Characteristic Polynomials

Characteristic Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Colleen Robichaux

Department of Mathematics
Louisiana State University
Missouri State University REU 2013

Adjacency Matrix

Characteristic Polynomials

Definition

Adjacency Matrix:
Let Γ be a graph with n vertices a_{i}. An adjacency matrix A for Γ is $n \times n$ such that

$$
\begin{gathered}
A_{i j}=1 \text { if there is an edge between } a_{i} \text { and } a_{j} \\
\text { and }
\end{gathered}
$$

Characteristic

Polynomials
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect

Products
AC Groups and Order
Remaining
Questions

$$
A_{i j}=0 \text { if there is no edge between } a_{i} \text { and } a_{j} .
$$

To find the adjacency matrix for paths of lengths k between a_{i} and a_{j}, take the k th power of A.

Characteristic Polynomials
AC Group
Semidirect Products Remaining Questions

Adjacency Matrix

Characteristic Polynomial
Eigenvalues

$\Gamma\left(D_{8}\right)$ Adjacency Matrix

Characteristic

 PolynomialsNon-Commuting $\Gamma\left(D_{8}\right) \cong K_{2,2,2}$

Colleen Robichatx

Characteristic
Polynomials

Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect

Products
AC Groups and Order
Remaining
Questions

Characteristic Polynomial

Characteristic Polynomials

Definition

Characteristic Polynomial:

The characteristic polynomial of the matrix A is

$$
\operatorname{det}(A-\lambda I)
$$

Complete K-Partite Graph:

A graph is complete K -partite denoted by $K\left(n_{1}, \ldots, n_{k}\right)$ if the

Characteristic
Polynomials
Adjacency Matrix

Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect

Products
AC Groups and Order n_{i} vertices in the i th class are not connected but all n_{i} vertices are connected to the remaining $n-n_{i}$ vertices. If there are j parts of size n_{1} for a complete K-partite graph, the graph can be represented by $K\left(n_{1}^{j}, \ldots, n_{k}\right)$.

Proving Characteristic Polynomials

By induction:

Adjacency Matrix
Chamactoristic

Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Proving Characteristic Polynomials

By induction:

- Find adjacency matrix.

Adjacency Matrix

Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Proving Characteristic Polynomials

By induction:

- Find adjacency matrix.
- Row reduce.

Graphs
Semidirect
Products
AC Groups and Order
Remaining
Questions

Proving Characteristic Polynomials

By induction:

- Find adjacency matrix.
- Row reduce.
- Use cofactor expansion to find recurring forms of matrices.

Proving Characteristic Polynomials

By induction:

- Find adjacency matrix.
- Row reduce.
- Use cofactor expansion to find recurring forms of matrices.
- Prove conjectured polynomials by inducting upon the expansions found.

Characteristic Polynomial Findings

Characteristic Polynomial of Complete K-Partite:

Characteristic
Polynomials
Adjacency Matrix

Eigenvalues
AC Group
Complete K-Partite
Graphs
Semidirect
Products
AC Groups and Order
Remaining
Questions

Characteristic Polynomial Findings

Characteristic Polynomial of Complete K-Partite:

- $K_{m_{1}, m_{2}, \ldots, m_{k}}:(-1)^{m_{1}+m_{2}+\ldots+m_{k}} \lambda^{m_{1}+m_{2}+\ldots+m_{k}-k}\left(\lambda^{k}-\right.$ $\left.\sum_{i=2}^{i=k}(i-1) \sigma_{i}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \lambda^{k-i}\right)$

Characteristic
Polynomials
Adjacency Matrix

Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Characteristic Polynomial Findings

Characteristic Polynomial of Complete K-Partite:

