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Figure : Detailed Flowchart of Model for Biogas Production

Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor



Introduction Systems to Study Mathematical Approach to Solving Systems Results Concluding Thoughts

Condensed 4-Dimensional (two-step reaction process)
System

Definition

4-Dimensional System:

S ′1 = −X1k1(µ1(S1)) + D(S1in − S1)
X ′1 = X1(µ1(S1) − Dα)
S ′2 = D(S2in − S2) + X1k2(µ1(S1)) − X2k3(µ2(S2))
X ′2 = X2(µ2(S2) − Dα)

(1)
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Parameter Value Ranges and Definitions

S1in and S2in : Input substrate concentrations.

k1, k2, k3 : Pseudo-stoichiometric coefficients based on nature
of bioreactions.

α : Fraction of biomass not retained in the digester (accounts
for decoupling of Hydraulic Retention Time from Solid
Retention Time).

D: Dilution factor for incoming and outgoing substrate and
bacteria.

µ1(S1) and µ2(S2) are functions used to demonstrate the
growth of bacteria 1 and 2, respectively.
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Simplified Two-Step Reaction Process

Definition

Two Steps:

Acidogenesis : k1S1
µ1(S1)X1−→ X1 + k2S2

Methanogenesis : k3S2
µ2(S2)X2−→ X2 + k4CH4

(2)

Acidogenesis: Organic substrate (S1) is broken down into volatile
fatty acids (S2) by acidogenic bacteria (X1).

Methanogenesis: Volatile fatty acids (S2) are degraded to produce
CH4 and CO2 by methanogenic bacteria (X2).
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Concerns Regarding Approach to Attaining Steady-State

Two Main Concerns:

Growth of Bacteria

Substrate Degredation and Product Formation

To attain a steady-state: The substrate flow and gas production
must remain constant and continuous. The growth requirements
for bacteria must remain constant over time.

Definition

4-Dimensional System:

0 = −X1k1(µ1(S1)) + D(S1in − S1)
0 = X1(µ1(S1) − Dα)
0 = D(S2in − S2) + X1k2(µ1(S1)) − X2k3(µ2(S2))
0 = X2(µ2(S2) − Dα)

(3)
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Steady-State

Substrate Balance: dS
dt = DS0 − DS + dS

dt

Bacteria Balance: dX
dt = DX0 − DX + µ(S)X + kdX

Equilibrium point: dX
dt = 0 dS

dt = 0 as t −→∞

dS
dt and dX

dt : Accumulation

DS0 and DX0: Diluted Input DS and DX : Diluted Output
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Different Approaches

Each differential system under study was characterized by its
unique combination of two of the numerous hypothesized bacterial
growth functions; our study included application of the Monod and
Haldane functions of bacteria growth [d ],

Monod: µ1(S1) = m1S1
K1+S1

Haldane: µ2(S2) = m2S2

K2+S2+
S2
2

KI

m1 and m2: Define the maximum attainable speeds of X1 and
X2 growth, respectively.

K1 and K2 : Substrate Concentrations at 50 percent of
maximum specific growth rate(see graph).

KI : Substrate concentration where bacteria growth is reduced
to 50 percent of it’s maximum growth rate due to substrate
inhibition (see graph).
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Bacteria Growth Kinetics
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Figure : Monod Model for Bacteria Growth Kinetics
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Bacteria Growth Kinetics
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Theory Behind Four-Dimensional Systems A and B

Two Hypotheses:

4-Dimensional System A: The growth rates of X1 and X2 are
both increasing functions of added substrate (S1 and S2).

µ1(S1) = m1S1
K1+S1

µ2(S2) = m2S2
K2+S2

4-Dimensional System B: The growth rate of X1 is an
increasing function of substrate (S1) and the growth rate of
X2 approaches a maximum at a medium substrate
concentration (KI = medium S2 concentration).

