number of n − sided faces by Fn. Since we are
dealing with embeddings of subgroup graphs, there are no

triangles. So F =
n∑

i=1
Fi = F4 + F5 + · · · .

Note
n∑

i=1
iFi = 2E

Thus 2E ≥ 4F4 + 4F5 + · · · = 4F

Therefore F ≤ E
2

Thus 2− 2γ(G ) ≤ V − E + E
2 = V − E

2 , which simplifies to

γ(G ) ≥ 1 + E
4 −

V
2 .

Sarah McGinnis, Jeremy Berry, E.J. Sanchez Subgroup Graphs of Non-Orientable and Oriented Genus One



Introduction Oriented Genus Non-orientable Genus

Corollary

γ(G ) ≥ d1 + E
4 −

V
2 e.

Proof.

Denote the number of n − sided faces by Fn. Since we are
dealing with embeddings of subgroup graphs, there are no

triangles. So F =
n∑

i=1
Fi = F4 + F5 + · · · .

Note
n∑

i=1
iFi = 2E

Thus 2E ≥ 4F4 + 4F5 + · · · = 4F

Therefore F ≤ E
2

Thus 2− 2γ(G ) ≤ V − E + E
2 = V − E

2 , which simplifies to

γ(G ) ≥ 1 + E
4 −

V
2 .

Sarah McGinnis, Jeremy Berry, E.J. Sanchez Subgroup Graphs of Non-Orientable and Oriented Genus One



Introduction Oriented Genus Non-orientable Genus

Corollary

γ(G ) ≥ d1 + E
4 −

V
2 e.

Proof.

Denote the number of n − sided faces by Fn. Since we are
dealing with embeddings of subgroup graphs, there are no

triangles. So F =
n∑

i=1
Fi = F4 + F5 + · · · .

Note
n∑

i=1
iFi = 2E

Thus 2E ≥ 4F4 + 4F5 + · · · = 4F

Therefore F ≤ E
2

Thus 2− 2γ(G ) ≤ V − E + E
2 = V − E

2 , which simplifies to

γ(G ) ≥ 1 + E
4 −

V
2 .

Sarah McGinnis, Jeremy Berry, E.J. Sanchez Subgroup Graphs of Non-Orientable and Oriented Genus One



Introduction Oriented Genus Non-orientable Genus

Corollary

γ(G ) ≥ d1 + E
4 −

V
2 e.

Proof.

Denote the number of n − sided faces by Fn. Since we are
dealing with embeddings of subgroup graphs, there are no

triangles. So F =
n∑

i=1
Fi = F4 + F5 + · · · .

Note
n∑

i=1
iFi = 2E

Thus 2E ≥ 4F4 + 4F5 + · · · = 4F

Therefore F ≤ E
2

Thus 2− 2γ(G ) ≤ V − E + E
2 = V − E

2 , which simplifies to

γ(G ) ≥ 1 + E
4 −

V
2 .

Sarah McGinnis, Jeremy Berry, E.J. Sanchez Subgroup Graphs of Non-Orientable and Oriented Genus One



Introduction Oriented Genus Non-orientable Genus

Example of lower bound

Figure : Γ(Z2 × Z2 × Z2)

Applying the lower bound

V = 16

E = 35

γ(G ) ≥ d1 + E
4 −

V
2 e

γ(G ) ≥ d1 + 35
4 −

16
2 e

⇒ γ(G ) ≥ 2
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Obstructions for Genus Zero

Another way to limit the number of groups that could have a
certain genus is to look for “obstructions” - graphs which cannot
be embedded in a given surface. For example, in Bohanon and
Reid’s paper they utilized the following theorem, which completely
describes the obstructions to planarity (genus zero):

Theorem (Kuratowski’s Theorem)

A subgroup graph is planar iff it does not contain a subgraph
homeomorphic to K5 or K3,3.

We show both of these graphs below.
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Figure : The complete graph K5 (left), and the bipartite graph K3,3

(right)
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Obstructions for Genus One

Obstructions

Among the obstructions which cannot be embedded on the torus
are the following:

K5,4

K3,7

Two copies of K3,3

However, unlike in the genus zero case, there are over a hundred
thousand other obstructions (up to homeomorphism) to toroidality.
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Cyclic Groups

Theorem

A cyclic group G has (oriented) genus one if and only if G is
isomorphic to one of the following:

Zp2q2r

Zp3q2r

Zp3q3r

Zpqrs

where p, q, r , and s are arbitrary primes.
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Cyclic Groups Proof

Proof.

By Bohanon we have that Zpm , Zpmqn , Zpmqr are planar. We next
consider cyclic groups of form Zpmqnr` :

Zp2q2r2 contains two copies of K3,3, as we show below. Thus
we only need to consider cases where ` = 1.

Zpmqnr . If 2 ≤ m,n ≤ 3 then γ(Zpmqnr ) = 1. We show this by
presenting a drawing of Zp3q3r on the board. Otherwise,
γ(Zpmqnr ) ≥ 2, as can be seen from the two copies of K3,3

found in Γ(Zp4q2r ).

