Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts

Modeling and Analysis of Anaerobic Digestion in a Bioreactor

Christina Berti

REU 2013

Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor

(4) (3) (4) (4) (4)

Introduction ●○ Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Advantages of Wastewater Treatment

• Recycle water

Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor

- 4 回 2 - 4 □ 2 - 4 □

Introduction ●○ Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Advantages of Wastewater Treatment

- Recycle water
- Produce biogas

Introduction ●○ Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Advantages of Wastewater Treatment

- Recycle water
- Produce biogas
- Minimal pollution

< □ > < □ > < □ >

Introduction ○●	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Degrada	ation Proces	S		

Figure : Detailed Flowchart of Model for Biogas Production

イロン イヨン イヨン イヨン

æ

Introduction

Systems to Study

Mathematical Approach to Solving Systems

s Results

Concluding Thoughts

Condensed 4-Dimensional (two-step reaction process) System

Definition

4-Dimensional System:

$$\begin{aligned}
S'_{1} &= -X_{1}k_{1}(\mu_{1}(S_{1})) + D(S_{1in} - S_{1}) \\
X'_{1} &= X_{1}(\mu_{1}(S_{1}) - D\alpha) \\
S'_{2} &= D(S_{2in} - S_{2}) + X_{1}k_{2}(\mu_{1}(S_{1})) - X_{2}k_{3}(\mu_{2}(S_{2})) \\
X'_{2} &= X_{2}(\mu_{2}(S_{2}) - D\alpha)
\end{aligned}$$
(1)

< □ > < □ > < □ >

3

Introduction

Systems to Study

Mathematical Approach to Solving Systems

Results C

Concluding Thoughts

Parameter Value Ranges and Definitions

• S_{1in} and S_{2in} : Input substrate concentrations.

- 4 回 2 - 4 □ 2 - 4 □

Parameter Value Ranges and Definitions

- S_{1in} and S_{2in} : Input substrate concentrations.
- k_1, k_2, k_3 : Pseudo-stoichiometric coefficients based on nature of bioreactions.

Parameter Value Ranges and Definitions

- S_{1in} and S_{2in} : Input substrate concentrations.
- k_1, k_2, k_3 : Pseudo-stoichiometric coefficients based on nature of bioreactions.
- α : Fraction of biomass not retained in the digester (accounts for decoupling of Hydraulic Retention Time from Solid Retention Time).

Parameter Value Ranges and Definitions

- S_{1in} and S_{2in} : Input substrate concentrations.
- k_1, k_2, k_3 : Pseudo-stoichiometric coefficients based on nature of bioreactions.
- α : Fraction of biomass not retained in the digester (accounts for decoupling of Hydraulic Retention Time from Solid Retention Time).
- D: Dilution factor for incoming and outgoing substrate and bacteria.

Results

Parameter Value Ranges and Definitions

- S_{1in} and S_{2in} : Input substrate concentrations.
- k_1, k_2, k_3 : Pseudo-stoichiometric coefficients based on nature of bioreactions.
- α : Fraction of biomass not retained in the digester (accounts for decoupling of Hydraulic Retention Time from Solid Retention Time).
- D: Dilution factor for incoming and outgoing substrate and bacteria.
- μ₁(S₁) and μ₂(S₂) are functions used to demonstrate the growth of bacteria 1 and 2, respectively.

・同下 ・ヨト ・ヨト

Introduction

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Simplified Two-Step Reaction Process

Definition

Two Steps:

Acidogenesis :
$$k_1 S_1 \xrightarrow{\mu_1(S_1)X_1} X_1 + k_2 S_2$$

Methanogenesis : $k_3 S_2 \xrightarrow{\mu_2(S_2)X_2} X_2 + k_4 CH_4$ (2)

Acidogenesis: Organic substrate (S_1) is broken down into volatile fatty acids (S_2) by acidogenic bacteria (X_1) .

Methanogenesis: Volatile fatty acids (S_2) are degraded to produce CH_4 and CO_2 by methanogenic bacteria (X_2) .

イロン 不同と 不同と 不同と

Concerns Regarding Approach to Attaining Steady-State

Two Main Concerns:

• Growth of Bacteria

To attain a steady-state: The substrate flow and gas production must remain constant and continuous. The growth requirements for bacteria must remain constant over time.

Definition

4-Dimensional System:

$$D = -X_1 k_1(\mu_1(S_1)) + D(S_1 i n - S_1)$$

$$D = X_1(\mu_1(S_1) - D\alpha)$$

$$D = D(S_2in - S_2) + X_1k_2(\mu_1(S_1)) - X_2k_3(\mu_2(S_2))$$

E

$$0 = D(S_2) + X_1 X_2(\mu_1(S_1))$$

$$0 = X_2(\mu_2(S_2) - D\alpha)$$

Concerns Regarding Approach to Attaining Steady-State

Two Main Concerns:

- Growth of Bacteria
- Substrate Degredation and Product Formation

To attain a steady-state: The substrate flow and gas production must remain constant and continuous. The growth requirements for bacteria must remain constant over time.

Definition

4-Dimensional System:

$$D = -X_1 k_1(\mu_1(S_1)) + D(S_1 in - S_1)$$

$$\begin{aligned} D &= X_1(\mu_1(S_1) - D\alpha) \\ D &= D(S_2 in - S_2) + X_1 k_2(\mu_1(S_1)) - X_2 k_3(\mu_2(S_2)) \end{aligned}$$

э

$$0 = D(S_2in - S_2) + X_1k_2(\mu_1(S_1)) - X_2k_3(\mu_2)$$

$$0 = X_2(\mu_2(S_2) - D\alpha)$$

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Steady-	State			

Substrate Balance:
$$\frac{dS}{dt} = DS_0 - DS + \frac{dS}{dt}$$

Bacteria Balance: $\frac{dX}{dt} = DX_0 - DX + \mu(S)X + kdX$
Equilibrium point: $\frac{dX}{dt} = 0$ $\frac{dS}{dt} = 0$ as $t \longrightarrow \infty$

 $\frac{dS}{dt}$ and $\frac{dX}{dt}$: Accumulation

 DS_0 and DX_0 : Diluted Input DS and DX: Diluted Output

伺い イヨト イヨト

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Differen	nt Annroach			

Different Approaches

Each differential system under study was characterized by its unique combination of two of the numerous hypothesized bacterial growth functions; our study included application of the Monod and Haldane functions of bacteria growth [d],

Monod:
$$\mu_1(S_1) = \frac{m_1 S_1}{K_1 + S_1}$$

Haldane:
$$\mu_2(S_2) = rac{m_2 S_2}{\kappa_2 + S_2 + rac{S_2^2}{\kappa_I}}$$

• *m*₁ and *m*₂: Define the maximum attainable speeds of *X*₁ and *X*₂ growth, respectively.

