
History Convergence Orchestrated Divergence Further Investigation References

Convergence and Orchestrated Divergence of
Polygons

Eric Hintikka, Siddharth Patel, and Rachel Robinson

Missouri State University Math REU

August 1, 2013

E. Hintikka, S. Patel, and R. Robinson MSU REU

Convergence and Divergence of Polygons



History Convergence Orchestrated Divergence Further Investigation References

Overview
History

The Original Problem: Midpoints
Finite Fourier Transform

Convergence
First Generalization
Second Generalization
Third Generalization

Orchestrated Divergence
Divergent Matrices

Further Investigation
Block Matrices
Mixing Time
Schoenberg’s Conjecture

References

E. Hintikka, S. Patel, and R. Robinson MSU REU

Convergence and Divergence of Polygons



History Convergence Orchestrated Divergence Further Investigation References

The Original Problem: Midpoints

M. Rosenman’s Midpoint Problem
Let Π be a closed polygon in the plane with vertices z0, z1, ..., zn−1.

Denote by z
(1)
0 , z

(1)
1 , ..., z

(1)
n−1 the midpoints of the sides

z0z1, z1z2, ..., zn−1z0, respectively. Using z
(1)
0 , z

(1)
1 , ..., z

(1)
n−1 as vertices, we

derive a new polygon, denoted by Π(1). Apply the same procedure to
derive the polygon Π(2). After k constructions, we obtain polygon Π(k).
Show that Π(k) converges, as k →∞, to the centroid of the original
points z0, z1, ..., zn−1.
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The Original Problem: Midpoints
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The Original Problem: Midpoints

Matrix Expression

The vertices of polygon Π can be represented as the column vector
Π = (z0, z1, z2, · · · , zn−1)T . If we define A to be a circulant n × n (row)
stochastic matrix with first row ( 1

2
1
2 0 · · · 0), we have Π(1) = Az .

z
(1)
0

z
(1)
1

z
(1)
2
...

z
(1)
n−1

 =


1
2

1
2 0 · · · 0

0 1
2

1
2 · · · 0

0 0 1
2 · · · 0

...
...

...
. . .

...
1
2 0 0 · · · 1

2




z0

z1

z2

...
zn−1

 =


1
2 (z0 + z1)
1
2 (z1 + z2)
1
2 (z2 + z3)

...
1
2 (zn−1 + z0)



Note: We begin our matrix indexing at 0, so the top-left entry of a matrix A is
denoted by (A)00.
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The Original Problem: Midpoints

Some Solutions

I use complex coordinates

I each polygon transformation interpreted as a weighted average of
vertices

I Huston’s geometric solution (1933)

I Schoenberg’s solution: Fourier analysis (1950)

I Charles’ solution: Markov chains (2012)
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The Original Problem: Midpoints

Deterministic Problem

Let Π be a closed polygon in the plane with vertices z0, z1, ..., zn−1, and

let 0 < δ ≤ 1/2 be a given constant. Select z
(1)
i−1 on the edge zi−1zi such

that

min(dist(z
(1)
i−1, zi−1), dist(z

(1)
i−1, zi )) ≥ δ dist(zi−1, zi ), i = 0, 1, . . . , n − 1.

In this fashion, we derive a new polygon Π(1) = z
(1)
0 , z

(1)
1 , ..., z

(1)
n−1. Apply

the same procedure to derive the polygon Π(2). After k constructions, we
obtain polygon Π(k). Show that Π(k) converges to a point as k →∞.
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The Original Problem: Midpoints

If we choose exactly z
(k)
i = δz

(k−1)
i + (1− δ)z

(k−1)
i+1 at every iteration for

every i = 0, 1, . . . , n − 1, we get:

z
(1)
0

z
(1)
1

z
(1)
2
...

z
(1)
n−1


=


δ 1 − δ 0 · · · 0
0 δ 1 − δ · · · 0
0 0 δ · · · 0
...

...
...

. . .
...

1 − δ 0 0 · · · δ




z0

z1

z2

...
zn−1

 =


δz0 + (1 − δ)z1

δz1 + (1 − δ)z2

δz2 + (1 − δ)z3

...
δzn−1 + (1 − δ)z0
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The Original Problem: Midpoints

Some Definitions

I A matrix Q is ergodic (or primitive) if Qs > 0 for some s ∈ N.

I A matrix A is (row) stochastic if
∑n

j=1(A)ij = 1 for each
i ∈ {1, . . . , n}.

I A matrix A is circulant if it is of the form

A =


a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

...
. . .