µ1(S1) = m1S1
K1+S1

µ2(S2) = m2S2

K2+S2+
S2
2

KI
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Introduction of Foreign Toxin

S ′1 = −X1k1e
−yµ(µ1(S1)) + D(S1in − S1)

X ′1 = X1(e−yµµ1(S1) − Dα)
S ′2 = D(S2in − S2) + X1k2e

−yµ(µ1(S1)) − X2k3(µ2(S2))
X ′2 = X2(µ2(S2) − Dα)
y ′ = D(yin − y)− X2k4µ3(y)

(4)

where y represents the toxin.
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Inhibition Caused by Foreign Species

Types of Inhibition

Competitive Inhibition: A foreign species similar in structure
to the substrate binds to the enzymes, inhibiting reaction
spots.

Noncompetitive Inhibition: A foreign species not necessarily
similar in structure to the substrate binds to the enzymes
and/or enzyme-substrate complexes, preventing completion of
the reaction.

Uncompetitive Inhibition: A foreign species not necessarily
similar in structure to the substrate binds to the
enzyme-substrate complexes, preventing completion of the
reaction.
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Effect of a Toxin
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Figure : Illustrations of Competition by Non-Substrate Species
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Five-Dimensional Systems

The four systems differed amongst each other in terms of the
models used to represent X2 growth and toxin consumption.

Four Hypotheses:

5-Dimensional System A: The Monod model is used to
represent the growth rate of X1, the Haldane model is used to
represent the growth rate of X2, and the Monod model is used
to represent the consumption rate of the toxin.

µ(S1) = m1S1
K1+S1

µ(S2) = m2S2

K2+S2+
S2
2

KI1

µ(y) = m4y
K4+y

5-Dimensional System B: The Monod model is used to
represent the growth rate of X1, the Haldane model is used to
represent both the growth rate of X2 and the consumption
rate of the toxin.

µ(S1) = m1S1
K1+S1

µ(S2) = m2S2

K2+S2+
S2
2

KI1

µ(y) = m4y

K4+y+ y2

KI2
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Six-Dimensional System

S ′1 = −X1k1(µ1(S1)) + D(S1(1 + (rv)) − S1)
X ′1 = X1(P(µ1(S1) − Dα))
S ′2 = D(0− S2) + X1k2(µ1(S1)) − X2k3(µ2(S2))
X ′2 = X2(µ2(S2) − Dα)
u′ = u(1 − u2 − v2) − 2πv

v ′ = v(1 − u) − v2) + 2πu

(5)

where S1(1 + (rv)) = S1(t) = S1(1 + (r sin(2πt)))
and 0 ≤ r ≤ 1.
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Solving the 4-Dimensional Systems

Algebraically Determine all Attainable Equilibria

x0 = (S1, X1, S2, X2)

Linearize nonlinear system by formulating Jacobian matrices
and solving for respective eigenvalue functions.

A = Df (x0) det(A− Iλ) = 0

Determine the number of potential equilibrium points and
expected behavior of each one according to the calculated
eigenvalues.

Verify Algebraically Determined Discoveries with Illustrations
of Behavior
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Possible Results

Hyperbolic Equilibria

All eigenvalues are nonzero values, nor are any of
them purely imaginary.

Saddle

Stable Node
Focus

Nonhyperbolic Equilibria

One eigenvalue is equal to zero or is purely
imaginary. The system is susceptible to a bifurcation
with small changes in parameter values.

Center
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Types of Bifurcations

Bifurcation Value = Parameter Value at which Bifurcation Occurs
(Dilution Factor, D, acted as the variable parameter value)

Transcritical Bifurcation
No change in the number of equilibrium points.
Switch in stability of equilibria at bifurcation value.

Fold/Saddle-Node Bifurcation

Change in number of equilibrium points into stable
and unstable points.

Pitchfork Bifurcation
Change in number of equilibrium points from one to
three.

Hopf Bifurcation

Periodic orbits arise from an equilibrium point as it
changes stability at bifurcation value.
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Solving 5 and 6 Dimensional Systems

Precise solutions for equilibria were not found algebraically.

Investigation carried out by analysis of the systems using
XPPAUT.

Bifurcations identified and verified algebraically using
Sotomayor’s Theorem, then further analyzed using MATLAB
R2012b when necessary.

Wolfram Mathematica 9.0 used to find any equilibria in the
models, behavior determination of equilibria using MATLAB
R2012b.
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Investigation carried out by analysis of the systems using
XPPAUT.