向下 イヨト イヨト

Introduction	Systems to Study ○○○○○●○○○○○○○○○	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Differen	it Approache	es		

Each differential system under study was characterized by its unique combination of two of the numerous hypothesized bacterial growth functions; our study included application of the Monod and Haldane functions of bacteria growth [d],

Monod:
$$\mu_1(S_1) = rac{m_1S_1}{K_1+S_1}$$

Haldane:
$$\mu_2(S_2) = rac{m_2 S_2}{\kappa_2 + S_2 + rac{S_2^2}{\kappa_I}}$$

• *m*₁ and *m*₂: Define the maximum attainable speeds of *X*₁ and *X*₂ growth, respectively.

• K₁ and K₂ : Substrate Concentrations at 50 percent of maximum specific growth rate(see graph).

Introduction	Systems to Study ○○○○○●○○○○○○○○○	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Differen	it Approache	es		

Each differential system under study was characterized by its unique combination of two of the numerous hypothesized bacterial growth functions; our study included application of the Monod and Haldane functions of bacteria growth [d],

Monod:
$$\mu_1(S_1) = rac{m_1S_1}{K_1+S_1}$$

Haldane:
$$\mu_2(S_2) = \frac{m_2 S_2}{\kappa_2 + S_2 + \frac{S_2^2}{\kappa_1}}$$

- *m*₁ and *m*₂: Define the maximum attainable speeds of *X*₁ and *X*₂ growth, respectively.
- K₁ and K₂ : Substrate Concentrations at 50 percent of maximum specific growth rate(see graph).
- *K_I* : Substrate concentration where bacteria growth is reduced to 50 percent of it's maximum growth rate due to substrate inhibition (see graph).

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Bacteria	a Growth Ki	netics		

Figure : Monod Model for Bacteria Growth Kinetics

<ロ> (四) (四) (三) (三) (三)

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Dactor	Crowth Ki	notice		

Figure : Haldane Model for Bacteria Growth Kinetics

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Results

Theory Behind Four-Dimensional Systems A and B

Two Hypotheses:

• 4-Dimensional System A: The growth rates of X₁ and X₂ are both increasing functions of added substrate (S₁ and S₂).

$$\mu_1(S_1) = \frac{m_1 S_1}{K_1 + S_1}$$
 $\mu_2(S_2) = \frac{m_2 S_2}{K_2 + S_2}$

4-Dimensional System B: The growth rate of X₁ is an increasing function of substrate (S₁) and the growth rate of X₂ approaches a maximum at a medium substrate concentration (K₁ = medium S₂ concentration).

$$\mu_1(S_1) = rac{m_1S_1}{K_1+S_1}$$
 $\mu_2(S_2) = rac{m_2S_2}{K_2+S_2+rac{S_2^2}{K_I}}$

소리가 소문가 소문가 소문가

Systems to Study

Introduction of Foreign Toxin

$$\begin{aligned} S_1' &= -X_1 k_1 e^{-y\mu} (\mu_1(S_1)) + D(S_{1in} - S_1) \\ X_1' &= X_1 (e^{-y\mu} \mu_1(S_1) - D\alpha) \\ S_2' &= D(S_{2in} - S_2) + X_1 k_2 e^{-y\mu} (\mu_1(S_1)) - X_2 k_3 (\mu_2(S_2)) \quad (4) \\ X_2' &= X_2 (\mu_2(S_2) - D\alpha) \\ y' &= D(y_{in} - y) - X_2 k_4 \mu_3(y) \end{aligned}$$

where y represents the toxin.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

Types of Inhibition

• Competitive Inhibition: A foreign species similar in structure to the substrate binds to the enzymes, inhibiting reaction spots.

- 4 同 6 4 日 6 4 日 6

Inhibition Caused by Foreign Species

Types of Inhibition

- Competitive Inhibition: A foreign species similar in structure to the substrate binds to the enzymes, inhibiting reaction spots.
- Noncompetitive Inhibition: A foreign species not necessarily similar in structure to the substrate binds to the enzymes and/or enzyme-substrate complexes, preventing completion of the reaction.

(4月) イヨト イヨト

Inhibition Caused by Foreign Species

Types of Inhibition

- Competitive Inhibition: A foreign species similar in structure to the substrate binds to the enzymes, inhibiting reaction spots.
- Noncompetitive Inhibition: A foreign species not necessarily similar in structure to the substrate binds to the enzymes and/or enzyme-substrate complexes, preventing completion of the reaction.
- Uncompetitive Inhibition: A foreign species not necessarily similar in structure to the substrate binds to the enzyme-substrate complexes, preventing completion of the reaction.

Figure : Illustrations of Competition by Non-Substrate Species

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Five-Di	mensional Sv	/stems		

Four Hypotheses:

• 5-Dimensional System A: The Monod model is used to represent the growth rate of X_1 , the Haldane model is used to represent the growth rate of X_2 , and the Monod model is used to represent the consumption rate of the toxin.

$$\mu(S_1) = rac{m_1S_1}{K_1 + S_1} \quad \mu(S_2) = rac{m_2S_2}{K_2 + S_2 + rac{S_2^2}{K_{l_1}}} \quad \mu(y) = rac{m_4y}{K_4 + y}$$

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Five-Dir	mensional Sv	vstems		

Four Hypotheses:

• 5-Dimensional System A: The Monod model is used to represent the growth rate of X_1 , the Haldane model is used to represent the growth rate of X_2 , and the Monod model is used to represent the consumption rate of the toxin.

$$\mu(S_1) = rac{m_1S_1}{K_1 + S_1} \quad \mu(S_2) = rac{m_2S_2}{K_2 + S_2 + rac{S_2^2}{K_{11}}} \quad \mu(y) = rac{m_4y}{K_4 + y}$$

• 5-Dimensional System B: The Monod model is used to represent the growth rate of X_1 , the Haldane model is used to represent both the growth rate of X_2 and the consumption rate of the toxin.

$$\mu(S_1) = \frac{m_1 S_1}{K_1 + S_1} \quad \mu(S_2) = \frac{m_2 S_2}{K_2 + S_2 + \frac{S_2^2}{K_{I_1}}} \quad \mu(y) = \frac{m_4 y}{K_4 + y + \frac{y^2}{K_{I_2}}}$$

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Five-Dir	mensional Sy	vstems		

Four Hypotheses:

• 5-Dimensional System C: The Monod model is used to represent the growth rate of X_1 , the growth rate of X_2 , and the consumption rate of the toxin.

$$\mu(S_1) = \frac{m_1 S_1}{K_1 + S_1} \quad \mu(S_2) = \frac{m_2 S_2}{K_2 + S_2} \quad \mu(y) = \frac{m_4 y}{K_4 + y}$$

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Five-Dir	mensional Sv	vstems		

Four Hypotheses:

• 5-Dimensional System C: The Monod model is used to represent the growth rate of X_1 , the growth rate of X_2 , and the consumption rate of the toxin.

$$\mu(S_1) = \frac{m_1 S_1}{K_1 + S_1}$$
 $\mu(S_2) = \frac{m_2 S_2}{K_2 + S_2}$ $\mu(y) = \frac{m_4 y}{K_4 + y}$