...
a1 a2 a3 · · · a0


I A root of unity is any complex number that gives 1 when raised to

some integer power k . The n-th roots of unity are given by
ων = e2πi ν

n for ν = 0, 1, . . . , n − 1.
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Finite Fourier Transform

Schoenberg’s Solution

I Fourier analysis: a bridge

B
F−1

←− F (B)

↑
A −→

F
F (A)

I takes an input (usually a time-based function) and decomposes it
into its frequencies

I solves a generalization of the midpoint problem

I establishes an exponential convergence rate

E. Hintikka, S. Patel, and R. Robinson MSU REU

Convergence and Divergence of Polygons



History Convergence Orchestrated Divergence Further Investigation References

Finite Fourier Transform

Finite (Discrete) Fourier transform
Let zν = ζ0 + ζ1ων + ζ2ω

2
ν + · · ·+ ζn−1ω

n−1
ν for ν = 0, 1, . . . , n − 1 with

ων = e2πiν/n (the nth roots of unity). We call this representation of zν
the finite Fourier (f.F.) expansion of the sequence z0, z1, . . . , zν and we
call ζ0, ζ1, . . . , ζn−1 the f.F. coefficients of the sequence (zν). This too
has a matrix expression:

[zν ]T = F [ζν ]T
z0

z1

...
zn−1

 =


1 1 1 · · · 1
1 ω1 ω2

1 · · · ωn−1
1

...
...

. . .
...

1 ωn−1 ω2
n−1 · · · ωn−1

n−1



ζ0

ζ1

...
ζn−1



=


ζ0 + ζ1 + ζ2 + · · ·+ ζn−1

ζ0 + ζ1ω1 + ζ2ω
2
1 + · · ·+ ζn−1ω

n−1
1

...
ζ0 + ζ1ων + ζ2ω

2
ν + · · ·+ ζn−1ω

n−1
ν

 .
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Finite Fourier Transform

In fact, this approach is a generalization of the midpoint problem: choose
any stochastic circulant matrix A and let the vertices of our n-gon be the
vector Π = (z0, · · · , zn−1)T ∈ Cn. Let

A =


a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

. . .
...

a1 a2 · · · a0

 and F =


1 1 · · · 1
1 ω1 · · · ωn−1

1
...

...
. . .

...
1 ωn−1 · · · ωn−1

n−1

 .
If our first-iteration polygon Π(1) = (z

(1)
0 , . . . , z

(1)
n−1)T is given by

Π(1) = AΠ, then we have F Π(1) = FAΠ, a column vector where each
entry (FAΠ)ν is equal to f (ων).
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Finite Fourier Transform

Theorem (1, Schoenberg)
Now if we subject (zν) to the cyclic transformation

z ′0 = a0z0 + a1z1 + · · ·+ an−1zn−1

z ′1 = an−1z0 + a0z1 + · · ·+ an−2zn−1

...

z ′n−1 = a1z0 + a2z1 + · · ·+ a0zn−1

then the f.F. coefficients of the sequence (z ′ν) are ζ ′ν = ζν f (ων) where
f (z) = a0 + a1z + · · ·+ an−1zn−1. We call f (z) the representative
polynomial of this cyclic transformation.
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Finite Fourier Transform

This representative polynomial has other nice applications: for a circulant
matrix A, we have f (ων) = λν where λν are the eigenvalues of A and the
associated eigenvectors are xν = (1, ων , ω

2
ν , . . . , ω

n−1
ν )T for

ν = 0, 1, . . . , n − 1. For example, take the midpoint matrix
A = circ[ 1

2 ,
1
2 , 0, 0, 0, 0] for a 6-gon:

ν f (ων) = λν xν
0 1 (1, 1, 1, 1, 1, 1)T

1 1
2 + 1

2 e2πi 1
6 (1, ω1, ω

2
1 , ω

3
1 , ω

4
1 , ω

5
1)T

2 1
2 + 1

2 e2πi 2
6 (1, ω2, ω

2
2 , ω

3
2 , ω

4
2 , ω

5
2)T

3 0 (1, ω3, ω
2
3 , ω

3
3 , ω

4
3 , ω

5
3)T

4 1
2 + 1

2 e2πi 4
6 (1, ω4, ω

2
4 , ω

3
4 , ω

4
4 , ω

5
4)T

5 1
2 + 1

2 e2πi 5
6 (1, ω5, ω

2
5 , ω

3
5 , ω

4
5 , ω

5
5)T
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Room for Generalizations

While elegant, Schoenberg’s technique is only applicable to a very
particular problem, where the sequence of polygons (Π(i))i≥1 is generated
by repeatedly applying a single circulant matrix A to an initial polygon
Π(0), so that Π(k) = Ak Π(0).

