Introduction Deriving Equilibrium	Behavior Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research

Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting

Alexander Hare and Keilah Ebanks

August 2012

(日) (同) (三) (三)

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations 0000 0000 0	Piecewise Harvesting	3 Dimensional Model	Previous Research
Overview				

$$\dot{x} = \alpha x (1-x) - \frac{a(1-m)xy}{1+c(1-m)x} - H(x) \dot{y} = -dy + \frac{b(1-m)xy}{1+c(1-m)x}$$
(1)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

where H(x) = heach of α , a, b, c, d, h, m and b are positive real parameters

Alexander Hare and Keilah Ebanks

Introduction [Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
000000000	000 0 00	0000 0000 0		000000000 0000	

Overview

Continuation

New H(x)

$$H(x) = \begin{cases} 0 & x < T_1 \\ \frac{h(x - T_1)}{T_2 - T_1} & T_1 \le x \le T_2 \\ h & x > T_2 \end{cases}$$
(2)

3-D Model:

$$\dot{x} = \alpha x (1-x) - \frac{a(1-m)xy}{1+c(1-m)x} + D_1(v-x) \dot{v} = -d_v v + D_2(x-v) \dot{y} = -dy + \frac{b(1-m)x_1y}{1+c(1-m)x_1y}$$
(3)

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations 0000 0000 0	Piecewise Harvesting	3 Dimensional Model	Previous Research
Overview					

Saddle Point

Given a dynamical system $\dot{x} = Bx$, specifically at the solution $x(t) = e^{Bt}x_0$ if the eigenvalues of B are real with opposite sign, the point x_0 is a saddle point.

Figure: Example of Saddle Point

æ

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
Overview				

Node

If the eigenvalues are reals that have the same sign, the point is a node.

If both are positive, then the point is unstable.

If negative, (asymptotically) stable.

Figure: Example of Node

白マ イヨマ イヨマ

2

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations 0000 0000 0	Piecewise Harvesting	3 Dimensional Model	Previous Research
Overview				

Focus

If the eigenvalues are complex conjugates, the point is a focus.

If the real parts are positive, the point is unstable.

If the real parts are negative, the point is (asymptotically) stable.

æ

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
00000000000	0000 0 00	0000 0000 0		00000000 0000	
Overview					

Center

If the eigenvalues are purely imaginary, then the equilibrium point is of center type. This also indicates that the equilibrium is non-hyperbolic.

Figure: Example of Center

æ

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Beha	avior Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
000000000000	0000		00000000	
0 00	0000		0000	
o :				

Non-Hyperbolic Points

This method only works for hyperbolic equilbrium points (from Hartman-Grobman Theorem)

For non-hyperbolic equilibrium points and some global analysis we need to perform bifurcation analysis.

Hartman-Grobman:

Indicates that near a hyperbolic equilibrium point x_0 , the nonlinear system $\dot{x} = f(x)$ has the same qualitative structure as the linear system $\dot{x} = Ax$ with $A = Df(x_0)$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
Overview				

Model 1: H(x) = h

Analyze the model by finding equilibrium points and their stability. 3 equilibrium points:

$$P_0 = \left(\frac{\alpha - \sqrt{-4\alpha h + \alpha^2}}{2\alpha}, 0\right), \quad P_1 = \left(\frac{\alpha + \sqrt{-4\alpha h + \alpha^2}}{2\alpha}, 0\right),$$
$$P_2 = \left(\frac{d}{(b - cd)(1 - m)}, b\frac{-\frac{h}{d} - \left(\frac{b(m-1) + d(1 + c - cm)\alpha}{(b - cd)^2(m-1)^2}\right)}{a}\right)$$

<ロト <四ト <三ト <三ト = 三

2 boundary points on the x-axis (predator extinction) 1 interior boundary point (coexistence of the species)

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
000000000000000000000000000000000000000	0000		00000000 0000	

Overview

Trace-Determinant Analysis

The Jacobian J(x, y) is

$$\begin{bmatrix} \frac{a c x y (m-1)^2}{z^2} - \alpha (x-1) - \frac{a y (m-1)}{z} - \alpha x & -\frac{a x (m-1)}{z} \\ \frac{b y (m-1)}{z^2} & \frac{b x (m-1)}{z} - d \end{bmatrix}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

where z = cx(m - 1) - 1.