- $K_{m_{1}, m_{2}, \ldots, m_{k}}:(-1)^{m_{1}+m_{2}+\ldots+m_{k}} \lambda^{m_{1}+m_{2}+\ldots+m_{k}-k}\left(\lambda^{k}-\right.$ $\left.\sum_{i=2}^{i=k}(i-1) \sigma_{i}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \lambda^{k-i}\right)$
- $\sigma_{i}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ are called symmetric polynomials, which follow the form

$$
\begin{aligned}
& \sigma_{1}\left(m_{1}, m_{2}, \ldots, m_{k}\right)=m_{1}+m_{2}+\ldots+m_{k} \\
& \sigma_{2}\left(m_{1}, m_{2}, \ldots, m_{k}\right)=m_{1} m_{2}+m_{1} m_{3}+\ldots+m_{k-1} m_{k} \\
& \ldots \\
& \sigma_{k}\left(m_{1}, m_{2}, \ldots, m_{k}\right)=m_{1} m_{2} \ldots m_{k}
\end{aligned}
$$

Characteristic
Polynomials
Adjacency Matrix

Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Graph, Adjacency Matrix, and Characteristic Polynomial of $\Gamma\left(K_{2,3,4}\right)$

$$
\begin{gathered}
\sigma_{1}(2,3,4)=2+3+4=9 \\
\sigma_{2}(2,3,4)=2 * 3+2 * 4+3 * 4=26 \\
\sigma_{3}(2,3,4)=2 * 3 * 4=24 \\
p(\lambda)=(-1)^{9} \lambda^{6}\left(\lambda^{3}-\sum_{i=2}^{i=3}(i-1) \sigma_{i}(2,3,4) \lambda^{3-i}\right) \\
=-\lambda^{6}\left(\lambda^{3}-(6 \lambda+8 \lambda+12 \lambda)-2(24)\right) \\
=-\lambda^{6}\left(\lambda^{3}-26 \lambda-48\right)
\end{gathered}
$$

Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect

Products
AC Groups and Order
Remaining
Questions

Eigenvalues

Definition

Eigenvalue:
The eigenvalues of a matrix A are the solutions to the characteristic polynomial $p(\lambda)=0$.
Corresponds to Graph Properties:

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial

AC Group
Complete K-Partite
Graphs
Semidirect
Products
AC Groups and Order
Remaining
Questions

Eigenvalues

Definition

Eigenvalue:
The eigenvalues of a matrix A are the solutions to the characteristic polynomial $p(\lambda)=0$.
Corresponds to Graph Properties:

- Degree

Adjacency Matrix
Characteristic
Polynomial

AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Eigenvalues

Definition

Eigenvalue:
The eigenvalues of a matrix A are the solutions to the characteristic polynomial $p(\lambda)=0$.
Corresponds to Graph Properties:

- Degree
- Chromatic Number

Eigenvalues

Definition

Eigenvalue:
The eigenvalues of a matrix A are the solutions to the characteristic polynomial $p(\lambda)=0$.
Corresponds to Graph Properties:

- Degree
- Chromatic Number
- Subgraphs

Characteristic Polynomials
AC Group
Semidirect Products Remaining Questions

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ, maximum degree Δ, minimum degree δ, and chromatic number χ of graph Γ :

Characteristic Polynomials
AC Group
Semidirect Products Remaining Questions

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ, maximum degree Δ, minimum degree δ, and chromatic number χ of graph Γ :

- $|\mu| \leq \Delta$

Characteristic Polynomials
AC Group

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ, maximum degree Δ, minimum degree δ, and chromatic number χ of graph Γ :

- $|\mu| \leq \Delta$
- If $-\Delta=\mu$, then Γ is regular and bipartite.

Semidirect
Products
AC Groups and Order
Remaining
Questions

Characteristic Polynomials
AC Group

Eigenvalues, Degree, and Chromatic Number

For eigenvalues μ, maximum degree Δ, minimum degree δ, and chromatic number χ of graph Γ :

- $|\mu| \leq \Delta$
- If $-\Delta=\mu$, then Γ is regular and bipartite.
- $\chi \leq \mu_{\text {max }}+1$

Semidirect
Products
AC Groups and Order
Remaining
Questions

Characteristic Polynomials
AC Group

Eigenvalues, Degree, and Chromatic Number

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial

AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Characteristic Polynomials
AC Group

Eigenvalues, Degree, and Chromatic Number

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial

AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

- If H is an induced subgraph of Γ, then
$\mu_{\min }(\Gamma) \leq \mu_{\min }(H) \leq \mu_{\max }(H) \leq \mu_{\max }(\Gamma)$.