I What if we do not force A to be circulant?

I What if we allow A to vary with each iteration? That is, what if we
define a sequence of matrices (Ai )i≥1 and say instead that
Π(k) = Ak Π(0)?

These questions motivate three generalizations.
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First Generalization

The First Generalization

We follow the first line of inquiry, and allow A to be chosen from a
slightly broader class of matrices, so that

A =


α1 1− α1 0 · · · 0
0 α2 1− α2 0 · · · 0
...

. . .
...

1− αn 0 · · · 0 αn

 ,
where 0 < αi < 1. Since in general αi 6= αj , A is no longer circulant, but
note that it is still stochastic.
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First Generalization

We still let our sequence of polygons (Π(i))i≥1 be given by

Π(k) = Ak Π(0).

Note that the question of whether Π(k) converges to a polygon with
identical vertices for any choice of Π(0) is equivalent to the question of
whether Ak converges to a rank one matrix.
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First Generalization

This is because the product of stochastic matrices is itself stochastic,
since matrices A,B are stochastic if and only if Ae = e and Be = e,
where e = (1, . . . , 1)T , so if A and B are stochastic, then ABe = Ae = e,
and thus AB is stochastic.
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First Generalization

What is more, if a matrix A is rank one, then each of its rows must be a
scalar multiple of its first row. If A is stochastic, then each of those
scalars must be 1, since otherwise the matrix would have some row sums
not equal to 1. Thus, a stochastic rank one matrix has all rows equal.
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First Generalization

So, if limk→∞ Ak = L for some rank one matrix L, then we have
limk→∞ Π(k) = LΠ(0) = Π, for some polygon Π with all components
equal. That is, the sequence (Πi )i≥1 converges to a single point, in the

sense that there exists p ∈ C such that limk→∞ z
(k)
ν = p for all ν, where

z
(k)
ν is the ν-th vertex of Π(k).
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First Generalization

Thus, it seems reasonable to approach our problem from a purely
matrix-analytical point of view, rather than a geometrical one.
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First Generalization

One useful result in matrix analysis is called Perron’s Theorem, after the
German mathematician Oskar Perron. Though the complete formulation
is somewhat longer, we excerpt the relevant portion from the text Matrix
Analysis by Roger A. Horn and Charles R. Johnson.
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First Generalization

Theorem (Perron)
If A is an n × n matrix over C and (A)ij > 0 for all i , j , then

[ρ(A)−1A]m → L as m→∞,

where ρ(A) = max{|λ| : λ is an eigenvalue of A}, L ≡ xy T , Ax = ρ(A)x,
AT y = ρ(A)y, x > 0, y > 0, and xT y = 1.

E. Hintikka, S. Patel, and R. Robinson MSU REU
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First Generalization

In the case where A is stochastic, it is well known that ρ(A) = 1. This
follows immediately from Lemma 8.1.21 in Horn and Johnson’s book,
which states that if A is an n × n complex-valued matrix with all entries
non-negative and if the row sums of A are constant, then
ρ(A) = ‖A‖∞ = max1≤i≤n

∑n
j=1 |(A)ij |.
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First Generalization

So, in this case, the result of Perron’s theorem takes the nice form
Am → L as m→∞. However, one of the assumptions of the theorem is
that the matrix A has strictly positive entries. Certainly, if as before we
have

A =


α1 1− α1 0 · · · 0
0 α2 1− α2 0 · · · 0
...

. . .
...

1− αn 0 · · · 0 αn

 ,
then this is not the case.
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First Generalization

However, we note that An−1 does have strictly positive entries. This can
be proven via mathematical induction, where the key observation is that,
for any N, the (i , (i + N mod n) + 1)-th entry of AN+1 is greater than or
equal to 1− αi times the ((i mod n) + 1, (i + N mod n) + 1)-th entry
of AN . For the sake of time, we suppress the details of the proof.
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First Generalization

Thus, we apply Perron’s theorem to B = An−1.
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First Generalization

Let y =



1
1−α1

1
1−α2

...

1
1−αn


, and let x =



1∑n
i=1

1
1−αi

...

1∑n
i=1

1
1−αi

.

Then it is just a matter of calculation to verify that AT y = y , and it
follows easily that BT y = y . It is also not difficult to see that Bx = x ,
since B is stochastic and x has equal components. Finally, a quick check
verifies that xT y = 1, and clearly x , y > 0.
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First Generalization

So, Perron’s theorem guarantees that limk→∞ Bk = L, where

L = xy T =


1

(1−α1)
∑n

i=1
1

1−αi

· · · 1
(1−αn)

∑n
i=1

1
1−αi

...
...