 5-Dimensional System D: The Monod model is used to represent the growth rate of Bacteria 1 and 2, and the Haldane model is used to represent the consumption rate of the toxin.

$$\mu(S_1) = \frac{m_1 S_1}{K_1 + S_1} \quad \mu(S_2) = \frac{m_2 S_2}{K_2 + S_2} \quad \mu(y) = \frac{m_4 y}{K_4 + y + \frac{y^2}{K_{12}}}$$

Introduction

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Six-Dimensional System

$$S'_{1} = -X_{1}k_{1}(\mu_{1}(S_{1})) + D(S_{1}(1 + (rv)) - S_{1})$$

$$X'_{1} = X_{1}(P(\mu_{1}(S_{1}) - D\alpha))$$

$$S'_{2} = D(0 - S_{2}) + X_{1}k_{2}(\mu_{1}(S_{1})) - X_{2}k_{3}(\mu_{2}(S_{2}))$$

$$X'_{2} = X_{2}(\mu_{2}(S_{2}) - D\alpha)$$

$$u' = u(1 - u^{2} - v^{2}) - 2\pi v$$

$$v' = v(1 - u^{0} - v^{2}) + 2\pi u$$
(5)

where $S_1(1 + (rv)) = S_1(t) = S_1(1 + (r\sin(2\pi t)))$ and $0 \le r \le 1$.

・ 回 と ・ ヨ と ・ ヨ と

3

Introduction Systems to Study October Systems to Solving Systems Results Concluding Thoughts

Solving the 4-Dimensional Systems

• Algebraically Determine all Attainable Equilibria

$$x_0 = (S_1, X_1, S_2, X_2)$$

(4回) (4回) (4回)

Introduction Systems to Study Mathematical Approach to Solving Systems Results Concluding Thoughts

Solving the 4-Dimensional Systems

• Algebraically Determine all Attainable Equilibria

$$x_0 = (S_1, X_1, S_2, X_2)$$

• Linearize nonlinear system by formulating Jacobian matrices and solving for respective eigenvalue functions.

$$A = Df(x_0)$$
 $det(A - I\lambda) = 0$

Systems to Study

Solving the 4-Dimensional Systems

• Algebraically Determine all Attainable Equilibria

 $x_0 = (S_1, X_1, S_2, X_2)$

• Linearize nonlinear system by formulating Jacobian matrices and solving for respective eigenvalue functions.

$$A = Df(x_0)$$
 $det(A - I\lambda) = 0$

• Determine the number of potential equilibrium points and expected behavior of each one according to the calculated eigenvalues.

・ロト ・回ト ・ヨト ・ヨト

Systems to Study

Solving the 4-Dimensional Systems

• Algebraically Determine all Attainable Equilibria

 $x_0 = (S_1, X_1, S_2, X_2)$

• Linearize nonlinear system by formulating Jacobian matrices and solving for respective eigenvalue functions.

$$A = Df(x_0)$$
 $det(A - I\lambda) = 0$

- Determine the number of potential equilibrium points and expected behavior of each one according to the calculated eigenvalues.
- Verify Algebraically Determined Discoveries with Illustrations of Behavior

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Possible Results				

• Hyperbolic Equilibria

All eigenvalues are nonzero values, nor are any of them purely imaginary.

• Saddle

(4回) (4回) (4回)

æ
Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Possible	e Results			

• Hyperbolic Equilibria

All eigenvalues are nonzero values, nor are any of them purely imaginary.

- Saddle
- Stable Node
- Nonhyperbolic Equilibria

One eigenvalue is equal to zero or is purely imaginary. The system is susceptible to a bifurcation with small changes in parameter values.

• Center

向下 イヨト イヨト

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Possible	e Results			

• Hyperbolic Equilibria

All eigenvalues are nonzero values, nor are any of them purely imaginary.

- Saddle
- Stable Node
- Focus
- Nonhyperbolic Equilibria

One eigenvalue is equal to zero or is purely imaginary. The system is susceptible to a bifurcation with small changes in parameter values.

• Center

向下 イヨト イヨト

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Types o	of Bifurcation	าร		

• Transcritical Bifurcation

No change in the number of equilibrium points. Switch in stability of equilibria at bifurcation value.

向下 イヨト イヨト

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Types o	f Bifurcatior	IS		

• Transcritical Bifurcation

No change in the number of equilibrium points. Switch in stability of equilibria at bifurcation value.

• Fold/Saddle-Node Bifurcation

Change in number of equilibrium points into stable and unstable points.

伺 ト イヨト イヨト

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Types o	f Bifurcatior	IS		

• Transcritical Bifurcation

No change in the number of equilibrium points. Switch in stability of equilibria at bifurcation value.

• Fold/Saddle-Node Bifurcation

Change in number of equilibrium points into stable and unstable points.

Pitchfork Bifurcation

Change in number of equilibrium points from one to three.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts
Types o	f Bifurcatior	IS		

• Transcritical Bifurcation

No change in the number of equilibrium points. Switch in stability of equilibria at bifurcation value.

• Fold/Saddle-Node Bifurcation

Change in number of equilibrium points into stable and unstable points.

Pitchfork Bifurcation

Change in number of equilibrium points from one to three.

• Hopf Bifurcation

Periodic orbits arise from an equilibrium point as it changes stability at bifurcation value

Systems to Study

Mathematical Approach to Solving Systems

ms Results

Concluding Thoughts

Solving 5 and 6 Dimensional Systems

• Precise solutions for equilibria were not found algebraically.

- - 4 回 ト - 4 回 ト

Solving 5 and 6 Dimensional Systems

- Precise solutions for equilibria were not found algebraically.
- Investigation carried out by analysis of the systems using XPPAUT.

- 4 同 6 4 日 6 4 日 6

Solving 5 and 6 Dimensional Systems

- Precise solutions for equilibria were not found algebraically.
- Investigation carried out by analysis of the systems using XPPAUT.
- Bifurcations identified and verified algebraically using Sotomayor's Theorem, then further analyzed using MATLAB R2012b when necessary.

- 4 同 6 4 日 6 4 日 6

Solving 5 and 6 Dimensional Systems

- Precise solutions for equilibria were not found algebraically.
- Investigation carried out by analysis of the systems using XPPAUT.
- Bifurcations identified and verified algebraically using Sotomayor's Theorem, then further analyzed using MATLAB R2012b when necessary.
- Wolfram Mathematica 9.0 used to find any equilibria in the models, behavior determination of equilibria using MATLAB R2012b.

イロン イヨン イヨン イヨン

Solving the 5 and 6 Dimensional Systems

 When linearizing a six-dimensional system around a periodic orbit of period τ, a total of six Floquet multipliers are solved for from a 6 × 6 Monodromy matrix:

$$\lambda_i$$
, $1 < i < 6$

(4月) イヨト イヨト

Solving the 5 and 6 Dimensional Systems

 When linearizing a six-dimensional system around a periodic orbit of period τ, a total of six Floquet multipliers are solved for from a 6 × 6 Monodromy matrix:

$$\lambda_i$$
, $1 < i < 6$

• Using XPPAUT, find the number of stable Floquet multipliers corresponding to each periodic orbit of interest.