AC Group

Characteristic

 Polynomials
AC Group:

A group G is an AC Group provided that

$$
C_{G}(g)=\{x \mid x g=g x\}
$$

is an abelian subgroup of $G, \forall g \in G \backslash Z(G)$.

Graphs of AC Groups

AC Group:

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

Graphs of AC Groups

AC Group:

- The non-commuting graphs of AC groups are complete K-partite graphs. In fact, the non-commuting graph of a group is complete K -partite if and only if the group is an $A C$ group.

Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

Graphs of AC Groups

AC Group:

- The non-commuting graphs of AC groups are complete K-partite graphs. In fact, the non-commuting graph of a group is complete K-partite if and only if the group is an $A C$ group.
- Through this fact, once the corresponding K-partite graph has been determined for a specific AC group, we know its characteristic polynomial.

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Determining which graphs $K_{m_{1} z, m_{2} z, \ldots, m_{k} z}$ where $z=|Z(G)|$ and $k=|G / Z(G)|$ can be graphs of AC groups using the following:

Colleen Robichaux

Characteristic Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Determining which graphs $K_{m_{1} z, m_{2} z, \ldots, m_{k} z}$ where $z=|Z(G)|$ and $k=|G / Z(G)|$ can be graphs of AC groups using the following:

- Lagrange's Theorem

Colleen Robichaux

Characteristic Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Determining which graphs $K_{m_{1} z, m_{2} z, \ldots, m_{k} z}$ where $z=|Z(G)|$ and $k=|G / Z(G)|$ can be graphs of AC groups using the following:

- Lagrange's Theorem
- $\forall i$ such that $0 \leq i \leq k,\left(m_{i}+1\right)$ divides $1+\sum_{i=1}^{i=k} m_{i}$.

K-Partite Graphs with Groups

Determining which graphs $K_{m_{1} z, m_{2} z, \ldots, m_{k} z}$ where $z=|Z(G)|$ and $k=|G / Z(G)|$ can be graphs of AC groups using the following:

- Lagrange's Theorem
- $\forall i$ such that $0 \leq i \leq k,\left(m_{i}+1\right)$ divides $1+\sum_{i=1}^{i=k} m_{i}$.
- The largest parts $m_{k z}, m_{(k-1) z}$ must be such that

$$
m_{k} m_{k-1} \leq \sum_{i=1}^{i=k-2} m_{i}
$$

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Determining which graphs $K_{m_{1} z, m_{2} z, \ldots, m_{k} z}$ where $z=|Z(G)|$ and $k=|G / Z(G)|$ can be graphs of AC groups using the following:

- Lagrange's Theorem
- $\forall i$ such that $0 \leq i \leq k,\left(m_{i}+1\right)$ divides $1+\sum_{i=1}^{i=k} m_{i}$.
- The largest parts $m_{k z}, m_{(k-1) z}$ must be such that

$$
m_{k} m_{k-1} \leq \sum_{i=1}^{i=k-2} m_{i}
$$

- The largest part $m_{k z}$ must be such that $m_{k} \leq k-2$.

Semidirect
Products
AC Groups and Order
Remaining
Questions

Colleen Robichaux

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

K-Partite Graphs with Groups

Characteristic Polynomials

Determining which graphs $K_{m_{1} z, m_{2} z, \ldots, m_{k} z}$ where $z=|Z(G)|$ and $k=|G / Z(G)|$ can be graphs of AC groups using the following:

- Lagrange's Theorem
- $\forall i$ such that $0 \leq i \leq k,\left(m_{i}+1\right)$ divides $1+\sum_{i=1}^{i=k} m_{i}$.
- The largest parts $m_{k z}, m_{(k-1) z}$ must be such that

$$
m_{k} m_{k-1} \leq \sum_{i=1}^{i=k-2} m_{i}
$$

- The largest part $m_{k z}$ must be such that $m_{k} \leq k-2$.
- The corresponding group G must be capable.