1
(1−α1)

∑n
i=1

1
1−αi

· · · 1
(1−αn)

∑n
i=1

1
1−αi



E. Hintikka, S. Patel, and R. Robinson MSU REU

Convergence and Divergence of Polygons



History Convergence Orchestrated Divergence Further Investigation References

First Generalization

But, we’re really interested in limk→∞ Ak , not limk→∞ Bk . Making this
transition is not as easy as it may seem. However, since Ai is stochastic
for any i ∈ N and L is a rank one matrix, it can be shown that L = Ai L
for any i . We can use this fact to our advantage!
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First Generalization

For any i ∈ {0, . . . , n − 2}, we can write

L = Ai L = Ai lim
k→∞

Ak(n−1) = lim
k→∞

Ak(n−1)+i

Now, choose ε > 0, and for each i ∈ {0, . . . , n − 2} let Ni be such that
‖Am(n−1)+i − L‖ < ε for all m ≥ Ni . Let N = max{Ni}, and suppose that
j ≥ N(n − 1) + (n − 2). Then by the division theorem, we can write
j = m(n − 1) + i for some integer m and some i ∈ {0, . . . , n − 2}. So,
j = m(n − 1) + i ≥ N(n − 1) + (n − 2) ≥ N(n − 1) + i ≥ Ni (n − 1) + i .
So, m ≥ Ni . Now ‖Aj − L‖ < ε, and hence limk→∞ Ak = L.
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First Generalization

This is the result we wanted, and it allows us to immediately reach the
following theorem, which concludes our first generalization of the polygon
problem.
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First Generalization

Theorem
Let Π(0) = (z

(0)
1 , z

(0)
2 , . . . , z

(0)
n )T be an n-gon in the complex plane.

Choose α1, α2, . . . , αn such that 0 < αi < 1, and write

A =


α1 1− α1 0 · · · 0
0 α2 1− α2 0 · · · 0
...

. . .
...

1− αn 0 · · · 0 αn

 .
Let Π(1) = AΠ(0) be a new polygon inscribed in Π(0). Repeat this process
to obtain Π(2) inscribed in Π(1), etc., so that in general Π(k) = Ak Π(0).
Then limk→∞ Π(k) = P, where
P =

∑n
j=1((1− αj )

∑n
i=1

1
1−αi

)−1z
(0)
j · (1, . . . , 1)T . Note that all

components of P are identical.
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Second Generalization

The Second Generalization

We now consider the case in which the matrix used to derive descendant
polygons varies with each iteration. Speaking roughly, this gives us more
freedom in choosing our sequence of polygons. More precisely, the
situation we are now interested can be stated as follows.
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Second Generalization

Let Π(0) be an n-gon as before, and choose δ ∈ (0, 1/2). For each natural

number i , choose α
(i)
0 , α

(i)
1 , . . . , α

(i)
n from the open interval (δ, 1− δ), let

Ak =


α

(k)
0 1− α(k)

0 0 · · · 0

0 α
(k)
1 1− α(k)

1 0 · · · 0
...

. . .
...

1− α(k)
n−1 0 · · · 0 α

(k)
n−1

 ,

let Ak = Ak Ak−1 · · ·A1, and define Π(k) = Ak Π(0) for k ≥ 1.
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Second Generalization

As before, we wish to determine whether the resulting sequence of
polygons (Π(k))k≥1 necessarily converges to a point.
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Second Generalization

Unfortunately, our primary tool from the previous section, Perron’s
theorem, is no longer applicable. However, we utilize coefficients of
ergodicity to help handle this more general case. The relevant definition,
taken from a paper by Ipsen and Selee, is as follows.
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Second Generalization

The 1-norm ergodicity coefficient τ1(S) for an n × n stochastic matrix S
is given by

τ1(S) = max
‖z‖1=1

zT e=0

‖ST z‖1

where e = (1, . . . , 1)T ∈ Rn and the maximum ranges over z ∈ Rn. If
n = 1, we say τ1(S) = 0.
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Second Generalization

Equivalently, we can write

τ1(S) =
1

2
max

ij

n∑
k=1

|(S)ik − (S)jk |.