Bifurcations identified and verified algebraically using
Sotomayor’s Theorem, then further analyzed using MATLAB
R2012b when necessary.

Wolfram Mathematica 9.0 used to find any equilibria in the
models, behavior determination of equilibria using MATLAB
R2012b.
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Solving the 5 and 6 Dimensional Systems

When linearizing a six-dimensional system around a periodic
orbit of period τ , a total of six Floquet multipliers are solved
for from a 6 x 6 Monodromy matrix:

λi , 1 < i < 6

Using XPPAUT, find the number of stable Floquet multipliers
corresponding to each periodic orbit of interest.

x ′ = f (x , λ) → x ′ = A(t)x M = A(τ)

Solution: x(t) = x(t + τ), for all t ∈ IR.
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Solving the 5 and 6 Dimensional Systems

Hyperbolic periodic orbit:
Exactly one Floquet multiplier must be equal to one.

Stable Hyperbolic: Remaining Floquet multipliers
are less than one.
Unstable Hyperbolic: At least one remaining Floquet
multiplier is greater than one.

Nonhyperbolic periodic orbit:
More than one Floquet multiplier is located on the unit circle.
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Solving the 5 and 6 Dimensional Systems

Hyperbolic periodic orbit:
Exactly one Floquet multiplier must be equal to one.

Stable Hyperbolic: Remaining Floquet multipliers
are less than one.
Unstable Hyperbolic: At least one remaining Floquet
multiplier is greater than one.

Nonhyperbolic periodic orbit:
More than one Floquet multiplier is located on the unit circle.
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Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 1: (S1in, 0, S2in, 0)

Always Exists
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Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 2: (S1in, 0, S∗2 (D), X ∗2 (D))

S∗2 (D) = DK2α
m2−Dα X ∗2 (D) = 1

k3α
(S2in − DK2α

m2−Dα)

Conditions that must hold for point to exist:

m2 > Dα

S2in ≥ ( DK2α
m2−Dα)
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Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 3: (S∗1 (D), X ∗1 (D), S∗2in(D), 0)

S∗1 (D) = DK1α
m1−Dα X ∗1 (D) = 1

k1α
(S1in − DK1α

m1−Dα)

S∗2in(D) = S2in + (k2k1 )(S1in − DK1α
m1−Dα)

Conditions that must hold for point to exist:

m1 > Dα

S1in ≥ ( DK1α
m1−Dα)

S2in ≥ (k2k1 )(S1in − DK1α
m1−Dα)
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Results from 4-Dimensional System A

Four equilibria were found:

Equilibrium 4: (S∗1 (D), X ∗1 (D), S∗2 (D),X ∗2in(D))

S∗1 (D) = DK1α
m1−Dα X ∗1 (D) = 1

k1α
(S1in− DK1α

m1−Dα) S∗2 (D) = DK2α
m2−Dα

X ∗2in(D) = 1
k3α

[S2in − DK2α
m2−Dα + (k2k1 )(S1in − DK1α

m1−Dα)]
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Results from 4-Dimensional System A

Conditions that must hold for point to exist (Equilibrium Point 4):

m1 > Dα m2 > Dα S1in ≥ ( DK1α
m1−Dα)

S2in + (k2k1 )(S1in − DK1α
m1−Dα) ≥ ( DK2α

m2−Dα)
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Results from 4-Dimensional System A

Equilibrium Point 1
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Figure : Case 8: Saddle (left) and Case 9: Stable Node (right). In Case
8, solutions are moving away from (8, 0, 50, 0) as t −→∞. In Case 9,
solutions are moving towards (8, 0, 50, 0) as t −→∞.
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Results from 4-Dimensional System A

Equilibrium Point 2
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Figure : Case 7: Saddle (left) and Case 11: Stable Node (right). In Case
7, solutions are moving away from (9.0811, 0, 12.9454, 0.28312) as
t −→∞. In Case 11, solutions are moving towards (0.4285, 0, 17.0765,
0.2638) as t −→∞.
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Results from 4-Dimensional System A

Equilibrium Point 3
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Figure : Case 7: Saddle (left) and Case 11: Stable Node (right). In Case
7, solutions are moving away from (0.0554, 0.9742, 221.273, 0) as
t −→∞. In Case 11, solutions are moving towards 0.02167, 2.577,
67.603, 0) as t −→∞.
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Results from 4-Dimensional System A

