> Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

Characteristic Polynomials

Colleen Robichaux

Department of Mathematics Louisiana State University

Missouri State University REU 2013

イロト イヨト イヨト イヨト

AC Group Semidirect Products Remaining Questions

Adjacency Matrix

Definition

Adjacency Matrix:

Let Γ be a graph with *n* vertices a_i . An adjacency matrix A for Γ is $n \times n$ such that

$$A_{ij} = 1$$
 if there is an edge between a_i and a_j

and

 $A_{ii} = 0$ if there is no edge between a_i and a_i .

To find the adjacency matrix for paths of lengths k between a_i and a_j , take the kth power of A.

Adjacency Matrix Characteristic Polynomial Eigenvalues

> Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

・ロト ・四ト ・ヨト ・ヨト

3

Adjacency Matrix Characteristic Polynomial Eigenvalues

$\Gamma(D_8)$ Adjacency Matrix

Non-Commuting $\Gamma(D_8) \cong K_{2,2,2}$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic

Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロン イヨン イヨン イヨン

æ

Characteristic Polynomial

Definition

Characteristic Polynomial:

The characteristic polynomial of the matrix A is

$$det(A - \lambda I).$$

Complete K-Partite Graph:

A graph is complete K-partite denoted by $K(n_1, ..., n_k)$ if the n_i vertices in the *i*th class are not connected but all n_i vertices are connected to the remaining $n - n_i$ vertices. If there are *j* parts of size n_1 for a complete K-partite graph, the graph can be represented by $K(n_1^j, ..., n_k)$.

・ロト ・回ト ・ヨト ・ヨト

э

Adjacency Matrix

Characteristic Polynomial

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Proving Characteristic Polynomials

By induction:

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロン イヨン イヨン イヨン

æ

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Proving Characteristic Polynomials

By induction:

Find adjacency matrix.

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Proving Characteristic Polynomials

By induction:

- Find adjacency matrix.
- Row reduce.

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Proving Characteristic Polynomials

By induction:

- Find adjacency matrix.
- Row reduce.
- Use cofactor expansion to find recurring forms of matrices.

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Proving Characteristic Polynomials

By induction:

- Find adjacency matrix.
- Row reduce.
- Use cofactor expansion to find recurring forms of matrices.
- Prove conjectured polynomials by inducting upon the expansions found.

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Adjacency Matrix Characteristic Polynomial Eigenvalues

Characteristic Polynomial Findings

Characteristic Polynomial of Complete K-Partite:

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Characteristic Polynomial Findings

Characteristic Polynomial of Complete K-Partite:

•
$$K_{m_1,m_2,...,m_k}: (-1)^{m_1+m_2+...+m_k} \lambda^{m_1+m_2+...+m_k-k} (\lambda^k - \sum_{i=2}^{i=k} (i-1) \sigma_i(m_1,m_2,...,m_k) \lambda^{k-i})$$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Characteristic Polynomials AC Group

> Semidirect Products Remaining Questions

Adjacency Matrix Characteristic Polynomial Eigenvalues

Characteristic Polynomial Findings

Characteristic Polynomial of Complete K-Partite:

- $K_{m_1,m_2,...,m_k}$: $(-1)^{m_1+m_2+...+m_k} \lambda^{m_1+m_2+...+m_k-k} (\lambda^k \sum_{i=2}^{i=k} (i-1) \sigma_i(m_1,m_2,...,m_k) \lambda^{k-i})$
 - σ_i(m₁, m₂, ..., m_k) are called symmetric polynomials, which follow the form

$$\sigma_1(m_1, m_2, ..., m_k) = m_1 + m_2 + ... + m_k$$

$$\sigma_2(m_1, m_2, ..., m_k) = m_1 m_2 + m_1 m_3 + ... + m_{k-1} m_k$$

...

$$\sigma_k(m_1, m_2, ..., m_k) = m_1 m_2 ... m_k.$$

Characteristic Polynomials

Colleen Robichaux

- Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues
- AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロン イヨン イヨン ・