This is the expression that we will be using, because it makes calculations
easier. (For a proof that the two expressions are identical, see Ipsen and
Selee’s paper.)
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Second Generalization

These coefficients will prove useful to us for two reasons: they can
distinguish rank 1 matrices, and they are submultiplicative. That is, for
any n × n stochastic matrices S and T , we have

I τ1(S) = 0 ⇐⇒ rank(S) = 1

I τ1(ST ) ≤ τ1(S)τ1(T )

However, before we continue, we make a few preliminary observations.
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Second Generalization

First, if Ak = Ak Ak−1 . . .A1, where each matrix Ai is as described at the
beginning of this section, then

An−1 > δn−1

The proof is very similar to our earlier proof that An−1 > 0, with just a
slight modification. Again, for the sake of time we suppress the details.
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Second Generalization

Second, we observe that if S is a positive n × n stochastic matrix and
ε > 0 is such that (S)ij > ε for all i , j ∈ {0, 1, . . . , n − 1}, then

τ1(S) ≤ 1− nε.

The proof is slightly more involved, but ultimately, it boils down to a few
observations:

I τ1(S) = τ1(S − ε)
I The row sums of S − ε are each 1− nε

I Any non-negative matrix with identical row sums s has coefficient of
ergodicity at most s.
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Second Generalization

Now, having paused to make these two claims, we present our main
argument. Suppose we have chosen (Ai )i≥0 as described at the beginning
of this section. Define Bi = Ain−1Ain−2 · · ·A(i−1)n for i ≥ 1. Then by the
previous two claims, we have τ1(Bi ) ≤ 1− nδn−1 for each i . Recall that
τ1 is submultiplicative and, for stochastic matrices, bounded above by 1.
So if we choose i and let m = max{j : jn − 1 ≤ i}, then
τ1(Ai ) = τ1(Ai Ai−1 · · ·AmnBmBm−1 · · · B1) ≤ τ1(BmBm−1 · · · B1) ≤
τ1(Bm)τ1(Bm−1) · · · τ1(B1) ≤ (1− nδn−1)m. Of course, we then have
limi→∞ τ1(Ai ) ≤ limi→∞(1− nδn−1)m = 0, and actually equality holds,
since τ1 can take only non-negative values.
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Second Generalization

However, a priori this is not enough to tell us that limi→∞Ai even exists,
much less that it is rank 1. To show that this is in fact the case, we use a
Cauchy sequence argument, for which we require two more ingredients.
Roughly speaking, these are (1) that for any i , j and sufficiently large m,
the distance between (Am)ij and (Am)1j is small; and (2) that for all
k ≥ 0, the distance between (Am+k )ij and (Am)1j is small. With some
tinkering, these facts both follow quickly.
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Second Generalization

Using the triangle inequality to combine the two, we find that

|(Am+k )ij − (Am)i ′j |

can be made arbitrarily small for sufficiently large m.
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Second Generalization

This establishes that if we write x
(j)
kn+l = (Ak+1)lj for any j , then the

sequence (x
(j)
i )i≥0 is Cauchy, and hence converges to some real number

pj . We know that each subsequence must also converge to pj . So, each

of the n subsequences created by choosing the first term to be x
(j)
i for

some i ∈ {0, 1, . . . , n − 1} and choosing after that only every n-th term
from the original sequence must also converge to pj . That is,
limk→∞(Ak )ij = pj for each i . Hence Ak converges to the rank 1 matrix

p0 p1 . . . pn−1

p0 p1 . . . pn−1

...
...

p0 p1 . . . pn−1

 .
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Second Generalization

Thus, we arrive at the second main result of this presentation, which is
stated as follows.
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Second Generalization

Theorem
If Ai is as described at the beginning of this section, then

lim
i→∞

Ai = L,

where L is a rank 1 stochastic matrix. Hence if Π(i) is the corresponding
sequence of polygons, we have

lim
i→∞

Π(i) = LΠ(0),

and thus (Π(i))i≥0 converges to a point.
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Second Generalization

Unfortunately, we see no clear way to describe L explicitly, since Perron’s
theorem – the tool that allowed us to make an analogous description in
the first generalization – is no longer applicable.
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The Third Generalization

Up to this point, we have been concerned with sequences of polygons in
which the i-th vertex of the (k + 1)-th polygon lies along the open line
segment between the i-th and (i + 1)-th vertices of the k-th polygon.
But what if we loosen this requirement? Here, we consider polygons
derived from sequences of stochastic matrices of a more general class:
those that we call “circulant-patterned,” where we say a matrix A is
circulant-patterned if, for some circulant matrix B, we have
(A)ij = 0 ⇐⇒ (B)ij = 0. By using this type of matrix, we may allow the
vertices of a new polygon to be chosen from anywhere within the convex
hull of the old polygon.
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Third Generalization