Equilibrium Point 4
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Figure : Case 4: Stable Node (left) and Case 5: Stable Node (right). In
Case 4, solutions are moving towards (0.0076, 0.0743, 1.9314, 0.00735)
as t −→∞. In Case 5, solutions are moving towards (0.4623, 0.5108,
37.5477, 0.00667) as t −→∞.
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Set of Parameter Values used to Solve 4-Dimensional
Systems

m1 m2 k1 k2 k3 α
1.2 1.1 25 250 268 0.5

K1 K2 KI S1in S2in D
2 10 40 8 50 variable

Table : Parameter values used to solve 4-Dimensional Systems
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Bifurcations found for 4-Dimensional System A

Equilibrium Point 1 (S1in, 0, S2in, 0):

Proved Transcritical bifurcation exists when

D = D∗1 = ( 1
α)( m2S2in

K2+S2in
) or when

D = D∗2 = ( 1
α)( m1S1in

K1+S1in
)

When given parameter values are substituted into system, D∗1 = 11
6

and D∗2 = 1.92.
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Bifurcations found for 4-Dimensional System A

Equilibrium Point 2: (S1in, 0, S∗2 (D), X ∗2 (D)):

Proved Transcritical bifurcation exists when

D = D∗ = ( 1
α)( m1S1in

K1+S1in
)

When the following parameter values are substituted into system,
D∗ = 0.1173.

Randomly generated parameter values using MATLAB:

m1 = 1.3038, k2 = 168.9636, K1 = 2.3323, m2 = 0.0253,
α = 0.1739, K2 = 19.892, S1in = 9.7551, S2in = 83.0481,
k1 = 33.5826
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Bifurcations found for 4-Dimensional System A

Equilibrium Point 3 (S∗1 (D), X ∗1 (D), S∗2in(D), 0):

Proved Transcritical bifurcation exists when

D = D∗ = ( 1
α)( m2q1

K2+q1
) such that

q1 = S2in + (k2k1 )(S1in − DK1α
m1−Dα)

When given parameter values are substituted into system,
D∗ = 1.877.
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Bifurcations found for 4-Dimensional System A

Equilibrium Point 4 (S∗1 (D), X ∗1 (D), S∗2 (D), X ∗2in(D)):

Proved Transcritical bifurcation exists when

D = D∗ = ( 1
K2α

)(S2in + (k2k1 )(S1in − K1Dα
m1−Dα))(m2 − Dα)

such that

S2in + (k2k1 )(S1in − K1Dα
m1−Dα) = K2Dα

m2−Dα

A Hopf Bifurcation test was performed algebraically and using
MATLAB, but no results were generated.
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Bifurcations found for 4-Dimensional System A
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Figure : Illustration of Transcritical Bifurcations found for Monod Model
using given parameter values: D∗ = 1.833, D∗ = 1.92, D∗ = 1.877.
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Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 1: (S1in, 0, S2in, 0)

Always Exists
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Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 2: (S∗1 (D), X ∗1 (D), S∗2in(D), 0)

S∗1 (D) = DK1α
m1−Dα X ∗1 (D) = 1

k1α
(S1in − DK1α

m1−Dα)

S∗2in(D) = S2in + X ∗1 (D)k2α

Conditions that must hold for point to exist:

m1 > Dα

S1in ≥ ( DK1α
m1−Dα)

S2in + (k2k1 )(S1in − DK1α
m1−Dα) ≥ 0
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Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 2: (S∗1 (D), X ∗1 (D), S∗2in(D), 0)
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Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 3: (S1in, 0, S1∗
2 (D), X 1

2 (D))

S1∗
2 (D) = (KI

2y )[(1− y) + ((1− y)2 − (4K2
KI

)(y2))1/2]

X 1
2 (D) = 1

k3α
(S2in − S1∗

2 (D))

y = Dα
m2

Conditions that must hold for point to exist:
Amputate my foot...
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Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 4: (S1in, 0, S2∗
2 (D), X 2

2 (D))

S2∗
2 (D) = (KI

2y )[(1− y)− ((1− y)2 − (4K2
KI

)(y2))1/2]