Adjacency Matrix Characteristic Polynomial Eigenvalues

Graph, Adjacency Matrix, and Characteristic Polynomial of $\Gamma(K_{2,3,4})$

$$\sigma_1(2,3,4) = 2 + 3 + 4 = 9$$

 $\sigma_2(2,3,4) = 2 * 3 + 2 * 4 + 3 * 4 = 26$
 $\sigma_3(2,3,4) = 2 * 3 * 4 = 24$

$$p(\lambda) = (-1)^{9} \lambda^{6} (\lambda^{3} - \sum_{i=2}^{i=3} (i-1)\sigma_{i}(2,3,4)\lambda^{3-i})$$

= $-\lambda^{6} (\lambda^{3} - (6\lambda + 8\lambda + 12\lambda) - 2(24))$
= $-\lambda^{6} (\lambda^{3} - 26\lambda - 48)$

Characteristic Polynomials

Colleen Robichaux

- Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues
- AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues

Definition

Eigenvalue:

The eigenvalues of a matrix A are the solutions to the characteristic polynomial $p(\lambda) = 0$.

Corresponds to Graph Properties:

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues

Definition

Eigenvalue:

The eigenvalues of a matrix A are the solutions to the characteristic polynomial $p(\lambda) = 0$.

Corresponds to Graph Properties:

Degree

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Einenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues

Definition

Eigenvalue:

The eigenvalues of a matrix A are the solutions to the characteristic polynomial $p(\lambda) = 0$.

Corresponds to Graph Properties:

- Degree
- Chromatic Number

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Einenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

AC Group Semidirect Products Remaining Questions Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues

Definition

Eigenvalue:

The eigenvalues of a matrix A are the solutions to the characteristic polynomial $p(\lambda) = 0$.

Corresponds to Graph Properties:

- Degree
- Chromatic Number
- Subgraphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ , maximum degree Δ , minimum degree δ , and chromatic number χ of graph Γ :

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ , maximum degree Δ , minimum degree δ , and chromatic number χ of graph Γ :

 $\blacktriangleright |\mu| \leq \Delta$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ , maximum degree Δ , minimum degree δ , and chromatic number χ of graph Γ :

$$|\mu| \leq \Delta$$

• If
$$-\Delta = \mu$$
, then Γ is regular and bipartite.

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ , maximum degree Δ , minimum degree δ , and chromatic number χ of graph Γ :

- $\blacktriangleright |\mu| \le \Delta$
- If $-\Delta = \mu$, then Γ is regular and bipartite.
- $\chi \le \mu_{max} + 1$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロン イヨン イヨン イヨン

Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ , maximum degree Δ , minimum degree δ , and chromatic number χ of graph Γ :

- $\blacktriangleright |\mu| \le \Delta$
- If $-\Delta = \mu$, then Γ is regular and bipartite.
- ▶ $\chi \le \mu_{max} + 1$
- $\chi \ge 1 \frac{\mu_{\max}}{\mu_{\min}}$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロン イヨン イヨン イヨン

Adjacency Matrix Characteristic Polynomial Eigenvalues

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ , maximum degree Δ , minimum degree δ , and chromatic number χ of graph Γ :

$$|\mu| \leq \Delta$$

• If $-\Delta = \mu$, then Γ is regular and bipartite.

•
$$\chi \le \mu_{max} + 1$$

- $\blacktriangleright \ \chi \geq 1 \tfrac{\mu_{\max}}{\mu_{\min}}$
- If *H* is an induced subgraph of Γ , then $\mu_{min}(\Gamma) \le \mu_{min}(H) \le \mu_{max}(H) \le \mu_{max}(\Gamma).$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

・ロト ・回ト ・ヨト ・ヨト

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group

Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

Definition

AC Group

AC Group:

A group G is an AC Group provided that

$$C_G(g) = \{x | xg = gx\}$$

is an abelian subgroup of G, $\forall g \in G \setminus Z(G)$.