Semidirect
Products
AC Groups and Order
Remaining
Questions

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

K-Partite Graphs with Groups

Characteristic Polynomials

Determining which graphs $K_{m_{1} z, m_{2} z, \ldots, m_{k} z}$ where $z=|Z(G)|$ and $k=|G / Z(G)|$ can be graphs of AC groups using the following:

- Lagrange's Theorem
- $\forall i$ such that $0 \leq i \leq k,\left(m_{i}+1\right)$ divides $1+\sum_{i=1}^{i=k} m_{i}$.
- The largest parts $m_{k z}, m_{(k-1) z}$ must be such that

$$
m_{k} m_{k-1} \leq \sum_{i=1}^{i=k-2} m_{i}
$$

- The largest part $m_{k z}$ must be such that $m_{k} \leq k-2$.
- The corresponding group G must be capable.
- A group G is capable if there exists a group H such that $G \cong \frac{H}{Z(H)}$.

K-Partite Graphs with Groups

K-Partite Graphs with Groups

Characteristic

 Polynomials- Cyclic groups G are not capable.

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

- Cyclic groups G are not capable.
- If $|G|=p q$, where p, q are distinct primes with $p<q$, if p does not divide $(q-1)$, then $\Gamma(G) \cong \mathbb{Z}_{p q}$, which is not capable.

Semidirect

Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Which groups have been realized?

Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Which groups have been realized?

Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Which groups have been realized?

- Dihedral Groups

Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Which groups have been realized?

- Dihedral Groups
- For even $\mathrm{n}: K_{1 \frac{n}{2}, \frac{n}{2}-1}$
- For odd $\mathrm{n}: K_{1^{n}, n-1}$

Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Which groups have been realized?

- Dihedral Groups
- For even $\mathrm{n}: K_{1 \frac{n}{2}, \frac{n}{2}-1}$
- For odd n : $K_{1^{n}, n-1}$
- Quaternion Groups

K-Partite Graphs with Groups

Which groups have been realized?

- Dihedral Groups
- For even $\mathrm{n}: K_{1 \frac{n}{2}, \frac{n}{2}-1}$
- For odd n: $K_{1^{n}, n-1}$
- Quaternion Groups
- Capable Semidirect Products

Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

K-Partite Graphs with Groups

Which groups have been realized?

- Dihedral Groups
- For even $\mathrm{n}: K_{1 \frac{n}{2}, \frac{n}{2}-1}$
- For odd n : $K_{1^{n, n-1}}$
- Quaternion Groups
- Capable Semidirect Products
- For example: $\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}, \mathbb{Z}_{3} \rtimes Q_{8},\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{8}$

Results

K-partite Non-Commuting Graphs:

Results

K-partite Non-Commuting Graphs:

- No complete or complete bipartite, proven in [4].

Semidirect
Products
AC Groups and Order
Remaining
Questions

Results

K-partite Non-Commuting Graphs:

- No complete or complete bipartite, proven in [4].
- Identified all K-partite for $k=3,4,5,6$.

Results

K-partite Non-Commuting Graphs:

- No complete or complete bipartite, proven in [4].
- Identified all K-partite for $k=3,4,5,6$.
- K-partite for $k=7,8,9,10$ in progress.

Results

Complete and Complete Bipartite:

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

Results

Complete and Complete Bipartite:

- No complete non-commuting graphs.

Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

Results

Complete and Complete Bipartite:

- No complete non-commuting graphs.
- From a group theoretical standpoint, this cannot occur, as G would be a proper subgroup of itself.

Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

Results

Complete and Complete Bipartite:

- No complete non-commuting graphs.
- From a group theoretical standpoint, this cannot occur, as G would be a proper subgroup of itself.
- No complete bipartite non-commuting graphs.

Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

Results

Complete and Complete Bipartite:

- No complete non-commuting graphs.
- From a group theoretical standpoint, this cannot occur, as G would be a proper subgroup of itself.
- No complete bipartite non-commuting graphs.
- This is again impossible, though group theoretical reasoning. G would be union of two proper subgroups-centralizers $C_{G}(x)$ and $C_{G}(y)$, but elements xy cannot be placed.