Solving the 5 and 6 Dimensional Systems

 When linearizing a six-dimensional system around a periodic orbit of period τ, a total of six Floquet multipliers are solved for from a 6 × 6 Monodromy matrix:

$$\lambda_i$$
, $1 < i < 6$

- Using XPPAUT, find the number of stable Floquet multipliers corresponding to each periodic orbit of interest.
- $x' = f(x, \lambda) \rightarrow x' = A(t)x$ $M = A(\tau)$ Solution: $x(t) = x(t + \tau)$, for all $t \in \mathbb{R}$.

(ロ) (同) (E) (E) (E)

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Solving the 5 and 6 Dimensional Systems

• Hyperbolic periodic orbit:

Exactly one Floquet multiplier must be equal to one.

Stable Hyperbolic: Remaining Floquet multipliers are less than one. Unstable Hyperbolic: At least one remaining Floquet multiplier is greater than one.

(本間) (本語) (本語)

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Solving the 5 and 6 Dimensional Systems

• Hyperbolic periodic orbit:

Exactly one Floquet multiplier must be equal to one.

Stable Hyperbolic: Remaining Floquet multipliers are less than one. Unstable Hyperbolic: At least one remaining Floquet multiplier is greater than one.

• Nonhyperbolic periodic orbit: More than one Floquet multiplier is located on the unit circle.

(4月) イヨト イヨト

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 1: $(S_{1in}, 0, S_{2in}, 0)$ Always Exists

イロト イヨト イヨト イヨト

3

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 2: $(S_{1in}, 0, S_2^*(D), X_2^*(D))$

$$S_{2}^{*}(D) = \frac{DK_{2}\alpha}{m_{2}-D\alpha} \qquad X_{2}^{*}(D) = \frac{1}{k_{3}\alpha}(S_{2in} - \frac{DK_{2}\alpha}{m_{2}-D\alpha})$$

Conditions that must hold for point to exist:
• $m_{2} > D\alpha$

・ 同 ト ・ ヨ ト ・ ヨ ト

Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 2: $(S_{1in}, 0, S_2^*(D), X_2^*(D))$

$$S_{2}^{*}(D) = \frac{DK_{2}\alpha}{m_{2}-D\alpha}$$
 $X_{2}^{*}(D) = \frac{1}{k_{3}\alpha}(S_{2in} - \frac{DK_{2}\alpha}{m_{2}-D\alpha})$

Conditions that must hold for point to exist:

•
$$m_2 > D\alpha$$

• $S_{2in} \ge \left(\frac{DK_2\alpha}{m_2 - D\alpha}\right)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 3: $(S_{1}^{*}(D), X_{1}^{*}(D), S_{2in}^{*}(D), 0)$ $S_{1}^{*}(D) = \frac{DK_{1}\alpha}{m_{1}-D\alpha} \qquad X_{1}^{*}(D) = \frac{1}{k_{1}\alpha}(S_{1in} - \frac{DK_{1}\alpha}{m_{1}-D\alpha})$ $S_{2in}^{*}(D) = S_{2in} + (\frac{k_{2}}{k_{1}})(S_{1in} - \frac{DK_{1}\alpha}{m_{1}-D\alpha})$ Conditions that must hold for point to exist: • $m_{1} > D\alpha$

イロト イポト イヨト イヨト 二日

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 3: $(S_1^*(D), X_1^*(D), S_{2in}^*(D), 0)$ $S_1^*(D) = \frac{DK_{1\alpha}}{m_1 - D\alpha} \qquad X_1^*(D) = \frac{1}{k_1\alpha}(S_{1in} - \frac{DK_{1\alpha}}{m_1 - D\alpha})$ $S_{2in}^*(D) = S_{2in} + (\frac{k_2}{k_1})(S_{1in} - \frac{DK_{1\alpha}}{m_1 - D\alpha})$

Conditions that must hold for point to exist:

•
$$m_1 > D\alpha$$

• $S_{1in} \ge \left(\frac{DK_1\alpha}{m_1 - D\alpha}\right)$

Concluding Thoughts

Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 3: $(S_1^*(D), X_1^*(D), S_{2in}^*(D), 0)$ $S_1^*(D) = \frac{DK_1\alpha}{m_1 - D\alpha} \qquad X_1^*(D) = \frac{1}{k_1\alpha}(S_{1in} - \frac{DK_1\alpha}{m_1 - D\alpha})$ $S_{2in}^*(D) = S_{2in} + (\frac{k_2}{k_1})(S_{1in} - \frac{DK_1\alpha}{m_1 - D\alpha})$

Conditions that must hold for point to exist:

•
$$m_1 > D\alpha$$

• $S_{1in} \ge \left(\frac{DK_1\alpha}{m_1 - D\alpha}\right)$
• $S_{2in} \ge \left(\frac{k_2}{k_1}\right)(S_{1in} - \frac{DK_1\alpha}{m_1 - D\alpha})$

(ロ) (同) (E) (E) (E)

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 4: $(S_1^*(D), X_1^*(D), S_2^*(D), X_{2in}^*(D))$ $S_1^*(D) = \frac{DK_1\alpha}{m_1 - D\alpha} \quad X_1^*(D) = \frac{1}{k_1\alpha}(S_{1in} - \frac{DK_1\alpha}{m_1 - D\alpha}) \quad S_2^*(D) = \frac{DK_2\alpha}{m_2 - D\alpha}$ $X_{2in}^*(D) = \frac{1}{k_3\alpha}[S_{2in} - \frac{DK_2\alpha}{m_2 - D\alpha} + (\frac{k_2}{k_1})(S_{1in} - \frac{DK_1\alpha}{m_1 - D\alpha})]$

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System A

Conditions that must hold for point to exist (Equilibrium Point 4):

$$m_1 > D\alpha$$
 $m_2 > D\alpha$ $S_{1in} \ge \left(\frac{DK_1\alpha}{m_1 - D\alpha}\right)$

$$S_{2in} + (\frac{k_2}{k_1})(S_{1in} - \frac{DK_1\alpha}{m_1 - D\alpha}) \ge (\frac{DK_2\alpha}{m_2 - D\alpha})$$

- 4 回 2 - 4 □ 2 - 4 □

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System A

Equilibrium Point 1

Figure : Case 8: Saddle (left) and Case 9: Stable Node (right). In Case 8, solutions are moving away from (8, 0, 50, 0) as $t \rightarrow \infty$. In Case 9, solutions are moving towards (8, 0, 50, 0) as $t \rightarrow \infty$.