Finally, consider Zpmqnr`st . If m = n = ` = t = 1, then
γ(Zpmqnr`st ) = 1. Otherwise, the lower bound rules it out.
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Figure : A pair of K3,3’s in the graph of Zp2q2r2 (Left) and in the graph of
Zp4q2r (Right).
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Definition

The non-orientable genus of a graph is the lowest number of
cross-caps that must be added to the sphere in order that the
graph be embeddable.

Figure : The projective plane, with one cross-cap, and its 2-D
representation
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Non-orientable genus example

Example

A graph of non-orientable genus one would be one which can be
drawn on the projective plane but not on the sphere. One example
is Z4 × Z4:

Figure : The regular subgroup lattice of Z4 × Z4 (left) and drawn on the
projective plane (right)
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Non-orientable lower bound

For the non-orientable genus we have a lower bound analogous to
what we have for the oriented genus. Note that γ̃(G ) denotes the
non-orientable genus of G.

Theorem (Euler, version two)

If V denotes the number of vertices in a polyhedron G , E the
number of edges, and F the number of faces, then
V − E + F = 2− γ̃(G )

Corollary

γ̃(G ) ≥ d2 + E
2 − V e
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Corollary

γ̃(G ) ≥ d2 + E
2 − V e

Sarah McGinnis, Jeremy Berry, E.J. Sanchez Subgroup Graphs of Non-Orientable and Oriented Genus One



Introduction Oriented Genus Non-orientable Genus

Non-Orientable Obstructions

Obstructions

For the projective plane there 35 minor-minimal obstructions. Two
such obstructions are the F6 and G1 graphs:
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Example of F6 obstruction

Figure : Graph of Z8 × Z4 with a F6 type obstruction
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Non-orientable genus of cyclic groups

Theorem

There does not exist any cyclic group of non-orientable genus one.

Proof.

By Bohanon, all cyclic groups whose orders have fewer than three
prime powers are planar, so we need not consider them.
Zpαqr is planar. Then we consider Zp2q2r , which has a G1

obstruction and thus has γ̃ ≥ 2. Then since every larger cyclic
group whose order has this form must contain Zp2q2r as a
subgroup, we are finished with cyclic groups whose order has three
prime factors.
Our lower bound rules out cyclic groups whose orders have four or
more prime factors, so we are done.
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Abelian Groups of non-orientable genus one

Theorem

Up to isomorphism, the only abelian groups of non-orientable
genus one are

Z4 × Z4

Z9 × Z9
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Proof.

First check abelian groups of prime power order. Bohanon
and Reid rule out all of these besides Zpm × Zpn . For p ≥ 5
we have a K3,p+1 contained in Γ(Zpn × Zpm), so only consider
p = 2 or p = 3. From this we find that Z4 × Z4 and Z9 × Z9

have non-orientable genus one. We find a G1 inside
Γ(Z8 × Z4) and Γ(Z27 × Z9) so we are done with p = 2 and
p = 3. Any further abelian p-group contains a Zp × Zp × Zp,
which is ruled out by the lower bound.

Abelian groups of order pmqn are all planar by Bohanon and
Reid.

Abelian groups of order p`qmrn are planar if m,n = 1,
otherwise they contain a G1. Our lower bound rules out any G
with order having four or more distinct prime factors, so we
are done.
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Prime Powers 2n

Theorem

Let G be a non-abelian group of order 2n. Then G has
non-orientable genus one ⇔ G is isomorphic to one of the
following groups:

Z4 o Z4 = 〈a, b | a4 = b4 = 1, aba−1 = b3〉
D16 = 〈r , s | r8 = s2 = 1, srs−1 = r−1〉
Q32 = 〈a, b, c | a8 = b2 = c2 = abc〉
Z4 · D8 = 〈a, b | a8 = 1, a4 = b4, bab−1 = a−1〉
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Prime Powers 3n

Propositon

Let |G | = 3n and G non-abelian. Then γ̃(G ) = 1 ⇔ G is
isomorphic to one of the following groups:

Z9 o Z9 = 〈a, b | a9 = 1, b9 = 1, bab−1 = a4〉
(Z3 × Z3) · (Z3 × Z3) = 〈a, b, c | a9 = b3 = 1, ba = ab, c3 =
a3, cac−1 = ab, cbc−1 = a6b〉
(Z3 × Z3) o Z3
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Proof for powers of 3

Outline of Proof

Let n ≥ 3. Then there exists a central subgroup H < G with
H = 〈c〉 and |H| = 3, so G/H, has order 3n−1. By the Lattice
Isomorphism Theorem, γ̃(G/H) = 0 or 1.