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
00000000000000000000000000000000000000	0000 0000 0		000000000 0000	
Overview				

if $D < 0$, point is a saddle
if $D > 0$
$T^2 - 4D \ge 0$, point is a node
T > 0, unstable
$\mathcal{T} < 0$, stable
$T^2 - 4D < 0$, point is a focus
T > 0, unstable
$\mathcal{T} < 0$, stable
${\cal T}=$ 0, point is of center-type (non-hyperbolic)
We want to look for conditions on our parameters that determine
which type of equilibrium point is present.

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
0000000000000				
0	0000		0000	

Boundary Points

Boundary Points

The Jacobians evaluated at P_0 and P_1 are (respectively)

$$\begin{bmatrix} \alpha - \alpha^3 + \alpha^2 (\sqrt{\alpha^2 - 4\alpha h}) & -\frac{a}{c} - \frac{a}{c\left(\alpha c(\frac{\alpha}{2} - \frac{\sqrt{\alpha^2 - 4\alpha h}}{2}(m-1))\right)} \\ 0 & \frac{\alpha b\left[\frac{\alpha}{2} + \frac{\sqrt{\alpha^2 - 4\alpha h}}{2}\right](m-1)}{\alpha c[\frac{\alpha}{2} + \frac{\sqrt{\alpha^2 - 4\alpha h}}{2}](m-1) - 1} - d \end{bmatrix}$$
$$\begin{bmatrix} (\alpha - \alpha^3 - \alpha^2(\sqrt{\alpha^2 - 4\alpha h}) & -\frac{a}{c} - \frac{a}{c(\alpha c(\frac{\alpha}{2} - \frac{\sqrt{\alpha^2 - 4\alpha h}}{2}(m-1)))} \\ 0 & \frac{\alpha b[\frac{\alpha}{2} - \frac{\sqrt{\alpha^2 - 4\alpha h}}{2}](m-1) - 1}{\alpha c[\frac{\alpha}{2} - \frac{\sqrt{\alpha^2 - 4\alpha h}}{2}](m-1) - 1} - d \end{bmatrix}$$
$$\alpha \ge 4h$$

ヘロト 人間 とくほ とくほ とう

3

from the equilibrium points that we found.

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
000000000000000000000000000000000000000				
0	0000		0000	
00				
Boundary Points				

Boundary: P_1

Because the matrices for P_0 and P_1 are upper triangular, using the eigenvalues to determine behavior can be done easily. Given P_1 is

$$\begin{bmatrix} (\alpha - \alpha^3 - \alpha^2(\sqrt{\alpha^2 - 4\alpha h}) & -\frac{a}{c} - \frac{a}{c(\alpha c(\frac{\alpha}{2} - \frac{\sqrt{\alpha^2 - 4\alpha h}}{2}(m-1)))} \\ 0 & \frac{\alpha b[\frac{\alpha}{2} - \frac{(\sqrt{\alpha^2 - 4\alpha h})}{2}](m-1)}{\alpha c[\frac{\alpha}{2} - \frac{\sqrt{\alpha^2 - 4\alpha h}}{2}](m-1) - 1} - d \end{bmatrix}$$

The two eigenvalues are

$$\lambda_1 = \alpha - \alpha^3 - \alpha^2 \Delta$$

$$\lambda_2 = \frac{\alpha b \left[\frac{\alpha}{2} - \frac{(\sqrt{\alpha^2 - 4\alpha h})}{2}\right](m-1)}{\alpha c \left[\frac{\alpha}{2} - \frac{\sqrt{\alpha^2 - 4\alpha h}}{2}\right](m-1) - 1} - d$$

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
000000000000				
0 00	0000		0000	
Boundary Points				

Boundary P_1 cont

 \triangle can range from 0 to α , dependent on h. Thus, λ_1 is necessarily positive if $\alpha < 1/4$, but may be positive even if $\alpha = 1$ λ_2 is complicated by the term b - cd if b < cd, $\lambda_2 > 0$ but if b > cd, then $\lambda_2 > 0$ if $\lambda < \frac{-d}{(b-cd)\Theta n}$ where $\Theta = \alpha/2 - \Delta/2$ and $\Delta = \sqrt{\alpha^2 - 4\alpha h}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
000000000000	0000	0000000000	000000000	
00				
Coexistence Point				

Coexistence Point

At P_2 , the determinant (D) and trace (T) were evaluated to be:

$$D = \alpha d(2x-1) - \frac{adyn}{z^2} - \frac{\alpha bx(2x-1)n}{z}$$
(4)

$$T = -\alpha(2x-1) - d + \frac{bxn}{z} - \frac{ayn}{z} + \frac{acxyn^2}{z^2}$$
(5)

イロト イポト イヨト イヨト 二日

where z = cx(m-1) - 1 and n = m - 1Note that z < n < 0.