< **₩** ► < **⇒** ►

- ∢ ⊒ →

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System A

Equilibrium Point 2

Figure : Case 7: Saddle (left) and Case 11: Stable Node (right). In Case 7, solutions are moving away from (9.0811, 0, 12.9454, 0.28312) as $t \rightarrow \infty$. In Case 11, solutions are moving towards (0.4285, 0, 17.0765, 0.2638) as $t \rightarrow \infty$.

・ 同・ ・ ヨ・

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System A

Equilibrium Point 3

Figure : Case 7: Saddle (left) and Case 11: Stable Node (right). In Case 7, solutions are moving away from (0.0554, 0.9742, 221.273, 0) as $t \rightarrow \infty$. In Case 11, solutions are moving towards 0.02167, 2.577, 67.603, 0) as $t \rightarrow \infty$.

- ∢ ⊒ →

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System A

Equilibrium Point 4

Figure : Case 4: Stable Node (left) and Case 5: Stable Node (right). In Case 4, solutions are moving towards (0.0076, 0.0743, 1.9314, 0.00735) as $t \rightarrow \infty$. In Case 5, solutions are moving towards (0.4623, 0.5108, 37.5477, 0.00667) as $t \rightarrow \infty$.

- ∢ ⊒ →

 Introduction
 Systems to Study
 Mathematical Approach to Solving Systems
 Results
 Concluding Thoughts

 Set of Parameter Values used to Solve 4-Dimensional
 Systems
 Systems
 Systems
 Systems

m_1	m_2	k_1	k ₂	k ₃	α
1.2	1.1	25	250	268	0.5
K_1	K_2	K _I	S _{1in}	S _{2in}	D
2	10	40	8	50	variable

Table : Parameter values used to solve 4-Dimensional Systems

(4回) (4回) (4回)

Equilibrium Point 1 (S_{1in} , 0, S_{2in} , 0):

• Proved Transcritical bifurcation exists when

$$D=D_1^*=(rac{1}{lpha})(rac{m_2S_{2in}}{K_2+S_{2in}})$$
 or when

$$D = D_2^* = \left(\frac{1}{\alpha}\right) \left(\frac{m_1 S_{1in}}{K_1 + S_{1in}}\right)$$

When given parameter values are substituted into system, $D_1^* = \frac{11}{6}$ and $D_2^* = 1.92$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Bifurcations found for 4-Dimensional System A

Equilibrium Point 2: $(S_{1in}, 0, S_2^*(D), X_2^*(D))$:

• Proved Transcritical bifurcation exists when

$$D = D^* = (\frac{1}{\alpha})(\frac{m_1S_{1in}}{K_1+S_{1in}})$$

When the following parameter values are substituted into system, $D^* = 0.1173$.

Randomly generated parameter values using MATLAB:

(4月) イヨト イヨト

Equilibrium Point 3 ($S_1^*(D)$, $X_1^*(D)$, $S_{2in}^*(D)$, 0):

• Proved Transcritical bifurcation exists when

$$D=D^*=(rac{1}{lpha})(rac{m_2q_1}{K_2+q_1})$$
 such that

$$q_1=S_{2in}+(rac{k_2}{k_1})(S_{1in}-rac{DK_1lpha}{m_1-Dlpha})$$

When given parameter values are substituted into system, $D^* = 1.877$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Equilibrium Point 4 ($S_1^*(D)$, $X_1^*(D)$, $S_2^*(D)$, $X_{2in}^*(D)$):

• Proved Transcritical bifurcation exists when

$$D = D^* = (\frac{1}{K_2 \alpha})(S_{2in} + (\frac{k_2}{k_1})(S_{1in} - \frac{K_1 D \alpha}{m_1 - D \alpha}))(m_2 - D \alpha)$$

such that

$$S_{2in} + (rac{k_2}{k_1})(S_{1in} - rac{K_1 D lpha}{m_1 - D lpha}) = rac{K_2 D lpha}{m_2 - D lpha}$$

- 4 同 6 4 日 6 4 日 6

Equilibrium Point 4 ($S_1^*(D)$, $X_1^*(D)$, $S_2^*(D)$, $X_{2in}^*(D)$):

• Proved Transcritical bifurcation exists when

$$D = D^* = (\frac{1}{K_2 \alpha})(S_{2in} + (\frac{k_2}{k_1})(S_{1in} - \frac{K_1 D \alpha}{m_1 - D \alpha}))(m_2 - D \alpha)$$

such that

$$S_{2in}+(rac{k_2}{k_1})(S_{1in}-rac{K_1Dlpha}{m_1-Dlpha})=rac{K_2Dlpha}{m_2-Dlpha}$$

• A Hopf Bifurcation test was performed algebraically and using MATLAB, but no results were generated.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Bifurcations found for 4-Dimensional System A

Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor

▲冊→ ▲屋→ ▲屋→

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 1: (*S*_{1*in*}, 0, *S*_{2*in*}, 0) *Always Exists*

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 2: $(S_1^*(D), X_1^*(D), S_{2in}^*(D), 0)$

$$S_{1}^{*}(D) = \frac{DK_{1}\alpha}{m_{1}-D\alpha}$$
 $X_{1}^{*}(D) = \frac{1}{k_{1}\alpha}(S_{1in} - \frac{DK_{1}\alpha}{m_{1}-D\alpha})$

 $S^*_{2in}(D) = S_{2in} + X^*_1(D)k_2\alpha$

Conditions that must hold for point to exist:

• $m_1 > D\alpha$

・ロト ・回ト ・ヨト ・ヨト
Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 2: $(S_1^*(D), X_1^*(D), S_{2in}^*(D), 0)$

$$S_{1}^{*}(D) = \frac{DK_{1}\alpha}{m_{1}-D\alpha}$$
 $X_{1}^{*}(D) = \frac{1}{k_{1}\alpha}(S_{1in} - \frac{DK_{1}\alpha}{m_{1}-D\alpha})$

 $S^*_{2in}(D) = S_{2in} + X^*_1(D)k_2\alpha$

Conditions that must hold for point to exist:

•
$$m_1 > D\alpha$$

• $S_{1in} \ge \left(\frac{DK_1\alpha}{m_1 - D\alpha}\right)$

- 4 同 6 4 日 6 4 日 6

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 2: $(S_1^*(D), X_1^*(D), S_{2in}^*(D), 0)$

$$S_{1}^{*}(D) = \frac{DK_{1}\alpha}{m_{1}-D\alpha}$$
 $X_{1}^{*}(D) = \frac{1}{k_{1}\alpha}(S_{1in} - \frac{DK_{1}\alpha}{m_{1}-D\alpha})$

 $S^*_{2in}(D) = S_{2in} + X^*_1(D)k_2\alpha$

Conditions that must hold for point to exist:

•
$$m_1 > D\alpha$$

• $S_{1in} \ge \left(\frac{DK_1\alpha}{m_1 - D\alpha}\right)$
• $S_{2in} + \left(\frac{k_2}{k_1}\right)\left(S_{1in} - \frac{DK_1\alpha}{m_1 - D\alpha}\right) \ge 0$

- 4 同 6 4 日 6 4 日 6

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 3: $(S_{1in}, 0, S_2^{1*}(D), X_2^1(D))$ $S_2^{1*}(D) = (\frac{K_I}{2y})[(1-y) + ((1-y)^2 - (\frac{4K_2}{K_I})(y^2))^{1/2}]$ $X_2^1(D) = \frac{1}{k_3\alpha}(S_{2in} - S_2^{1*}(D))$ $y = \frac{D\alpha}{m_2}$ Conditions that must hold for point to exist:

Conditions that must hold for point to exist: Amputate my foot...