Since circulant-patterned matrices are in some sense similar to circulant
matrices, it seems reasonable that knowledge about when products of
circulant matrices converge could be useful in determining when
circulant-patterned matrices converge. Indeed this turns out to be the
case, and luckily Tollisen and Lengyel have already proven such a
theorem. We present the relevant portion of the theorem on the next
slide.
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Third Generalization

Theorem (Tollisen and Lengyel)
For any stochastic circulant matrix A, we have

(Ak )ij ≈

{
gcd(n,g)

n , if j − i ≡ ku mod gcd(n, g)

0, otherwise

as k →∞, where u = min{i : (A)1i > 0} and g = gcd{i − u : (A)1i > 0}.
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Third Generalization

In addition to this useful theorem, we present two quick observations that
together will allow us to derive a nice result.
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Third Generalization

But first, a quick note on terminology: we say two matrices A and B
share a zero pattern if (A)ij = 0 ⇐⇒ (B)ij = 0.
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Third Generalization

Now, the first observation is: if (Ai )i≥0 and (Bj )j≥0 are two sequences of
nonnegative n × n matrices such that Ai and Bi have the same zero
pattern for each i , then Ak Ak−1 · · ·A0 and Bk Bk−1 · · ·B0 share a zero
pattern for any k . The proof is by induction.
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Third Generalization

The second observation is: choose any k ∈ N. For each
i ∈ {0, 1, . . . , k − 1}, let Ai be a nonnegative n × n matrix, and let
Ai+1 = Ai Ai−1 · · ·A0. Suppose that ε > 0 is such that there do not exist
l ,m, i for which 0 < (Ai )lm < ε. Then there do not exist i , j for which
0 < (Ak )ij < εk . Though this proof is slightly more complicated it is still
a fairly simple induction argument and we omit it for time.

E. Hintikka, S. Patel, and R. Robinson MSU REU

Convergence and Divergence of Polygons



History Convergence Orchestrated Divergence Further Investigation References

Third Generalization

Now, we have all the tools needed to prove our penultimate proposition,
which we present on the following slide.
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Third Generalization

Let A be a stochastic circulant matrix such that limk→∞ Ak = L for some
rank 1 matrix L. Let (Ai )i≥0 be a sequence of stochastic matrices, each
with the same zero pattern as A. Suppose further that for some ε > 0,
there do not exist i , j , k for which 0 < (Ak )ij < ε. Then
limk→∞ Ak Ak−1 · · ·A1A0 = L′ for some rank 1 matrix L′.

E. Hintikka, S. Patel, and R. Robinson MSU REU

Convergence and Divergence of Polygons



History Convergence Orchestrated Divergence Further Investigation References

Third Generalization

We now present an outline of the proof. We know that the product of
stochastic matrices is stochastic, and it can be shown that the product of
circulant matrices is circulant. Hence Ak a circulant stochastic matrix for
all k, and since we have assumed that L exists, it follows that it must be
circulant stochastic as well.
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Third Generalization

From Tollisen and Lengyel’s theorem, we know that each entry of L must

be either 0 or gcd(n,g)
n , where g is a constant. We can show that if

(L)1j = 0 for any j , then rank(A) ≥ 2, a contradiction. So, L must be
positive, with all entries equal to 1

n .
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Third Generalization

Now, since we have established that L > 0, there must be some k such
that Ak > 0. Define Bi = Aik−1Aik−2 · · ·A(i−1)k for i ≥ 1. Then by our

first observation, eachBi has the same zero pattern as Ak . That is, Bi > 0
for all i. What is more, by our second observation we know that Bi > εk .
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Third Generalization

From here, we can use an argument that is identical to the one used
during our second generalization to show that
limi→∞ τ1(Ai Ai−1 · · ·A0) = 0, and then the result follows from the same
Cauchy sequence argument as before. Hence, our proof is complete.
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Third Generalization

The theorem we just proved is particularly useful to us because Tollisen
and Lengyel’s theorem gives us a simple way to determine whether the
powers of a particular stochastic circulant matrix converge to a rank 1
matrix.
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Third Generalization

Indeed, we can quickly show from their theorem that if A is a stochastic
circulant matrix, then Ak converges to a rank one matrix as k →∞ if
and only if gcd(n, g) = 1, where g is defined as before.
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Third Generalization

So, we can restate our theorem in the following, more convenient, form.
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Third Generalization