Complex series of conditions to determine the behavior of this point(explained in previous presentation).

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
00000000000 0 • 0	0000 0000 0		00000000 0000	
Phase Portraits				

Stable Focus

Since T < 0, D < 0 and $T^2 - 4D < 0$, P_2 is a stable focus.

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Bifurcations 0000 0000 0	Piecewise Harvesting	3 Dimensional Model	Previous Research
Phase Portraits				

Stable Node

Since T < 0, D > 0 and $T^2 - 4D > 0$, P_2 is a stable node.

Figure: Stable Node Phase Portrait

$$\alpha = .6 \ a = .6 \ b = .5 \ c = .1 \ d = .3 \ m = .1 \ h = .1$$
$$T = -.2825 \ D = .0094 \ T^2 - 4D = .0421$$
$$(0.7092, 0.0659)$$

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations ●○○○ ○○○○	Piecewise Harvesting	3 Dimensional Model	Previous Research
Sotomayor's Theorem				

Bifurcations

Drastic change in qualitative behavior of solutions for a small change in one or more parameters Can be (usually) detected using XPPAUT Proven using Sotomayor's Theorem

Figure: Saddle-Node Bifurcation Diagram

Alexander Hare and Keilah Ebanks

Introduction Derivir	g Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
		0000			
		0000		0000	
00					

Sotomayor's Theorem

Sotomayor's Theorem

Theorem

Suppose that $f(x_0, \mu_0) = 0$ and that the $n \times n$ matrix $A \equiv Df(x_0, \mu_0)$ has a simple eigenvalue $\lambda = 0$ with eigenvector \mathbf{v} and that A^T has an eigenvector \mathbf{w} corresponding to the eigenvalue $\lambda = 0$. Furthermore, suppose that A has k eigenvalues with negative real part and (n - k - 1) eigenvalue with positive real part and that the following conditions are satisfied:

$$\mathbf{w}^T f_{\mu}(x_0,\mu_0) \neq 0, \quad \mathbf{w}^T D^2 f(x_0,\mu_0)(\mathbf{v},\mathbf{v}) \neq 0.$$
 (6)

Then the system experiences a saddle-node bifurcation at the equilibrium point x_0 as the parameter μ passes through the bifurcation value $\mu = \mu_0$.

Alexander Hare and Keilah Ebanks

Introduction [Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
		0000			
	0	0000		0000	
	00				

Sotomayor's Theorem

Application of Sotomayor's Theorem

Theorem

If $x = \frac{1}{2}$, $b \neq \frac{dz}{x(m-1)}$ and $\alpha \geq 4h$, then systems Model 1 and Model 2 undergoes a saddle-node bifurcation at $(\frac{1}{2}, 0)$.

Proof.

$$w = \begin{bmatrix} 1\\ \frac{a \times n}{b \times n - dz} \end{bmatrix} f_{\mu}(x_0, \mu_0) = \begin{bmatrix} -1 & 0 \end{bmatrix}$$
(7)

Thus

$$\mathbf{w}^T f_\mu(x_0,\mu_0) \neq 0 \tag{8}$$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへで

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
	0000			
0 00	0000		0000	

Sotomayor's Theorem

 $D^2f(x_0)(v,v)$

$$\begin{aligned} P^{2}f(x_{0})(v,v) &= \\ \frac{\partial^{2}f_{1}(x_{0})}{\partial x^{2}}v_{1}v_{1} + \frac{\partial f_{1}^{2}(x_{0})}{\partial x \partial y}v_{1}v_{2} + \frac{\partial f_{1}^{2}(x_{0})}{\partial x \partial y}v_{2}v_{1} + \frac{\partial^{2}f_{1}(x_{0})}{\partial y^{2}}v_{2}v_{2} \\ \frac{\partial^{2}f_{2}(x_{0})}{\partial x^{2}}v_{1}v_{1} + \frac{\partial f_{2}^{2}(x_{0})}{\partial x \partial y}v_{1}v_{2} + \frac{\partial f_{2}^{2}(x_{0})}{\partial x \partial y}v_{2}v_{1} + \frac{\partial^{2}f_{2}(x_{0})}{\partial y^{2}}v_{2}v_{2} \\ \mathbf{w}^{T}D^{2}f(P_{2})(v,v) &= \mathbf{w}^{T} \begin{bmatrix} -2\alpha - \frac{an}{z^{2}} \left(\frac{axn}{bx(m-1)-dz}\right) \\ \frac{b(1-m)}{z^{2}} \left(\frac{axn}{bxn-dz}\right) \end{bmatrix} \\ &= -2\alpha + \frac{-an}{z^{2}} \left(\frac{axn}{bxn-dz}\right) - \frac{bn}{z^{2}} \left(\frac{axn}{bxn-dz}\right)^{2} \neq 0 \end{aligned}$$

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
	0000		0000	
Honf Bifurcation				

Other Bifurcations

Figure: Saddle-Node, Transcritical and Hopf Bifurcations

2

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
	0000		0000	
00				

Hopf Bifurcation

Hopf Bifurcation

Theorem

Under the conditions for the coexistence equilibrium P_2 to be of center-type, there exists a Hopf bifurcation for the system.

Proof. For a system of the form:

$$\dot{x} = ax + by + p(x, y)$$
 and $\dot{y} = cx + dy + q(x, y)$

where

$$p(x, y) = \sum a_{ij}x^{i}y^{j} = (a_{20}x^{2} + a_{11}xy + a_{02}y^{2}) + (a_{30}x^{3} + a_{21}x^{2}y + a_{12}xy^{2} + a_{03}y^{3}) \text{ and} q(x, y) = \sum b_{ij}x^{i}y^{j} = (b_{20}x^{2} + b_{11}xy + b_{02}y^{2}) + (b_{30}x^{3} + b_{21}x^{2}y + b_{12}xy^{2} + b_{03}y^{3}) with ad - bc > 0 and a + d = 0.$$

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations ○○○○ ○○●○ ○	Piecewise Harvesting	3 Dimensional Model	Previous Research
Hopf Bifurcation				

First, we shift our equilibrium point of P_2 to the origin via the change in coordinates $\bar{x} = x - x^*$ and $\bar{y} = y - y^*$ and then we expand our expressions for \bar{x} and \bar{y} in a power series to get

$$\dot{x} = \alpha(\bar{x} + x^*)(1 - (\bar{x} + x^*)) - \frac{a(1 - m)(\bar{x} + x^*)(\bar{y} + y^*)}{1 + c(1 - m)(\bar{x} + x^*)} - h$$

$$\dot{y} = -d(\bar{y} + y^*) + \frac{b(1 - m)(\bar{x} + x^*)(\bar{y} + y^*)}{1 + c(1 - m)(\bar{x} + x^*)}$$
(9)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへで

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Be	havior Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
000000000000 0 00	0000 0000		00000000 0000	

Hopf Bifurcation

Hopf Bifurcation at P_2

$$\begin{aligned} &a_{10} = \alpha (1 - 2x^*) - \frac{a(1 - m)y^*}{w^3}, a_{01} = -\frac{a(1 - m)x^*}{w}, a_{20} = \\ &-\alpha + \frac{ac(1 - m)^2y^*}{w^3}, a_{11} = -\frac{a(1 - m)}{w^2}, a_{02} = 0, a_{21} = \frac{ac(1 - m)^2}{w^3}, a_{30} = \\ &-\frac{ac^2(1 - m)^3y^*}{w^4}, b_{10} = \frac{b(1 - m)y^*}{w^2}, \end{aligned}$$

$$\begin{split} b_{01} &= -d + \frac{b(1-m)x^*}{w}, b_{20} = -\frac{bc(1-m)^2y^*}{w^3}, b_{11} = \frac{b(1-m)}{w^2}, b_{02} = \\ 0, b_{03} &= 0, b_{12} = 0, b_{21} = -\frac{bc(1-m)^2}{w^3}, b_{30} = \frac{bc^2(1-m)^3y^*}{w^4} \\ \text{where } w = 1 + c(1-m)x^*. \end{split}$$

$$\sigma = 244.213 \neq 0$$
$$D = a_{10}b_{01} - a_{01}b_{10} = 0.00143 > 0$$
$$T = a_{10} + b_{01} = 3.61973 * 10^{-1}10 \approx 0$$

イロト イ理ト イヨト イヨト 一座

 P_2 is also of center-type.