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group

Semidirect
Products
AC Groups and Order
Remaining
Questions

Table: K-Partite Graphs for $\mathrm{k}=3,4,5,6$

$$
\begin{array}{cc}
\hline \hline \text { Graph } & \text { Groups, } G \\
\hline K_{z^{3}} & D_{8}, Q_{8} \\
K_{z^{3}, 2 z} & D_{6} \\
K_{(2 z)^{4}} & \mathbb{Z}_{9} \rtimes \mathbb{Z}_{3} \\
K_{z^{4}, 3 z} & D_{16}, Q D_{16}, Q_{16} \\
K_{(2 z)^{4}, 3 z} & A_{4} \\
K_{(3 z)^{5}} & \left(\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right) \rtimes \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2 *} \\
K_{z^{5}, 4 z} & D_{10} \\
K_{(3 z)^{4}, 4 z} & \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4} \\
K_{(4 z)^{6}} & \mathbb{Z}_{25} \rtimes \mathbb{Z}_{5},\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right) \rtimes \mathbb{Z}_{5}
\end{array}
$$

Semidirect Products

- $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{q}=\left\langle a, b \mid a^{p}=b^{q}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{q} \equiv 1 \bmod p$ with p, q distinctly prime, AC.

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Semidirect Products

- $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{q}=\left\langle a, b \mid a^{p}=b^{q}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{q} \equiv 1 \bmod p$ with p, q distinctly prime, AC.
- $\mathbb{Z}_{p q} \rtimes \mathbb{Z}_{r}=\left\langle a, b \mid a^{p q}=b^{r}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{r} \equiv 1 \bmod p q$ with

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Semidirect Products

- $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{q}=\left\langle a, b \mid a^{p}=b^{q}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{q} \equiv 1 \bmod p$ with p, q distinctly prime, AC.
- $\mathbb{Z}_{p q} \rtimes \mathbb{Z}_{r}=\left\langle a, b \mid a^{p q}=b^{r}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{r} \equiv 1 \bmod p q$ with
- p, q, r relatively prime, AC
- $p=q, r$ relatively prime, AC .

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Semidirect Products

$-\mathbb{Z}_{p} \rtimes \mathbb{Z}_{q}=\left\langle a, b \mid a^{p}=b^{q}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{q} \equiv 1 \bmod p$ with p, q distinctly prime, AC.

- $\mathbb{Z}_{p q} \rtimes \mathbb{Z}_{r}=\left\langle a, b \mid a^{p q}=b^{r}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{r} \equiv 1 \bmod p q$ with
- p, q, r relatively prime, AC
- $p=q, r$ relatively prime, AC.
$-\mathbb{Z}_{p} \rtimes \mathbb{Z}_{q r}=\left\langle a, b \mid a^{p}=b^{q r}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{q r} \equiv 1 \bmod p$ with

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect

Products
AC Groups and Order
Remaining
Questions

Semidirect Products

Characteristic Polynomials

Colleen Robichatu

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect

Products
AC Groups and Order
Remaining
Questions

- p, q, r relatively prime, AC
$-p, q=r$ relatively prime, AC.
- p, q, r relatively prime, AC
$-p, q=r$ relatively prime, AC .
- $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{q r}=\left\langle a, b \mid a^{p}=b^{q r}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{q r} \equiv 1 \bmod p$ with

Semidirect Products

Characteristic Polynomials

Colleen Robichatux

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect

Products
AC Groups and Order
Remaining
Questions

- p, q, r relatively prime, AC
- $p, q=r$ relatively prime, AC.
- $\mathbb{Z}_{p q} \rtimes \mathbb{Z}_{r s}=\left\langle a, b \mid a^{p q}=b^{r s}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{r s} \equiv 1 \bmod p q$ with

Semidirect Products

Characteristic Polynomials
$-\mathbb{Z}_{p} \rtimes \mathbb{Z}_{q}=\left\langle a, b \mid a^{p}=b^{q}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{q} \equiv 1 \bmod p$ with p, q distinctly prime, AC.
$-\mathbb{Z}_{p q} \rtimes \mathbb{Z}_{r}=\left\langle a, b \mid a^{p q}=b^{r}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{r} \equiv 1 \bmod p q$ with