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 4: $(S_{1in}, 0, S_2^{2*}(D), X_2^2(D))$ $S_2^{2*}(D) = (\frac{K_I}{2y})[(1-y) - ((1-y)^2 - (\frac{4K_2}{K_I})(y^2))^{1/2}]$ $X_2^2(D) = \frac{1}{k_3\alpha}(S_{2in} - S_2^{2*}(D))$ $y = \frac{D\alpha}{m_2}$

Conditions that must hold for point to exist: End world hunger...

・ 同 ト ・ ヨ ト ・ ヨ ト

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 5: $(S_1^*(D), X_1^*(D), S_2^{1*}(D), X_2^{1*}(D))$ $S_1^*(D) = \frac{DK_{1\alpha}}{m_1 - D\alpha} \qquad X_1^*(D) = \frac{1}{k_1\alpha}(S_{1in} - \frac{DK_{1\alpha}}{m_1 - D\alpha})$ $S_2^{1*}(D) = (\frac{K_l}{2y})[(1 - y) + ((1 - y)^2 - (\frac{4K_2}{K_l})(y^2))^{1/2}]$ $X_2^{1*}(D) = (\frac{1}{k_3\alpha})(S_{2in}^*(D) - S_2^{1*}(D))$

 $y = \frac{D\alpha}{m_2}$

Conditions that must hold for point to exist: Give up first born son...

(ロ) (同) (E) (E) (E)

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 6: $(S_1^*(D), X_1^*(D), S_2^{2*}(D), X_2^{2*}(D))$ $S_1^*(D) = \frac{DK_{1\alpha}}{m_1 - D\alpha} \qquad X_1^*(D) = \frac{1}{k_1\alpha}(S_{1in} - \frac{DK_{1\alpha}}{m_1 - D\alpha})$ $S_2^{2*}(D) = (\frac{K_I}{2y})[(1 - y) - ((1 - y)^2 - (\frac{4K_2}{K_I})(y^2))^{1/2}]$ $X_2^{2*}(D) = (\frac{1}{k_3\alpha})(S_{2in}^*(D) - S_2^{2*}(D))$

 $y = \frac{D\alpha}{m_2}$

Conditions that must hold for point to exist: Amputate my other foot...

イロト イポト イヨト イヨト 二日

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Equilibrium Point 1

Figure : Case 5: Saddle (left) and Case 8: Stable Node (right). In Case 5, solutions are moving away from (8, 0, 50, 0) as $t \rightarrow \infty$. In Case 8, solutions are moving towards (8, 0, 50, 0) as $t \rightarrow \infty$.

- ∢ ⊒ →

Results from 4-Dimensional System B

Equilibrium Point 2

Figure : Case 2: Stable Node (left) and Case 8: Saddle (right). In Case 2, solutions are approaching (0.1672, 1.059, 110.474, 0) as $t \rightarrow \infty$. In Case 8, solutions are moving away from (0.0272, 0.07557, 42.014, 0) as $t \rightarrow \infty$.

- 4 同 2 4 日 2 4 日 2

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Equilibrium Points 3 and 4

Figure : Equilibrium Point 3 Case A6: Saddle (left) and Equilibrium Point 4 Case C4: Stable Node (right). In EqPt 3 Case A6, solutions are moving away from (8.6266, 0, 7.08424, 0.03633) as $t \rightarrow \infty$. In EqPt 4 Case C4, solutions are moving towards (3.0224, 0, 0.4495, 0.1948) as $t \rightarrow \infty$.

イロト イヨト イヨト イヨト

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 4-Dimensional System B

Equilibrium Point 6

Figure : Equilibrium Point 6 Case B5: Stable Node. In EqPt 6 Case B5, solutions are moving towards (0.4116, 0.014, 0.3016, 0.4401) as $t \rightarrow \infty$. No random parameters were generated that agreed with the predicted results from any cases of Equilibrium Point 5.

- - E - I

Equilibrium Point 1 (S_{1in} , 0, S_{2in} , 0):

• Proved Transcritical bifurcation exists when

$$D = D_1^* = \left(\frac{1}{\alpha}\right) \left(\frac{m_1 S_{1in}}{K_1 + S_{1in}}\right) \quad \text{or when}$$
$$D = D_2^* = \left(\frac{1}{\alpha}\right) \left(\frac{m_2 S_{2in}}{K_2 + S_{2in} + \frac{S_{2in}^2}{K_1}}\right)$$

When given parameter values are substituted into system, $D_1^{st}=1.92$ and $D_2^{st}=0.898.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Equilibrium Point 1 (S_{1in} , 0, S_{2in} , 0):

• Proved Transcritical bifurcation exists when

$$D=D_1^*=(rac{1}{lpha})(rac{m_1\mathcal{S}_{1in}}{\mathcal{K}_1+\mathcal{S}_{1in}})$$
 or when

$$D = D_2^* = (rac{1}{lpha})(rac{m_2 S_{2in}}{\kappa_2 + S_{2in} + rac{S_{2in}^2}{\kappa_l}})$$

When given parameter values are substituted into system, $D_1^* = 1.92$ and $D_2^* = 0.898$.

• A Pitchfork Bifurcation test was performed algebraically and using MATLAB in the case where $K_2 = \frac{S_{2in}^2}{K_l}$, but no results were generated.

イロト イポト イヨト イヨト

Bifurcations found from 4-Dimensional System B

Equilibrium Point 2: $(S_1^*(D), X_1^*(D), S_{2in}^*(D), 0)$:

Proved Transcritical bifurcation exists when

$$D = D^* = \left(\frac{1}{\alpha}\right) \left(\frac{m_2 x}{K_2 + x + \frac{x^2}{K_l}}\right) \text{ such that}$$
$$x = S_{2in} + \left(\frac{k_2}{k_1}\right) \left(S_{1in} - \frac{K_1 D\alpha}{m_1 - D\alpha}\right)$$

When the following parameter values are substituted into system, $D^* = 0.4305$.