Theorem
Let (Ai )i≥0 be a sequence of stochastic, circulant-patterned, n × n
matrices that all have a common zero pattern. Suppose that
gcd(n, g) = 1, where (a0, a1, . . . , an−1) is the first row of A0,
u = min{i |Ai > 0}, and g = gcd{i − u|ai > 0}. Suppose also that for
some ε > 0 there do not exist i , j , k for which 0 < (Ak )ij < ε. Then

lim
k→∞

Ak Ak−1 · · ·A0 = L

for some rank 1 matrix L. Hence, if Π(k) = Ak Ak−1 · · ·A1Π(0), then

lim
k→∞

Π(k) = LΠ(0),

and thus (Π(k))k≥0 converges to a point.
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Divergent Matrices

Divergent Matrices

Let

A =


a0 0 0 · · · 0 (1− a0) 0 · · · 0
0 a1 0 · · · 0 0 (1− a1) · · · 0
...

...
...

. . .
...

0 0 0 · · · (1− an−1) 0 0 · · · an−1


with 0 < ai < 1 for all i = 0, 1, . . . , n − 1. Note that (A)ii = ai and
(A)ij = 1− ai when j = (i + g mod n) for some fixed g ∈ Z such that
1 ≤ g < n for each i ∈ {0, 1, . . . , n − 1}.

When gcd(n, g) = 1 we have convergence to a rank-1 matrix. When
gcd(n, g) = m for some m ∈ Z such that 1 < m ≤ g , we have
convergence to a rank-m matrix.
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Divergent Matrices

A =



.1 0 0 0 .9 0 0 0
0 .1 0 0 0 .9 0 0
0 0 .1 0 0 0 .9 0
0 0 0 .1 0 0 0 .9
.9 0 0 0 .1 0 0 0
0 .9 0 0 0 .1 0 0
0 0 .9 0 0 0 .1 0
0 0 0 .9 0 0 0 .1


with g = 4, n = 8, gcd(n, g) = 4
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Divergent Matrices

Theorem (7, Tollisen & Lengyel)
Let A = circ[a0, a1, . . . , an−1] be a circulant stochastic matrix with
L = {i |ai > 0}, u = min L = min{i |ai > 0}, L′ = {i − u|ai > 0}, and
g = gcd(L′). Partition the n positions around the circle into gcd(n, g)
subsets: Sj = {s : s ≡ j mod gcd(n, g), 0 ≤ s < n},
j = 0, 1, . . . , gcd(n, g)− 1, and define the range of each xk = Ak x0 when
restricted to the subset Sj to be

R
(k)
j = max{b(k)

i : i ∈ Sj} −min{b(k)
i : i ∈ Sj}.

Then, for each j, R
(k)
j → 0 as k →∞.
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Divergent Matrices

Examples

A = circ[a0, 0, 0, 0, a4, 0, 0, 0]

I L = {0, 4}, u = 0, L′ = {0, 4}
I g = gcd(0, 4) = 4

I S0 = {0, 4}, S1 = {1, 5},
S2 = {2, 6}, S3 = {3, 7}
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B = circ[0, a1, 0, a3, 0, a5, 0, a7]

I L = {1, 3, 5, 7}, u = 1,
L′ = {0, 2, 4, 6}

I g = gcd(0, 2, 4, 6) = 2

I S0 = {0, 2, 4, 6},
S1 = {1, 3, 5, 7}
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Divergent Matrices

Theorem (8, Tollisen & Lengyel)
For any circulant stochastic matrix A and any initial configuration x0, let
u and g be defined as above. Then, the Markov chain with transition
matrix A consists of gcd(n, g , u) recurrent classes, each with period

p = gcd(n,g)
gcd(n,g ,u) . In other words, the n positions around the circle can be

partitioned into gcd(n, g , u) rotationally symmetric subsets where, on
each subset either the coordinates of xk converge (if p = 1) or
asymptotically cycle through the values with (possibly non-fundamental)
period p.
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Divergent Matrices

A1 = circ[a0, 0, 0, 0, a4, 0, 0, 0]

I L = {0, 4}, u = 0, L′ = {0, 4}
I g = gcd(0, 4) = 4

I p = gcd(n, g)/ gcd(n, g , u) = 4/4 = 1 (static divergence)
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Figure : An 8-gon, its first 100 iterations, and its 100th iteration alone
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Divergent Matrices

A2 = circ[0, a1, 0, 0, 0, a5, 0, 0]

I L = {1, 5}, u = 1, L′ = {0, 4}
I g = gcd(0, 4) = 4

I p = 4/1 = 4 (rotating divergence)