イロン イヨン イヨン イヨン

æ

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

Colleen Robichaux Characteristic Polynomials

イロン イヨン イヨン イヨン

æ

Graphs of AC Groups

AC Group:

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

AC Group:

Graphs of AC Groups

The non-commuting graphs of AC groups are complete K-partite graphs. In fact, the non-commuting graph of a group is complete K-partite if and only if the group is an AC group.

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

AC Group:

Graphs of AC Groups

- The non-commuting graphs of AC groups are complete K-partite graphs. In fact, the non-commuting graph of a group is complete K-partite if and only if the group is an AC group.
- Through this fact, once the corresponding K-partite graph has been determined for a specific AC group, we know its characteristic polynomial.

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

K-Partite Graphs with Groups

Determining which graphs $K_{m_1z,m_2z,...,m_kz}$ where z = |Z(G)|and k = |G/Z(G)| can be graphs of AC groups using the following: Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group

Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

K-Partite Graphs with Groups

Determining which graphs $K_{m_1z,m_2z,...,m_kz}$ where z = |Z(G)|and k = |G/Z(G)| can be graphs of AC groups using the following:

Lagrange's Theorem

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group

Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

K-Partite Graphs with Groups

Determining which graphs $K_{m_1z,m_2z,...,m_kz}$ where z = |Z(G)|and k = |G/Z(G)| can be graphs of AC groups using the following:

- Lagrange's Theorem
 - ▶ $\forall i \text{ such that } 0 \leq i \leq k, (m_i + 1) \text{ divides } 1 + \sum_{i=1}^{i=k} m_i.$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eirenvalues

AC Group

Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

ヘロト 人間 とくほとう ほんし

Complete K-Partite Graphs

K-Partite Graphs with Groups

Determining which graphs $K_{m_1z,m_2z,...,m_kz}$ where z = |Z(G)|and k = |G/Z(G)| can be graphs of AC groups using the following:

- Lagrange's Theorem
 - ▶ $\forall i \text{ such that } 0 \leq i \leq k, (m_i + 1) \text{ divides } 1 + \sum_{i=1}^{i=k} m_i.$

• The largest parts $m_{kz}, m_{(k-1)z}$ must be such that

$$m_k m_{k-1} \leq \sum_{i=1}^{i=k-2} m_i.$$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

K-Partite Graphs with Groups

Determining which graphs $K_{m_1z,m_2z,...,m_kz}$ where z = |Z(G)|and k = |G/Z(G)| can be graphs of AC groups using the following:

- Lagrange's Theorem
 - ▶ $\forall i \text{ such that } 0 \leq i \leq k, (m_i + 1) \text{ divides } 1 + \sum_{i=1}^{i=k} m_i.$

▶ The largest parts $m_{kz}, m_{(k-1)z}$ must be such that

$$m_k m_{k-1} \leq \sum_{i=1}^{i=k-2} m_i.$$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partit

Semidirect Products AC Groups and Order

Remaining Questions

• The largest part m_{kz} must be such that $m_k \leq k - 2$.

・ロト ・四ト ・ヨト ・ヨト

Complete K-Partite Graphs

K-Partite Graphs with Groups

Determining which graphs $K_{m_1z,m_2z,...,m_kz}$ where z = |Z(G)|and k = |G/Z(G)| can be graphs of AC groups using the following:

- Lagrange's Theorem
 - ▶ $\forall i \text{ such that } 0 \leq i \leq k, (m_i + 1) \text{ divides } 1 + \sum_{i=1}^{i=k} m_i.$

▶ The largest parts $m_{kz}, m_{(k-1)z}$ must be such that

$$m_k m_{k-1} \leq \sum_{i=1}^{i=k-2} m_i.$$

- The largest part m_{kz} must be such that $m_k \leq k-2$.
- The corresponding group *G* must be capable.