Randomly generated parameter values using MATLAB:

$$m_1 = 1.6362, k_2 = 250.9017, K_1 = 1.419,$$

 $m_2 = 1.109, \alpha = 0.2349, K_2 = 3.7185,$
 $S_{1in} = 10.7751, S_{2in} = 66.2991, k_1 = 15.396,$
 $K_I = 24.1864, k_3 = 268.$

A Pitchfork Bifurcation test was performed algebraically and using MATLAB in the case where $K_2 = \frac{x^2}{K_1}$, but no results were

Equilibrium Point 3: $(S_{1in}, 0, S_2^{1*}(D), X_2^1(D))$:

• Proved Transcritical bifurcation exists when

$$D = D^* = (\frac{1}{\alpha})(\frac{m_1S_{1in}}{K_1+S_{1in}})$$

When the following parameter values are substituted into system, $D^* = 0.4993$.

Randomly generated parameter values using MATLAB:

・ 同 ト ・ ヨ ト ・ ヨ ト

Equilibrium Point 4: $(S_{1in}, 0, S_2^{2*}(D), X_2^2(D))$:

• Proved Transcritical bifurcation exists when

$$D = D^* = \left(\frac{1}{\alpha}\right) \left(\frac{m_1 S_{1in}}{K_1 + S_{1in}}\right)$$

When the following parameter values are substituted into system, $D^* = 0.2567$.

Randomly generated parameter values using MATLAB:

・ 同 ト ・ ヨ ト ・ ヨ ト

Equilibrium Point 5: $(S_1^*(D), X_1^*(D), S_2^{1*}(D), X_2^{1*}(D))$ Equilibrium Point 6: $(S_1^*(D), X_1^*(D), S_2^{2*}(D), X_2^{2*}(D))$

Hopf Bifurcation tests were performed for both equilibria, but no data was generated.

イロト イポト イヨト イヨト

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Results from 5-Dimensional System A

m_1	<i>m</i> ₂	k_1	k ₂	k_3	α	
1	3.2	30	215	100	0.3	
K_1	K_2	K_{I1}	K_{I2}	S _{1in}	S _{2in}	D
7	200	500	400	40	5	variable
m_4	k4	K_4	Уin	μ		
1	5	1	5	0.06		

Table : Parameter values used for solving 5-Dimensional Systems

イロト イヨト イヨト イヨト

Combination of functions applied:

• Monod model for the growth of Bacteria 1

$$\mu(S_1) = \frac{m_1 S_1}{K_1 + S_1}$$

- - 4 回 ト - 4 回 ト

Combination of functions applied:

• Monod model for the growth of Bacteria 1

$$\mu(S_1) = \frac{m_1 S_1}{K_1 + S_1}$$

• Haldane model for the growth of Bacteria 2

$$\mu(S_2) = \frac{m_2 S_2}{\kappa_2 + S_2 + \frac{S_2^2}{\kappa_{I1}}}$$

- - 4 回 ト - 4 回 ト

Combination of functions applied:

 $\bullet\,$ Monod model for the growth of Bacteria 1

$$\mu(S_1) = \frac{m_1 S_1}{K_1 + S_1}$$

• Haldane model for the growth of Bacteria 2

$$\mu(S_2) = \frac{m_2 S_2}{\kappa_2 + S_2 + \frac{S_2^2}{\kappa_{I1}}}$$

• Monod model for the consumptions of Toxin

$$\mu(y) = \tfrac{m_4 y}{K_4 + y}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Bifurcations found when Solving 5-Dimensional System A

Eigure : Illustration of Rifurcations found for 5 Dimensional System A Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor

Figure : Presence of Stable Periodic Orbit in 5D System A. Though a Hopf bifurcation exists in this system from which stable periodic orbits are generated, the nonhyperbolic equilibrium point corresponding to the detected Hopf bifurcation displayed a negative solution for X_2 . Unstable equilibria found: (40, 0, 5, 0, 5), (40, 0, 48.24, -1.44, -0.61). We graphed only 3-D projections of the solutions: S_1 , X_1 , and S_2 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Results from 5-Dimensional System B

Combination of functions applied:

• Monod model for the growth of Bacteria 1

$$\mu(S_1) = \tfrac{m_1 S_1}{K_1 + S_1}$$

イロト イヨト イヨト イヨト

3

Results from 5-Dimensional System B

Combination of functions applied:

 $\bullet\,$ Monod model for the growth of Bacteria 1

$$\mu(S_1) = \frac{m_1 S_1}{K_1 + S_1}$$

• Haldane model for the growth of Bacteria 2

$$\mu(S_2) = \frac{m_2 S_2}{\kappa_2 + S_2 + \frac{S_2^2}{\kappa_{I1}}}$$

イロト イポト イヨト イヨト

Results from 5-Dimensional System B

Combination of functions applied:

 $\bullet\,$ Monod model for the growth of Bacteria 1

$$\mu(S_1) = \frac{m_1 S_1}{K_1 + S_1}$$

• Haldane model for the growth of Bacteria 2

$$\mu(S_2) = \frac{m_2 S_2}{\kappa_2 + S_2 + \frac{S_2^2}{\kappa_{I1}}}$$

• Haldane model for the consumptions of Toxin

$$\mu(y) = \frac{m_4 y}{\kappa_4 + y + \frac{y^2}{\kappa_{I2}}}$$

イロト イポト イヨト イヨト

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Bifurcations found when Solving 5-Dimensional System B

Eigure : Illustration of Rifurcations found for 5 Dimonsional System R Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor

Figure : Proof of Stable Periodic Orbit in 5D System B, $D^* = 2.035$. Though a Hopf bifurcation exists in this system from which stable periodic orbits are generated, the nonhyperbolic equilibrium point corresponding to the detected Hopf bifurcation displayed a negative solution for X2. Unstable equilibria found using Wolfram Mathematica 9.0: (40, 0, 5, 0, 5) and (34.22, 0.64, 48.24, -0.06, 5.12) when $D^* = 2.03477$.

< 🗇 > < 🖃 >

Results from 5-Dimensional System C

Combination of functions applied:

 $\bullet\,$ Monod model for the growth of Bacteria 1

$$\mu(S_1) = \tfrac{m_1 S_1}{K_1 + S_1}$$

イロト イヨト イヨト イヨト

3

Results from 5-Dimensional System C

Combination of functions applied:

• Monod model for the growth of Bacteria 1

$$\mu(S_1) = \tfrac{m_1 S_1}{K_1 + S_1}$$

• Monod model for the growth of Bacteria 2

$$\mu(S_2) = \tfrac{m_2S_2}{K_2+S_2}$$

- 4 同 6 4 日 6 4 日 6

Results from 5-Dimensional System C

Combination of functions applied:

• Monod model for the growth of Bacteria 1

$$\mu(S_1) = \tfrac{m_1 S_1}{K_1 + S_1}$$

• Monod model for the growth of Bacteria 2

$$\mu(S_2) = \frac{m_2 S_2}{K_2 + S_2}$$

• Monod model for the consumptions of Toxin

$$\mu(y) = \tfrac{m_4 y}{K_4 + y}$$

- 4 同 6 4 日 6 4 日 6

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Bifurcations found when Solving 5-Dimensional System C

Eigure : Illustration of Rifurcations found for 5 Dimonsional System C Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor

Results from 5-Dimensional System D

Combination of functions applied:

 $\bullet\,$ Monod model for the growth of Bacteria 1

$$\mu(S_1) = \tfrac{m_1 S_1}{K_1 + S_1}$$

イロト イヨト イヨト イヨト

3

Results from 5-Dimensional System D

Combination of functions applied:

 $\bullet\,$ Monod model for the growth of Bacteria 1

$$\mu(S_1) = \tfrac{m_1 S_1}{K_1 + S_1}$$

• Monod model for the growth of Bacteria 2

$$\mu(S_2) = \frac{m_2 S_2}{K_2 + S_2}$$

- 4 同 6 4 日 6 4 日 6

Results from 5-Dimensional System D

Combination of functions applied:

 $\bullet\,$ Monod model for the growth of Bacteria 1

$$\mu(S_1) = \tfrac{m_1S_1}{K_1 + S_1}$$

• Monod model for the growth of Bacteria 2

$$\mu(S_2) = \frac{m_2 S_2}{K_2 + S_2}$$

• Haldane model for the consumptions of Toxin

$$\mu(y) = \frac{m_4 y}{\kappa_4 + y + \frac{y^2}{\kappa_{I2}}}$$

(4月) イヨト イヨト

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Bifurcations found when Solving 5-Dimensional System D

Eigure : Illustration of Rifurcations found for 5 Dimonsional System D Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Parameter values used when solving 6-Dimensional Systems

•
$$m_1 = 3, m_2 = 0.75$$

・ 同 ト ・ ヨ ト ・ ヨ ト
Introduction

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Parameter values used when solving 6-Dimensional Systems

•
$$m_1 = 3, m_2 = 0.75$$

•
$$k_1 = 10$$
, $k_2 = 5.2254$, $k_3 = 40$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Parameter values used when solving 6-Dimensional Systems

- $m_1 = 3, m_2 = 0.75$
- $k_1 = 10$, $k_2 = 5.2254$, $k_3 = 40$
- $K_1 = 0.5, K_2 = 0.15, K_I = 1$

< **₩** ► < **⇒** ►

- ∢ ⊒ ⊳

Introduction

Systems to Study

Mathematical Approach to Solving Systems

Results

Concluding Thoughts

Parameter values used when solving 6-Dimensional Systems

m₁ = 3, m₂ = 0.75
k₁ = 10, k₂ = 5.2254, k₃ = 40
K₁ = 0.5, K₂ = 0.15, K₁ = 1
S₁ = 6, S₂ = 0, α = 1, p = 1, r = 0.5.

(4月) イヨト イヨト

Functions applied:

• Haldane model for the growth of Bacteria 2

$$\mu(S_2) = \frac{m_2 S_2}{\kappa_2 + S_2 + \frac{S_2^2}{\kappa_1}}$$

イロト イヨト イヨト イヨト

æ

Functions applied:

• Haldane model for the growth of Bacteria 2

$$\mu(S_2) = \frac{m_2 S_2}{\kappa_2 + S_2 + \frac{S_2^2}{\kappa_1}}$$

• Periodic inflow of S_{1in} of amplitude "r", in the hopes of generating oscillating solutions.

・ 同 ト ・ ヨ ト ・ ヨ ト

Bifurcation Results of 6-Dimensional System

Figure : Saddle-Node Bifurcation of Periodic Orbits, $D^* = 0.4196$ at saddle-node bifurcation point.

Surprising Results: Saddle-Node Bifurcation of Periodic Orbits

・ 同 ト ・ ヨ ト ・ ヨ ト

Bifurcation Results of 6-Dimensional System

Figure : Periodic Orbits of Opposite Stability converging at Saddle-Node Bifurcation Point. Green: stable, Blue: unstable.

Bifurcation Results of 6-Dimensional System

Figure : Stability statuses of Periodic Orbits 6 and 14. Left: Orbit 6, $D^* = 0.2313$ (stable), Right: Orbit 14, $D^* = 0.3937$ (unstable).

Equilibria Results of 6-Dimensional System

Figure : Unstable Equilibria found for system using specific set of parameter values. (0.0417725, 0.595823, 0.0690168, 0.0761099, 0, 0) and (0.0417725, 0.595823, 2.17338, 0.0235007, 0, 0) when $D^* = 0.2313$.

 6-Dimensional System: Find heteroclinic orbits connecting two unstable periodic orbits rather than solely orbits of opposite stability.

(本間) (本語) (本語)

- 6-Dimensional System: Find heteroclinic orbits connecting two unstable periodic orbits rather than solely orbits of opposite stability.
- 5-Dimensional Systems:

Toxin has a profound influence on the growth of X_2 . Toxin acts immediately on S_2 accumulation rather than indirectly through S_1 reaction by X_1 .

(4月) イヨト イヨト

- 6-Dimensional System: Find heteroclinic orbits connecting two unstable periodic orbits rather than solely orbits of opposite stability.
- 5-Dimensional Systems:

Toxin has a profound influence on the growth of X_2 . Toxin acts immediately on S_2 accumulation rather than indirectly through S_1 reaction by X_1 .

• Analysis of environmental conditions to find the most ideal setting for digestion. Provide flexibility for maximum bacteria growth velocity parameters: m_1 , m_2 , and m_4 .

소리가 소문가 소문가 소문가

Introduction	Systems to Study	Mathematical Approach to Solving Systems	Results	Concluding Thoughts ○●○○
References				

[1] B. Benyahia, T. Sari, B. Cherki, J. Harmand, *"Bifurcation and Stability Analysis of a Two Step Model for Monitoring Anaerobic Digestion Process"*. Journal of Process Control **22** (2012).

[2] O. Bernard and J. Hess, "Design and Study of a Risk Management Criterion for an Unstable Anaerobic Wastewater Treatment Process". French Research Institute of Computer Science and Automatic Control. (2007).

[3] R. Cooke, *"Wastewater Treatment Methods and Disposal" @ONLINE.* July 2013. URL =

http://water.me.vccs.edu/courses/ENV149/methods.htm.

[4] K. Cornely and C. Pratt, *"Essential Biochemistry"*. 2nd edition New York: Wiley. (2011).

(日本) (日本) (日本)

[5] B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students". Philadelphia: Society for Industrial and Applied Mathematics. (2002).

[6] M. Gerber, R. Span, *"An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas"*. International Gas Union Research Conference. (2008).

[7] Y. Li and J.S. Muldowney, "On Bendixson's Criterion*". Journal of Differential Equations **106**, 27-39 (1993).

イロト イポト イヨト イヨト

[8] J. Rebaza, *"A First Course in Applied Mathematics"*. New Jersey: Wiley. (2012).

[9] J. Senisterra, "Dynamical Analysis of the Anaerobic Digestion Model as Proposed by Hess and Bernard". Print.

[10] M. Weederman, "Analysis of a Model for the Effects of an External Toxin on Anaerobic Digestion". Mathematical Biosciences and Engineering **9** (2012).

イロト イポト イヨト イヨト