X 2
2 (D) = 1

k3α
(S2in − S2∗

2 (D))

y = Dα
m2

Conditions that must hold for point to exist:
End world hunger...
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Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 5: (S∗1 (D), X ∗1 (D), S1∗
2 (D), X 1∗

2 (D))

S∗1 (D) = DK1α
m1−Dα X ∗1 (D) = 1

k1α
(S1in − DK1α

m1−Dα)

S1∗
2 (D) = (KI

2y )[(1− y) + ((1− y)2 − (4K2
KI

)(y2))1/2]

X 1∗
2 (D) = ( 1

k3α
)(S∗2in(D)− S1∗

2 (D))

y = Dα
m2

Conditions that must hold for point to exist:
Give up first born son...
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Results from 4-Dimensional System B

Up to six equilibria were found:

Equilibrium 6: (S∗1 (D), X ∗1 (D), S2∗
2 (D), X 2∗

2 (D))

S∗1 (D) = DK1α
m1−Dα X ∗1 (D) = 1

k1α
(S1in − DK1α

m1−Dα)

S2∗
2 (D) = (KI

2y )[(1− y)− ((1− y)2 − (4K2
KI

)(y2))1/2]

X 2∗
2 (D) = ( 1

k3α
)(S∗2in(D)− S2∗

2 (D))

y = Dα
m2

Conditions that must hold for point to exist:
Amputate my other foot...
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Results from 4-Dimensional System B

Equilibrium Point 1
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Figure : Case 5: Saddle (left) and Case 8: Stable Node (right). In Case
5, solutions are moving away from (8, 0, 50, 0) as t −→∞. In Case 8,
solutions are moving towards (8, 0, 50, 0) as t −→∞.
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Results from 4-Dimensional System B

Equilibrium Point 2
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Figure : Case 2: Stable Node (left) and Case 8: Saddle (right). In Case
2, solutions are approaching (0.1672, 1.059, 110.474, 0) as t −→∞. In
Case 8, solutions are moving away from (0.0272, 0.07557, 42.014, 0) as
t −→∞.
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Results from 4-Dimensional System B

Equilibrium Points 3 and 4
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Figure : Equilibrium Point 3 Case A6: Saddle (left) and Equilibrium Point
4 Case C4: Stable Node (right). In EqPt 3 Case A6, solutions are moving
away from (8.6266, 0, 7.08424, 0.03633) as t −→∞. In EqPt 4 Case C4,
solutions are moving towards (3.0224, 0, 0.4495, 0.1948) as t −→∞.

Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor



Introduction Systems to Study Mathematical Approach to Solving Systems Results Concluding Thoughts

Results from 4-Dimensional System B

Equilibrium Point 6
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Figure : Equilibrium Point 6 Case B5: Stable Node. In EqPt 6 Case B5,
solutions are moving towards (0.4116, 0.014, 0.3016, 0.4401) as
t −→∞. No random parameters were generated that agreed with the
predicted results from any cases of Equilibrium Point 5.
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Bifurcations found from 4-Dimensional System B

Equilibrium Point 1 (S1in, 0, S2in, 0):

Proved Transcritical bifurcation exists when

D = D∗1 = ( 1
α)( m1S1in

K1+S1in
) or when

D = D∗2 = ( 1
α)( m2S2in

K2+S2in+
S2
2in
KI

)

When given parameter values are substituted into system,
D∗1 = 1.92 and D∗2 = 0.898.

A Pitchfork Bifurcation test was performed algebraically and

using MATLAB in the case where K2 =
S2
2in
KI

, but no results
were generated.
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Bifurcations found from 4-Dimensional System B

Equilibrium Point 2: (S∗1 (D), X ∗1 (D), S∗2in(D), 0):

Proved Transcritical bifurcation exists when

D = D∗ = ( 1
α)( m2x

K2+x+ x2

KI

) such that

x = S2in + (k2k1 )(S1in − K1Dα
m1−Dα)

When the following parameter values are substituted into
system, D∗ = 0.4305.
Randomly generated parameter values using MATLAB:

m1 = 1.6362, k2 = 250.9017, K1 = 1.419,
m2 = 1.109, α = 0.2349, K2 = 3.7185,
S1in = 10.7751, S2in = 66.2991, k1 = 15.396,
KI = 24.1864, k3 = 268.