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
		0000		0000	
	00				

Coexistence

Influence of Refuge on Coexistence

$$\frac{dx_3}{dm} = \frac{d(b+cd)}{[(b-cd)(1-m)]^2} > 0$$

$$\frac{dy_3}{dm} = \frac{bh}{ad(1-m)^3(b-cd)^2}[2\alpha d - (1-m)(b-\alpha cd] > 0$$

Conditions: If $b > \alpha cd$, then $\frac{dy_3}{dm} > 0$ if $0 < m < m^*$ where $m^* = \frac{b - (c+2)\alpha d}{b - \alpha cd}$ or $\frac{dy_3}{dm} < 0$ if $m^* < m < 1$.

Else, if
$$b < \alpha cd$$
, then $m^* < m < 1$ and $\frac{dy_3}{dm} < 0$ and if $0 < m < m^*$ then $\frac{dy_3}{dm} > 0$.

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Re
0000000000	0000	0000	00000000000	00000000	
		0000		0000	

Model 2: Threshold Harvesting

$$H_{1}(x) = \begin{cases} 0 & x < T_{1} \\ \frac{h(x - T_{1})}{T_{2} - T_{1}} & T_{1} \le x \le T_{2} \\ h & x > T_{2} \end{cases}$$
(10)

earch

Alexander Hare and Keilah Ebanks

Introduction Derivin	g Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
			0000000000		
		0000		0000	
00					

Case 1:
$$H(x) = 0, x < T_1$$

Equilibrium Points

$$Q_1 = (0,0), \quad Q_2 = (1,0)$$
$$Q_3 = \left(\frac{d}{(b-cd)(1-m)}, \frac{b}{a}\left(\frac{(b-cd)(1-m)-d}{(b-cd)^2(1-m)^2}\right)\right)$$

General Jacobian

$$\begin{bmatrix} 1 - 2x - \frac{ay(m-1)^2}{z^2} - \alpha(x-1) - \frac{ay(m-1)}{z} - \alpha x & -\frac{ax(m-1)}{z} \\ \frac{by(m-1)}{z^2} & \frac{bx(m-1)}{z} - d \end{bmatrix}$$

イロン イ理 とくほと くほとう

3

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
		0000000000		
	0000		0000	
00				

The Jacobian of
$$Q_1$$
 is $J(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & -d \end{bmatrix}$ so Q_1 is a saddle.

The Jacobian of Q_2 is

イロト イポト イヨト イヨト

3

Conditions: (a) Q_2 is a saddle if (1 - m)b > [1 + (1 - m)c]d. (b) Q_2 is a stable node if (1 - m)b < [1 + (1 - m)c]d. (c) Q_2 is never a focus or center type.

Alexander Hare and Keilah Ebanks

Introduction Deriving Equ	ilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
			0000000000		
		0000		0000	
00					

The Jacobian at Q_3 is

$$J(x_3, y_3) = \begin{bmatrix} \frac{d[b-cd)(c(1-m)-1)-2cd]}{b(b-cd)(1-m)} & -\frac{ad}{b} \\ \\ \\ \frac{(b-cd)(1-m)-d}{a(1-m)} & 0 \end{bmatrix}$$

Using Trace Determinant Analysis, $D = \frac{d[(b-cd)(1-m)-d]}{b(1-m)}$, $T^2 - 4D = \frac{d}{b^2(1-m)^2} \left[\frac{d[-(b-cd)-c(b-cd)(1-m)^2]}{(b-cd)^2} - 4b(1-m)[(b-cd)(1-m)-d] \right]$ D > 0

given the conditions that b - cd and d < (b - cd)(1 - m)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへで

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Resea
			0000000000		
		0000		0000	
	00				

'nch

$$T = \frac{d[b - cd)(c(1 - m) - 1) - 2cd]}{b(b - cd)(1 - m)}$$

- Q₃ can never be a saddle.
- Q_3 is a node if $d[-(b-cd)-c(b-cd)(1-m)]^2 \ge 4b(b-cd)^2(1-m)[(b-cd)(1-m)-d]$. -If (b-cd)[c(1-m)-1] < 2cd, then the node is stable, and unstable if the inequality is reverse.
- Q₃ is a focus if d[−(b − cd) − c(b − cd)(1 − m)]² < 4b(b − cd)²(1 − m)[(b − cd)(1 − m) − d].
 If (b − cd)[c(1 − m) − 1] < 2cd, then the focus is stable, and unstable if the inequality is reverse.