・ロト ・四ト ・ヨト ・ヨト

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group

Semidirect Products AC Groups and Order

Remaining Questions

Complete K-Partite Graphs

K-Partite Graphs with Groups

Determining which graphs $K_{m_1z,m_2z,...,m_kz}$ where z = |Z(G)|and k = |G/Z(G)| can be graphs of AC groups using the following:

- Lagrange's Theorem
 - ▶ $\forall i \text{ such that } 0 \leq i \leq k, (m_i + 1) \text{ divides } 1 + \sum_{i=1}^{i=k} m_i.$
- The largest parts $m_{kz}, m_{(k-1)z}$ must be such that

$$m_k m_{k-1} \leq \sum_{i=1}^{i=k-2} m_i.$$

- The largest part m_{kz} must be such that $m_k \leq k 2$.
- The corresponding group *G* must be capable.
 - A group G is capable if there exists a group H such that $G \cong \frac{H}{Z(H)}$.

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group

Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

Complete K-Partite Graphs

Characteristi Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

K-Partite Graphs with Groups

Which groups can be eliminated?

イロン イヨン イヨン イヨン

æ

Complete K-Partite Graphs

K-Partite Graphs with Groups

Which groups can be eliminated?

• Cyclic groups *G* are not capable.

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロン イヨン イヨン イヨン
Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

```
AC Group
Complete K-Partite
Graphs
```

Semidirect Products AC Groups and Order

Remaining Questions

Which groups can be eliminated?

K-Partite Graphs with Groups

- Cyclic groups *G* are not capable.
- If |G| = pq, where p, q are distinct primes with p < q, if p does not divide (q − 1), then Γ(G) ≅ Z_{pq}, which is not capable.

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

K-Partite Graphs with Groups

Which groups have been realized?

イロン イヨン イヨン イヨン

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

K-Partite Graphs with Groups

Which groups have been realized?

イロン イヨン イヨン イヨン

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

K-Partite Graphs with Groups

Which groups have been realized?

Dihedral Groups

イロン イヨン イヨン イヨン

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

K-Partite Graphs with Groups

Which groups have been realized?

- Dihedral Groups
 - For even n: $K_{1^{\frac{n}{2}}, \frac{n}{2}-1}$
 - For odd n: $K_{1^n,n-1}$

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partit

Semidirect Products AC Groups and Order

Remaining Questions

K-Partite Graphs with Groups

Which groups have been realized?

- Dihedral Groups
 - For even n: $K_{1^{\frac{n}{2}}, \frac{n}{2}-1}$
 - For odd n: $K_{1^n,n-1}$
- Quaternion Groups

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partit

Semidirect Products AC Groups and Order

Remaining Questions

K-Partite Graphs with Groups

Which groups have been realized?

- Dihedral Groups
 - For even n: $K_{1^{\frac{n}{2}}, \frac{n}{2}-1}$
 - For odd n: $K_{1^n,n-1}$
- Quaternion Groups
- Capable Semidirect Products

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group

Graphs

Semidirect Products AC Groups and Order

Remaining Questions

K-Partite Graphs with Groups

Which groups have been realized?

- Dihedral Groups
 - For even n: $K_{1^{\frac{n}{2}}, \frac{n}{2}-1}$
 - For odd n: $K_{1^n,n-1}$
- Quaternion Groups
- Capable Semidirect Products
 - For example: $\mathbb{Z}_7 \rtimes \mathbb{Z}_3, \mathbb{Z}_3 \rtimes Q_8, (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8$

イロト イヨト イヨト イヨト

Results

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

K-partite Non-Commuting Graphs:

イロン イヨン イヨン イヨン

Results

K-partite Non-Commuting Graphs:

▶ No complete or complete bipartite, proven in [4].

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

K-partite Non-Commuting Graphs:

Results

- ▶ No complete or complete bipartite, proven in [4].
- Identified all K-partite for k = 3, 4, 5, 6.

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

K-partite Non-Commuting Graphs:

Results

- ▶ No complete or complete bipartite, proven in [4].
- Identified all K-partite for k = 3, 4, 5, 6.
- K-partite for k = 7, 8, 9, 10 in progress.

イロト イヨト イヨト イヨト

Results

Complete and Complete Bipartite:

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロン イヨン イヨン イヨン

Results

Complete and Complete Bipartite:

No complete non-commuting graphs.