1 First, assume γ̃(G/H) = 0. Then by Bohanon and Reid G/H
must be isomorphic to:

G/H ∼= Z3n−2 × Z3 = 〈a, b | a3n−2 = 1, b3 = 1, aba−1b−1 = 1〉
G/H ∼= M3n−1 = 〈a, b | a3n−2

= b3 = 1, bab−1 = a3
n−3+1〉

2 Second, assume γ̃(G/H) = 1. Then by induction G/H must
be isomorphic to:

Z9 × Z9

Z9 o Z9

(Z3 × Z3) · (Z3 × Z3)
(Z3 × Z3) o Z3
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Example (γ̃(G/H) = 0)

Suppose G/H ∼= Z3n−2 × Z3. Then we have a, b ∈ G such that
a3

n−2 = c i , b3 = c j and aba−1b−1 = ck , where i , j , k ∈ {0, 1, 2}.
We can dismiss the case where i 6= 0, and consider only zero or
non-zero values for j and k to get the following possibilities for G :

j = k = 0. Then G = 〈a〉 × 〈b〉 × 〈c〉 ∼= Z3n−2 × Z3 × Z3

j 6= 0, k = 0. Then G = 〈a〉 × 〈b〉 ∼= Z3n−2 × Z32 . Note that
these are planar for n < 4, genus one for n = 4, and genus
≥ 2 for n > 4.

j = 0, k 6= 0. Then G = 〈b, c〉o 〈a〉 ∼= (Z3 × Z3) o Z3n−2 .

j 6= 0, k 6= 0. Then G = 〈b〉o 〈a〉 ∼= Z32 o Z3n−2 .
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Example (γ̃(G/H) = 1)

Consider the first case, where G/H ∼= Z9 × Z9. Then we have
a, b, c ∈ G with a9 = c j , b9 = c`, aba−1b−1 = ck . Assign values
for j , k , ` as follows:

j = k = ` = 0. Then G = 〈a〉 × 〈b〉 × 〈c〉 ∼= Z9 × Z9 × Z3

j = 0, k = 0, ` 6= 0. G = 〈b, c〉o 〈a〉 ∼= (Z9 × Z3) o Z9

j 6= 0, k 6= 0, ` = 0. G = Z27 × Z9.

j = 0, k 6= 0, ` 6= 0. G = 〈b〉o 〈a〉 ∼= Z27 oZ9. G is the same
(switching a and b) if j 6= 0 and k = 0.

j = 0, k 6= 0, ` = 0. G = 〈b〉 × 〈a〉 ∼= Z27 × Z9. Again G is
the same (switching a and b) if j 6= 0 and k = 0.

j 6= 0, k 6= 0, ` 6= 0. G = 〈a〉o 〈ba−1〉 ∼= Z27 o Z9
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Powers of primes greater than 3

Proposition

Let G be a non-abelian group, and |G | = pn for a prime p ≥ 5
Then γ̃(G ) 6= 1.
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Proof for powers of primes greater than 3

Proof.

1 For n = 1 or 2, |G | = pn ⇒ G abelian.

2 For n = 3 there are five groups of order pn: Zp3 , Zp2 × Zp,
Zp ×Zp ×Zp, the modular group Mp3 , and the group of 3× 3

matrices of the form

1 a b
0 1 c
0 0 1

 with a,b,c in Zp. The first

two and the fourth are planar, the third is ruled out by the
lower bound. The fifth contains a K3,p where G , Z (G ), and
{e} make up the three elements of degree p and the p copies
of Zp × Zp make up the p elements of order 3. So for p ≥ 5
we have γ̃(G ) ≥ 2.

3 For n ≥ 4 it is easy to extend the proof given in
Bohanon-Reid, so we are done.
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Groups of two prime power orders

Having finished with groups of order pn, we proceed to groups
whose orders are made up of powers of two different primes.

Theorem

Let G be a non-abelian group with |G | = pαqβ. Then γ̃(G ) = 1 if
and only if G is isomorphic to one of the following:

SL(2, 3), the special linear group of 2× 2 matrices with values
in F3.

Z9 o Z2n , for arbitrary n ∈ N.

Note that (much to our surprise), there is an infinite family of
groups with non-orientable genus one; specifically the second item
mentioned in the theorem. This family includes D18 - the subgroup
lattices of each member of this family includes a copy of Γ(D18)
and a number of planar spindles.
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Examples of our infinite family

Figure : A copy of Z9 o Z4 (left), and Z9 o Z8 (right)
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Groups of three prime power orders

Conjecture

We conjecture there are no non-orientable genus one subgroup
graphs of order pαqβrγ
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Groups of four prime power orders

Theorem

If G is solvable of and the order of G has four or more prime
powers, then γ̃(G ) > 1.

Proof.

In their paper, Bohanon and Reid show that G will have a Sylow
basis consisting of four sylow subgroups. Then the sublattice of
Γ(G ) composed of those four groups and their products makes up
a graph homeomorphic to Γ(Zpqrs), which has non-orientable
genus greater than one.
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The Next Frontier

What’s Next?

So what are the next steps on this road of inquiry? We’d like to
prove our conjecture for groups whose orders have three prime
powers, wrap up our proof for groups whose orders have two prime
powers, and condense some of the cases for our proofs of prime
powers.
Beyond this, we can look to continue investigating the oriented
genus of subgroup graphs, a topic which we’ve already resolved if
the group is cyclic. However, the question still lies open for
non-cyclic abelian groups and non-abelian groups.
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