•
$$Q_3$$
 is of center-type if $(b - cd)[c(1 - m) - 1] = 2cd$.

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
			0000000000		
		0000		0000	
	00				

Case 2:
$$H(x) = \frac{h(x-T_1)}{T_2 - T_1}, T_1 \le x \le T_2$$

Three Equilibrium Points

$$R_{1} = \left(\frac{h - \alpha(T_{1} - T_{2}) - \sigma}{2\alpha(T_{2} - T_{1})}, 0\right), \quad R_{2} = \left(\frac{-h + \alpha(T_{1} - T_{2}) - \sigma}{2\alpha(T_{2} - T_{1})}, 0\right)$$

where
$$\sigma = \sqrt{4\alpha h T_1(T_1 - T_2) + (h + \alpha(-T_1 + T_2))^2}$$
 and
 $h > \alpha(T_1 - T_2) + \sigma$.
 $R_3 = (x_3, y_3)$
 $x_3 = \frac{d}{(b - cd)(1 - m)}$

$$y_{3} = b \frac{-\alpha[b(m-1)+d(1+c(1-m))][-d(b-cd)(T_{1}-T_{2})]+h(m-1)(-d-(b-cd)(m-1)T_{1})(b-cd)^{2}}{[-d(b-cd)^{3}(T_{1}-T_{2})]a(m-1)^{2}}$$

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
		0000000000		
	0000		0000	
00				

The general Jacobian is

$$\begin{bmatrix} \frac{h}{T_2 - T_1} + \alpha - 2\alpha x - \frac{ay(1-m)}{z^2} & -\frac{ax(1-m)}{z} \\ \frac{by(1-m)}{z^2} & -d - \frac{bx(1-m)}{z} \end{bmatrix}$$

イロト イヨト イヨト イヨト

3

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
			0000000000		
	0	0000		0000	

The Jacobian at R_1 is

$$\begin{bmatrix} \frac{\sigma}{T_2 - T_1} & \frac{2\alpha h T_1(m-1)}{h+2chT_1(1-m) - \alpha(T_1 - T_2) + \sigma} \\ 0 & -d - \frac{2bhT_1(m-1)}{h+2chT_1(1-m) - \alpha(T_1 - T_2) + \sigma} \end{bmatrix}$$

and at R_2

$$\begin{bmatrix} \frac{-2h-2\alpha(T_1-T_2)+\sigma}{T_1-T_2} & \frac{2ahT_1(m-1)}{-h+2chT_1(1-m)+\alpha(T_1-T_2)+\sigma} \\ 0 & -d + \frac{2bhT_1(m-1)}{h+2chT_1(m-1)-\Phi+\alpha(T_2-T_1)} \end{bmatrix}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶

æ

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
000000000000000000000000000000000000000	0000	00000000000	00000000 0000	

$$R_{1}: \lambda_{1} = \frac{\sigma}{T_{2}-T_{1}}, \quad \lambda_{2} = -d - \frac{2bhT_{1}(m-1)}{h+2chT_{1}(1-m)-\alpha(T_{1}-T_{2})+\sigma}$$

$$R_{2}: \lambda_{1} = \frac{-2h+2\alpha(T_{2}-T_{1})+\sigma}{T_{1}-T_{2}}, \quad \lambda_{2} = -d + \frac{2bhT_{1}(m-1)}{h+2chT_{1}(m-1)-\Phi+\alpha(T_{2}-T_{1})}$$
where $\Phi = \sqrt{h^{2} + 2\alpha h(2T_{1}-1)(T_{1}-T_{2}) + \alpha^{2}(T_{1}-T_{2})^{2}}$

 R_1 : never be of center-type or focus. R_2 : if $T_1 < \frac{1}{2}$ then R_2 will also be real (saddle or node). There was a saddle-node bifurcation at R_1 , the proof is similar to the previous one with Sotomayor's Theorem.