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

Complete and Complete Bipartite:

Results

- No complete non-commuting graphs.
 - ► From a group theoretical standpoint, this cannot occur, as *G* would be a proper subgroup of itself.

イロト イヨト イヨト イヨト

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

Complete and Complete Bipartite:

Results

- No complete non-commuting graphs.
 - ► From a group theoretical standpoint, this cannot occur, as *G* would be a proper subgroup of itself.
- No complete bipartite non-commuting graphs.

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

Complete and Complete Bipartite:

Results

- No complete non-commuting graphs.
 - ▶ From a group theoretical standpoint, this cannot occur, as G would be a proper subgroup of itself.
- No complete bipartite non-commuting graphs.
 - This is again impossible, though group theoretical reasoning. G would be union of two proper subgroups-centralizers C_G(x) and C_G(y), but elements xy cannot be placed.

Complete K-Partite Graphs

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

Complete K-Partite Graphs

AC Group

Semidirect Products AC Groups and Order

Remaining Questions

Table:	K-Partite	Graphs	for	k=3,4,5,6
--------	-----------	--------	-----	-----------

Graph	Groups, G		
<i>K</i> _{z³}	D_8, Q_8		
$K_{z^{3},2z}$	D_6		
$K_{(2z)^4}$	$\mathbb{Z}_9 \rtimes \mathbb{Z}_3$		
$K_{z^4,3z}$	D_{16}, QD_{16}, Q_{16}		
$K_{(2z)^4,3z}$	A_4		
$K_{(3z)^5}$	$((\mathbb{Z}_4 imes \mathbb{Z}_4) times \mathbb{Z}_2) times \mathbb{Z}_2st$		
$K_{z^{5},4z}$	D_{10}		
$K_{(3z)^4,4z}$	$\mathbb{Z}_5 \rtimes \mathbb{Z}_4$		
$K_{(4z)^6}$	$\mathbb{Z}_{25} \rtimes \mathbb{Z}_5, (\mathbb{Z}_5 imes \mathbb{Z}_5) \rtimes \mathbb{Z}_5$		

・ロト ・回ト ・ヨト ・ヨト

• $\mathbb{Z}_p \rtimes \mathbb{Z}_q = \langle a, b | a^p = b^q = 1, bab^{-1} = a^k \rangle$ where

 $k^q \equiv 1 \mod p$ with p, q distinctly prime, AC.

Semidirect Products

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

Colleen Robichaux Characteristic Polynomials

イロト イヨト イヨト

 $\triangleright \mathbb{Z}_p \rtimes \mathbb{Z}_q = \langle a, b | a^p = b^q = 1, bab^{-1} = a^k \rangle$ where

 $\blacktriangleright \mathbb{Z}_{pq} \rtimes \mathbb{Z}_r = \langle a, b | a^{pq} = b^r = 1, bab^{-1} = a^k \rangle$ where

 $k^q \equiv 1 \mod p$ with p, q distinctly prime, AC.

Semidirect Products

 $k^{\dot{r}} \equiv 1 \mod pq$ with

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

- Characteristic Polynomials Adjacency Matrix
- Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eirenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

• $\mathbb{Z}_p \rtimes \mathbb{Z}_q = \langle a, b | a^p = b^q = 1, bab^{-1} = a^k \rangle$ where

Semidirect Products

- $k^q \equiv 1 \mod p$ with p, q distinctly prime, AC.
- $\mathbb{Z}_{pq} \rtimes \mathbb{Z}_r = \langle a, b | a^{pq} = b^r = 1, bab^{-1} = a^k \rangle$ where $k^r \equiv 1 \mod pq$ with
 - ▶ *p*, *q*, *r* relatively prime, AC
 - p = q, r relatively prime, AC.