- p, q, r relatively prime, AC
- $p=q, r$ relatively prime, AC.
$-\mathbb{Z}_{p} \rtimes \mathbb{Z}_{q r}=\left\langle a, b \mid a^{p}=b^{q r}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{q r} \equiv 1 \bmod p$ with
- p, q, r relatively prime, AC
- $p, q=r$ relatively prime, AC.
- $\mathbb{Z}_{p q} \rtimes \mathbb{Z}_{r s}=\left\langle a, b \mid a^{p q}=b^{r s}=1, b a b^{-1}=a^{k}\right\rangle$ where $k^{r s} \equiv 1 \bmod p q$ with
- p, q, r, s relatively prime, not $A C$
- $p=q, r=s$ relatively prime, AC.

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Findings

- All groups of order pq are AC.

Findings

- All groups of order pq are AC.
- All groups of order pqr are AC.

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite
Graphs
Semidirect
Products

Remaining
Questions

Findings

- All groups of order pq are AC.
- All groups of order pqr are AC.
- All groups of order $p^{2} q$ and p^{3} are AC.

Colleen Robichaux

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite
Graphs
Semidirect
Products

Remaining
Questions

Findings

- All groups of order pq are AC.
- All groups of order pqr are AC.
- All groups of order $p^{2} q$ and p^{3} are AC.
- Groups of order pqrs may not be AC.

Colleen Robichaux

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite
Graphs
Semidirect
Products

Remaining
Questions

Findings

- All groups of order pq are AC.
- All groups of order pqr are AC.
- All groups of order $p^{2} q$ and p^{3} are AC.
- Groups of order pqrs may not be AC.
- Note: The Cartesian product of two non-abelian groups is never AC.
- For example, $\mathbb{Z}_{35} \rtimes \mathbb{Z}_{6} \cong D_{10} \times\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right)$ is not $A C$.

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products

Remaining
Questions

Findings

Characteristic Polynomials

- All groups of order pq are AC.
- All groups of order pqr are AC.
- All groups of order $p^{2} q$ and p^{3} are AC.
- Groups of order pqrs may not be AC.
- Note: The Cartesian product of two non-abelian groups is never AC.
- For example, $\mathbb{Z}_{35} \rtimes \mathbb{Z}_{6} \cong D_{10} \times\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right)$ is not AC .
- Conjecture: If the semidirect product $\mathbb{Z}_{m} \rtimes \mathbb{Z}_{n}$ is $A C$, then its graph will be of the form
$K_{m-|Z(G)|} K_{|Z(G)|(n-1)} \ldots K_{|Z(G)|(n-1)}$ with $\frac{m}{|Z(G)|}$ copies of $K_{|Z(G)|(n-1)}$.

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products

Remaining
Questions

Present Questions

- What types of K-partite graphs can be realized by AC groups; What sizes can the parts be?

Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order
Remaining
Questions

Present Questions

- What types of K-partite graphs can be realized by AC groups; What sizes can the parts be?
- What kinds of non-commuting graphs do non-AC groups have?

Present Questions

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect

Products
AC Groups and Order

Remaining

Questions

$\Gamma\left(S_{4}\right)$

Colleen Robichaux

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect
Products
AC Groups and Order

Remaining

Questions

Colleen Robichaux

Characteristic Polynomials

References

Characteristic Polynomials
[1] B. Bollobás. Modern Graph Theory. Springer-Verlag (1998).
[2] A. Abdollahi, S. M. Jafarian Amiri, and A. Mohammadi Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (2007), 43-57.
[3] F. R. Beyl, U. Felgner and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161-177.
[4] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 5 (1994), 111-114.

Characteristic
Polynomials
Adjacency Matrix
Characteristic
Polynomial
Eigenvalues
AC Group
Complete K-Partite Graphs

Semidirect

Products
AC Groups and Order