- ▲ 同 ▶ ▲ 目 ▶ → 目 → のへの

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
		00000000000		
	0000		0000	
00				

The Jacobian at R_3 is

$$\begin{bmatrix} \alpha - \frac{2\alpha d}{(b-cd)(m-1)} + b\left(\frac{(-\Omega + (b-cd)h(d+(b-cd)(m-1)^2T_1))}{(m-1)[d(T_1 - T_2)](b-2cd)^2}\right) & \frac{ad}{b-2cd} \\ b^2\left(\frac{(\Omega + d(-b+cd)h((b-cd)^2)h(m-1)^2T_1)}{(m-1)[d(T_1 - T_2)](b-2cd)^2}\right) & \frac{-2d(b-cd)}{b-2cd} \end{bmatrix}$$

where

$$\Omega = \alpha [b(m-1) + d(1 + c(1-m))[d(T_1 - T_2)]$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

3

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
		00000000000		
	0000		0000	

Case 3. $H(x) = h, x > T_2$

Since rate of harvesting is constant, the behavior of this case will be similar to case 1.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behav	vior Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
		00000000000		
	0000		0000	
00				

No Periodic Solution for Linear Harvesting

Proof. First, we shift the equilibrium points to the origin by using a change in variables. v = a(1 - m)y, dt = [1 + cx(1 - m)]ds, $\dot{v} = a(1 - m)\dot{y}$, $\frac{dx}{ds} = \frac{dx}{dt}\frac{dt}{ds}$ and $\frac{dv}{ds} = \frac{dv}{dt}\frac{dt}{ds}$ $\frac{dx}{ds} = \alpha x (1-x) [1 + cx(1-m)] - xv - \frac{h(x-T_1)}{T_2 - T_1} [1 + cx(1-m)] = F_1$ l $\frac{dv}{dc} = xv[(b-cd)(1-m)] - dv = F_2$ Replacing v with y and $R = \frac{1}{yy}$, we have $RF_1 = \frac{1}{v} [\alpha(1 + cx(1 - m) - x - cx^2(1 - m))] - 1 - \frac{h}{(T_2 - T_1)v} \left| \frac{x - T_1}{v} \right|$ & $RF_2 = (b - cd)(1 - m) - \frac{d}{r}$

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
			0000000000		
	0	0000		0000	
	00				

Then,

$$\frac{\partial(RF_1)}{\partial x} = \frac{1}{y} [\alpha[c(1-m)-1] - 2\alpha cx(1-m)] - \frac{hT_1}{(T_2 - T_1)x^2y}$$

$$\frac{\&}{\frac{\partial(RF_2)}{\partial y}} = 0$$

Hence if c(1-m) < 1, $\frac{\partial(RF_1)}{\partial x} + \frac{\partial(RF_2)}{\partial y} < 0 \ \forall x, y > 0$ which indicates that there are no periodic solutions by Dulac's Criterion.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Alexander Hare and Keilah Ebanks

Introduction Deriving Equili	brium Behavior Bifurcat	tions Piecewise Harvest	ing 3 Dimensional Model	Previous Research
			00000000	
0	0000		0000	
00				

Base 3d Model

3 Dimensional Model

$$\dot{x} = \alpha x (1-x) - \frac{a(1-m)xy}{1+c(1-m)x} + D_1(v-x) \dot{v} = -d_v v + D_2(x-v) \dot{y} = -dy + \frac{b(1-m)x_1y}{1+c(1-m)x_1y}$$
(11)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Dispersal equation - some of the prey (v) is inaccessible to predator

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model ○●○○○○○○○	Previous Research
Deen 2d Made	d.				

Base 3d Model

Equilibria

3 Equilibria:

$$M_0 = (0, 0, 0)$$

$$M_{1} = \left(\frac{D_{2}v + d_{v}v}{D_{2}}, \frac{D_{2}(-D_{1}d_{v} + D_{2}\alpha + d_{v}\alpha)}{(D_{2} + d_{v})^{2}\alpha}, 0\right)$$

$$M_2 = (rac{d}{(b-cd)(1-m)}, rac{-dD_2}{(b-cd)(D_2+d_v)(m-1)}, \gamma)$$

where

$$\gamma = \frac{b(b-cd)D_1d_v(m-1) - b(D_2+d_v)(b(m-1)+d(1+c-cm))\alpha}{a(b-cd)^2(D_2+d_v)(m-1)^2}$$

イロト イヨト イヨト イヨト

э.