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eirenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining

Questions

Semidirect Products

- $\mathbb{Z}_p \rtimes \mathbb{Z}_q = \langle a, b | a^p = b^q = 1, bab^{-1} = a^k \rangle$ where $k^q \equiv 1 \mod p$ with p, q distinctly prime, AC.
- $\mathbb{Z}_{pq} \rtimes \mathbb{Z}_r = \langle a, b | a^{pq} = b^r = 1, bab^{-1} = a^k \rangle$ where $k^r \equiv 1 \mod pq$ with
 - ▶ *p*, *q*, *r* relatively prime, AC
 - p = q, r relatively prime, AC.
- $\mathbb{Z}_p \rtimes \mathbb{Z}_{qr} = \langle a, b | a^p = b^{qr} = 1, bab^{-1} = a^k \rangle$ where $k^{qr} \equiv 1 \mod p$ with

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eirenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

AC Groups and Orde

Remaining Questions

• $\mathbb{Z}_p \rtimes \mathbb{Z}_q = \langle a, b | a^p = b^q = 1, bab^{-1} = a^k \rangle$ where

- $k^q \equiv 1 \mod p$ with p, q distinctly prime, AC.
- $\mathbb{Z}_{pq} \rtimes \mathbb{Z}_r = \langle a, b | a^{pq} = b^r = 1, bab^{-1} = a^k \rangle$ where $k^r \equiv 1 \mod pq$ with
 - p, q, r relatively prime, AC

Semidirect Products

- p = q, r relatively prime, AC.
- $\mathbb{Z}_p \rtimes \mathbb{Z}_{qr} = \langle a, b | a^p = b^{qr} = 1, bab^{-1} = a^k \rangle$ where $k^{qr} \equiv 1 \mod p$ with
 - ▶ *p*, *q*, *r* relatively prime, AC
 - p, q = r relatively prime, AC.

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

 Z_p ⋊ Z_q = ⟨a, b|a^p = b^q = 1, bab⁻¹ = a^k⟩ where k^q ≡ 1 mod p with p, q distinctly prime, AC.
 Z_{pq} ⋊ Z_r = ⟨a, b|a^{pq} = b^r = 1, bab⁻¹ = a^k⟩ where

- $\mathbb{Z}_{pq} \rtimes \mathbb{Z}_r = \langle a, b | a^{pq} = b' = 1, bab^{-1} = a^* \rangle$ where $k^r \equiv 1 \mod pq$ with
 - p, q, r relatively prime, AC

Semidirect Products

- p = q, r relatively prime, AC.
- $\mathbb{Z}_p \rtimes \mathbb{Z}_{qr} = \langle a, b | a^p = b^{qr} = 1, bab^{-1} = a^k \rangle$ where $k^{qr} \equiv 1 \mod p$ with
 - ▶ *p*, *q*, *r* relatively prime, AC
 - p, q = r relatively prime, AC.

• $\mathbb{Z}_{pq} \rtimes \mathbb{Z}_{rs} = \langle a, b | a^{pq} = b^{rs} = 1, bab^{-1} = a^k \rangle$ where $k^{rs} \equiv 1 \mod pq$ with

イロト イヨト イヨト イヨト

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

Z_p ⋊ Z_q = ⟨a, b|a^p = b^q = 1, bab⁻¹ = a^k⟩ where k^q ≡ 1 mod p with p, q distinctly prime, AC.
Z_{pq} ⋊ Z_r = ⟨a, b|a^{pq} = b^r = 1, bab⁻¹ = a^k⟩ where k^r ≡ 1 mod pq with

p, q, r relatively prime, AC

Semidirect Products

- p = q, r relatively prime, AC.
- $\mathbb{Z}_p \rtimes \mathbb{Z}_{qr} = \langle a, b | a^p = b^{qr} = 1, bab^{-1} = a^k \rangle$ where $k^{qr} \equiv 1 \mod p$ with
 - ▶ *p*, *q*, *r* relatively prime, AC
 - p, q = r relatively prime, AC.

• $\mathbb{Z}_{pq} \rtimes \mathbb{Z}_{rs} = \langle a, b | a^{pq} = b^{rs} = 1, bab^{-1} = a^k \rangle$ where $k^{rs} \equiv 1 \mod pq$ with

p, q, r, s relatively prime, not AC

p = q, r = s relatively prime, AC.

ロト イポト イヨト イヨト

Findings

All groups of order *pq* are AC.