A Pitchfork Bifurcation test was performed algebraically and using
MATLAB in the case where K2 = x2

KI
, but no results were

generated.
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Bifurcations found from 4-Dimensional System B

Equilibrium Point 3: (S1in, 0, S1∗
2 (D), X 1

2 (D)):

Proved Transcritical bifurcation exists when

D = D∗ = ( 1
α)( m1S1in

K1+S1in
)

When the following parameter values are substituted into system,
D∗ = 0.4993.
Randomly generated parameter values using MATLAB:

m1 = 0.6323, k2 = 101.7029, K1 = 1.6611, m2 = 1.824,
α = 0.9722, K2 = 8.0747, S1in = 5.4899, S2in = 77.3912,
k1 = 5.0144, k3 = 268, KI = 25.164.
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Bifurcations found from 4-Dimensional System B

Equilibrium Point 4: (S1in, 0, S2∗
2 (D), X 2

2 (D)):

Proved Transcritical bifurcation exists when

D = D∗ = ( 1
α)( m1S1in

K1+S1in
)

When the following parameter values are substituted into system,
D∗ = 0.2567.
Randomly generated parameter values using MATLAB:

m1 = 0.2811, k2 = 51.6183, K1 = 1.0457, m2 = 1.3676,
α = 0.9074, K2 = 13.2164, S1in = 5.0548, S2in = 6.2729,
k1 = 8.4958, k3 = 268, KI = 49.88.
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Bifurcations found from 4-Dimensional System B

Equilibrium Point 5: (S∗1 (D), X ∗1 (D), S1∗
2 (D), X 1∗

2 (D))

Equilibrium Point 6: (S∗1 (D), X ∗1 (D), S2∗
2 (D), X 2∗

2 (D))

Hopf Bifurcation tests were performed for both equilibria, but no
data was generated.
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Results from 5-Dimensional System A

m1 m2 k1 k2 k3 α
1 3.2 30 215 100 0.3

K1 K2 KI1 KI2 S1in S2in D
7 200 500 400 40 5 variable

m4 k4 K4 yin µ
1 5 1 5 0.06

Table : Parameter values used for solving 5-Dimensional Systems
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5-Dimensional System A

Combination of functions applied:

Monod model for the growth of Bacteria 1

µ(S1) = m1S1
K1+S1

Haldane model for the growth of Bacteria 2

µ(S2) = m2S2

K2+S2+
S2
2

KI1

Monod model for the consumptions of Toxin

µ(y) = m4y
K4+y
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Bifurcations found when Solving 5-Dimensional System A
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Figure : Illustration of Bifurcations found for 5-Dimensional System A,
Saddle-Node Bifurcation point: D∗ = 2.30067.
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Stable Periodic Orbit of 5-Dimensional System A
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Figure : Presence of Stable Periodic Orbit in 5D System A. Though a
Hopf bifurcation exists in this system from which stable periodic orbits
are generated, the nonhyperbolic equilibrium point corresponding to the
detected Hopf bifurcation displayed a negative solution for X2. Unstable
equilibria found: (40, 0, 5, 0, 5), (40, 0, 48.24, -1.44, -0.61). We
graphed only 3-D projections of the solutions: S1, X1, and S2.
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Results from 5-Dimensional System B

Combination of functions applied:

Monod model for the growth of Bacteria 1

µ(S1) = m1S1
K1+S1

Haldane model for the growth of Bacteria 2

µ(S2) = m2S2

K2+S2+
S2
2

KI1

Haldane model for the consumptions of Toxin

µ(y) = m4y

K4+y+ y2

KI2
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Results from 5-Dimensional System B

Combination of functions applied:

Monod model for the growth of Bacteria 1

µ(S1) = m1S1
K1+S1

Haldane model for the growth of Bacteria 2

µ(S2) = m2S2

K2+S2+
S2
2

KI1

Haldane model for the consumptions of Toxin

µ(y) = m4y

K4+y+ y2

KI2
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Bifurcations found when Solving 5-Dimensional System B
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Figure : Illustration of Bifurcations found for 5-Dimensional System B,
Saddle-Node Bifurcation point: D∗ = 2.03477.
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Stable Periodic Orbit of 5-Dimensional System B
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Figure : Proof of Stable Periodic Orbit in 5D System B, D∗ = 2.035.
Though a Hopf bifurcation exists in this system from which stable
periodic orbits are generated, the nonhyperbolic equilibrium point
corresponding to the detected Hopf bifurcation displayed a negative
solution for X2. Unstable equilibria found using Wolfram Mathematica
9.0: (40, 0, 5, 0, 5) and (34.22, 0.64, 48.24, -0.06, 5.12) when
D∗ = 2.03477.
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Results from 5-Dimensional System C

Combination of functions applied:

Monod model for the growth of Bacteria 1

µ(S1) = m1S1
K1+S1

Monod model for the growth of Bacteria 2

µ(S2) = m2S2
K2+S2

Monod model for the consumptions of Toxin

µ(y) = m4y
K4+y
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Bifurcations found when Solving 5-Dimensional System C
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Figure : Illustration of Bifurcations found for 5-Dimensional System C,
D∗ = 2.30567 at saddle-node bifurcation point.
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Results from 5-Dimensional System D

Combination of functions applied:

Monod model for the growth of Bacteria 1

µ(S1) = m1S1
K1+S1

Monod model for the growth of Bacteria 2

µ(S2) = m2S2
K2+S2

Haldane model for the consumptions of Toxin

µ(y) = m4y

K4+y+ y2

KI2
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Results from 5-Dimensional System D

Combination of functions applied:

Monod model for the growth of Bacteria 1
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µ(y) = m4y

K4+y+ y2

KI2

Christina Berti Modeling and Analysis of Anaerobic Digestion in a Bioreactor



Introduction Systems to Study Mathematical Approach to Solving Systems Results Concluding Thoughts

Bifurcations found when Solving 5-Dimensional System D
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Figure : Illustration of Bifurcations found for 5-Dimensional System D,
D∗ = 2.305139 at saddle-node bifurcation point.
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Parameter values used when solving 6-Dimensional Systems

m1 = 3, m2 = 0.75

k1 = 10, k2 = 5.2254, k3 = 40

K1 = 0.5, K2 = 0.15, KI = 1

S1 = 6, S2 = 0, α = 1, p = 1, r = 0.5.
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6-Dimensional System

Functions applied:

Haldane model for the growth of Bacteria 2

µ(S2) = m2S2

K2+S2+
S2
2

KI

Periodic inflow of S1in of amplitude ”r”, in the hopes of
generating oscillating solutions.
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6-Dimensional System

Bifurcation Results of 6-Dimensional System
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Figure : Saddle-Node Bifurcation of Periodic Orbits, D∗ = 0.4196 at
saddle-node bifurcation point.

Surprising Results: Saddle-Node Bifurcation of Periodic Orbits
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6-Dimensional System

Bifurcation Results of 6-Dimensional System
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Figure : Periodic Orbits of Opposite Stability converging at Saddle-Node
Bifurcation Point. Green: stable, Blue: unstable.
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6-Dimensional System

Bifurcation Results of 6-Dimensional System
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Figure : Stability statuses of Periodic Orbits 6 and 14. Left: Orbit 6,
D∗ = 0.2313 (stable), Right: Orbit 14, D∗ = 0.3937 (unstable).
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Equilibria Results of 6-Dimensional System
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Figure : Unstable Equilibria found for system using specific set of
parameter values. (0.0417725, 0.595823, 0.0690168, 0.0761099, 0, 0)
and (0.0417725, 0.595823, 2.17338, 0.0235007, 0, 0) when D∗ = 0.2313.
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Further Research to be Done

6-Dimensional System: Find heteroclinic orbits connecting
two unstable periodic orbits rather than solely orbits of
opposite stability.

5-Dimensional Systems:

Toxin has a profound influence on the growth of X2.
Toxin acts immediately on S2 accumulation rather
than indirectly through S1 reaction by X1.

Analysis of environmental conditions to find the most ideal
setting for digestion. Provide flexibility for maximum bacteria
growth velocity parameters: m1 , m2, and m4.
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