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations 0000 0000 0	Piecewise Harvesting	3 Dimensional Model	Previous Research
Base 3d Model				
Mo				

Conditions on M_0 : if $D_1 d_v < \alpha(D_1 + d_v)$ then M_0 is a saddle if $\alpha > D_1 + d_v + D_2$ then the point is stable Cannot be a focus or center, if not a saddle, it is a node: Biologically reasonable

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ の Q @

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
			00000000	
	0000		0000	
00				
D 2114 11				

Boundary Equilibrium: M_1

It can be a saddle under some conditions, otherwise it is a node(stable or unstable). Not a focus or center

Alexander Hare and Keilah Ebanks

Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting

Introduction Deriving Equilibrium Behavior	Bifurcations 0000 0000 0	Piecewise Harvesting	3 Dimensional Model	Previous Research
Base 3d Model				

Alexander Hare and Keilah Ebanks

Introduction	Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
				00000000	
	0	0000		0000	
	00				

Base 3d Model

Orbits with y = 0

Figure: Orbit in Red

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations 0000 0000 0	Piecewise Harvesting	3 Dimensional Model	Previous Research
Base 3d Model				

Incredibly complex system of conditions governing local behavior(Conditions on the sign of the real part of eigenvalues, or Trace Determinant Expressions) Numerical simulations were obtained

<ロ> < ()</p>

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model ○○○○○○●○ ○○○○	Previous Research
Base 3d Model				

Figure: Coexistence Focus: (.2264, .1134, .7828)

$$\alpha = .6 \ a = .6 \ b = .5 \ c = .1 \ d = .1 \ m = .1 \ D_1 = .1 \ D_2 = .1 \ d_v = .1$$

Alexander Hare and Keilah Ebanks

Introduction De	eriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
				00000000	
		0000		0000	
oc					

Base 3d Model

Double Transcritical Bifurcation

 $a = .1, \alpha = 1, c = .2, d = .1, d_v = .4, D_2 = .2, m = .1$

Sotomayor's Theorem was used to prove the result of XPPAUT, but the system was too complicated to effectively set conditions for $\lambda = 0$

3

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
3 Dimonsional System with Harvesting				

3d System: Harvesting

A new 3-Dimensional system includes the harvesting function H(x) = h in the prey equation. Thus:

$$\dot{x} = \alpha x (1-x) - \frac{a(1-m)xy}{1+c(1-m)x} - D_1(v-x) - h \dot{v} = d_v v + D_2(x-v) \dot{y} = -dy + \frac{b(1-m)xy}{1+c(1-m)x}$$
(12)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model ○○○○○○○○ ○●○○	Previous Research	
3-Dimensional System with Harvesting					

Orbit

With this modification, periodic orbits and Hopf bifurcation appear.

$$\alpha = 1 \ a = .2 \ b = 1 \ c = .2 \ h = .11 \ m = .3 \ D_1 = .4 \ D_2 = .3 \ d_v = .3$$

э.

イロト イ理ト イヨト イヨト

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research
	0000		0000	
2 Dimensional System with Howesting				

Hopf Bifurcation

Figure: Hopf Bifurcation Diagram

$$\alpha = 1 \ a = .2 \ b = 1 \ c = .2 \ h = .11 \ m = .3 \ D_1 = .4 \ D_2 = .3 \ d_v = .3$$

æ

Alexander Hare and Keilah Ebanks

Introduction Deriving Equilibrium Behavior	Bifurcations	Piecewise Harvesting	3 Dimensional Model	Previous Research	
000000000000000000000000000000000000000	0000	00000000000	0000		
3-Dimensional System with Harvesting					

Conclusions

- Studied three models, with different harvesting functions and refuge
- 3-D model included dispersal of prey, in two different habitats
- Local stability was analyzed
- Existence of saddle-node and Hopf bifurcations was proved
- Other bifurcations were numerically detected
- Unstable periodic solutions were computed
- Non-existence of periodic solutions under certain conditions was proved

- 4 同 6 4 日 6 4 日 6

• Influence of refuge on prey density was analyzed