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products

AC Groups and Orde

Remaining Questions

イロト イヨト イヨト イヨト

Findings

- ► All groups of order *pq* are AC.
- All groups of order pqr are AC.

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products

Remaining

Questions

イロト イヨト イヨト イヨト

Findings

- ► All groups of order *pq* are AC.
- All groups of order pqr are AC.
- All groups of order p^2q and p^3 are AC.

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products

AC Groups and Orde

Remaining Questions

イロト イヨト イヨト イヨト

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products

Remaining

Questions

► All groups of order *pq* are AC.

Findings

- All groups of order pqr are AC.
- All groups of order p^2q and p^3 are AC.
- Groups of order *pqrs* may not be AC.

イロト イヨト イヨト イヨト

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products

Remaining Questions

All groups of order pq are AC.

Findings

- All groups of order pqr are AC.
- All groups of order p^2q and p^3 are AC.
- Groups of order pqrs may not be AC.
 - Note: The Cartesian product of two non-abelian groups is never AC.
 - For example, $\mathbb{Z}_{35} \rtimes \mathbb{Z}_6 \cong D_{10} \times (\mathbb{Z}_7 \rtimes \mathbb{Z}_3)$ is not AC.

・ロト ・ 同ト ・ ヨト ・ ヨト

AC Groups and Order

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products

Remaining Questions

► All groups of order *pq* are AC.

Findings

- All groups of order pqr are AC.
- All groups of order p^2q and p^3 are AC.
- Groups of order pqrs may not be AC.
 - Note: The Cartesian product of two non-abelian groups is never AC.

• For example, $\mathbb{Z}_{35} \rtimes \mathbb{Z}_6 \cong D_{10} \times (\mathbb{Z}_7 \rtimes \mathbb{Z}_3)$ is not AC.

• Conjecture: If the semidirect product $\mathbb{Z}_m \rtimes \mathbb{Z}_n$ is AC, then its graph will be of the form $K_{m-|Z(G)|}K_{|Z(G)|(n-1)}...K_{|Z(G)|(n-1)}$ with $\frac{m}{|Z(G)|}$ copies of $K_{|Z(G)|(n-1)}$.

イロン イヨン イヨン ・

3

Present Questions

What types of K-partite graphs can be realized by AC groups; What sizes can the parts be?

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Present Questions

- What types of K-partite graphs can be realized by AC groups; What sizes can the parts be?
- What kinds of non-commuting graphs do non-AC groups have?

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

イロト イヨト イヨト イヨト

Present Questions

- What types of K-partite graphs can be realized by AC groups; What sizes can the parts be?
- What kinds of non-commuting graphs do non-AC groups have?
 - $S_4: \lambda^{11}(\lambda+2)^6(\lambda^2+2\lambda-4)^2(\lambda^3-16\lambda^2-76\lambda-48)$
 - ► $S_5: \lambda^{65}(\lambda+4)^{10}(\lambda^2+2\lambda-2)^5(\lambda^3-106\lambda^2-896\lambda-1680)(\lambda^3+4\lambda^2-6\lambda-10)^4(\lambda^4+8\lambda^3+10\lambda^2-28\lambda-40)^5$

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions

References

[1] B. Bollobás. *Modern Graph Theory*. Springer-Verlag (1998).

[2] A. Abdollahi, S. M. Jafarian Amiri, and A. Mohammadi Hassanabadi, *Groups with specific number of centralizers*, Houston J. Math. 33 (2007), 43-57.

[3] F. R. Beyl, U. Felgner and P. Schmid, *On groups occurring as center factor groups*, J. Algebra 61 (1979), 161-177.

[4] S. M. Belcastro and G. J. Sherman, *Counting centralizers in finite groups*, Math. Mag. 5 (1994), 111-114.

Characteristic Polynomials

Colleen Robichaux

Characteristic Polynomials Adjacency Matrix Characteristic Polynomial Eigenvalues

AC Group Complete K-Partite Graphs

Semidirect Products AC Groups and Order

Remaining Questions