−8 −6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4 1

2
3

4

5

6

7

8

E. Hintikka, S. Patel, and R. Robinson MSU REU

Convergence and Divergence of Polygons



History Convergence Orchestrated Divergence Further Investigation References

Divergent Matrices
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Divergent Matrices
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Divergent Matrices
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Divergent Matrices
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Divergent Matrices

A3 = circ[0, 0, a2, 0, 0, 0, a6, 0]

I L = {2, 6}, u = 2, L′ = {0, 4}
I g = gcd(0, 4) = 4

I p = 4/2 = 2 (switching divergence)
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Divergent Matrices
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Divergent Matrices
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Divergent Matrices
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Divergent Matrices
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Divergent Matrices

Representative Polynomial Revisited

If for a matrix A defined as before with g = 4 and n = 8, we have:

Static Divergence Rotating Divergence Switching Divergence
(a0, 0, 0, 0, a4, 0, 0, 0) (0, a1, 0, 0, 0, a5, 0, 0) (0, 0, a2, 0, 0, 0, a6, 0)

ν f (ων)
0 1
1 a0 − a4

2 1
3 a0 − a4

4 1
5 a0 − a4

6 1
7 a0 − a4

ν f (ων)
0 1

1 a1e2πi 1
8 + a5e2πi 5

8

2 i

3 a1e2πi 3
8 + a5e2πi 15

8

4 -1

5 a1e2πi 5
8 + a5e2πi 25

8

6 -i

7 a1e2πi 7
8 + a5e2πi 35

8

ν f (ων)
0 1
1 i(a2 − a6)
2 -1
3 i(a6 − a2)
4 1
5 i(a2 − a6)
6 -1
7 i(a6 − a2)

Considering eigenvalues again, this is a good indicator of what our
polygons are doing as we take more and more iterations.
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Block Matrices

Further Investigation I: Block Matrices

Suppose we have an action matrix A with r blocks, for example

A =



1
2

1
2 0 0 0 0 0 0

0 1
2

1
2 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

1
2 0 0 1

2 0 0 0 0
0 0 0 0 1

3 0 2
3 0

0 0 0 0 0 1
3 0 2

3
0 0 0 0 2

3 0 1
3 0

0 0 0 0 0 2
3 0 1

3


This creates r independent systems that we can look at individually.
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Block Matrices

Using the matrix on the previous slide and the 8-gon below, we get 2
independent systems converging to 3 points.

Question: Can we make these systems interact?
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Block Matrices

Possible Solution: We introduce a circulant stochastic matrix B so we
have Π(k) = Ak−r−1BAr Π for some r ∈ N with 0 ≤ r < k − 1. For
example,

B =



.4 0 0 0 .6 0 0 0
0 .4 0 0 0 .6 0 0
0 0 .4 0 0 0 .6 0
0 0 0 .4 0 0 0 .6
.6 0 0 0 .4 0 0 0
0 .6 0 0 0 .4 0 0
0 0 .6 0 0 0 .4 0
0 0 0 .6 0 0 0 .4


.

Hopefully, this might break vertices out of their independent systems.

E. Hintikka, S. Patel, and R. Robinson MSU REU

Convergence and Divergence of Polygons



History Convergence Orchestrated Divergence Further Investigation References

Block Matrices

What is the goal in introducing B?

I Change of shape of limiting polygon?
Unless B is the identity matrix or a matrix containing the same
blocks, the application of B changes the limiting polygon in some
way or another – typically, it shrinks.

I Vertex rotation?
It is difficult to see the effect of B on intermediate polygons in the
sequence, since the polygons following the application of B tend to
be drastically different with each different B. However, if we want to
rotate the vertices of the limiting polygon, we can indeed change B
accordingly. And the more we apply B, the more rotations we get.
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Block Matrices

Goal?, cont’d

I Re-partition of the vertices?
We have not yet found a matrix B that will do this. In practice, the
subsets of vertices that converge together Sj stay together, even
with more applications of B.

I Convergence?
If we want the polygon to converge to a single point (i.e.
rank(Π(k)) = 1) after only one application of B, then B must be
rank-1, since rank(AB) ≤ min(rank(A), rank(B)) and
limk→∞ Ak ≥ r and limj→∞ B j = gcd(n, g). If we want convergence
after several iterations, then B must be ergodic.

Question: Exactly how many applications of B would we need for
this kind of convergence?
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Mixing Time

Further Investigation II: Mixing Time

We know that a Markov chain with transition matrix P will have a
unique stationary distribution π and that after a time tmix(ε) it will be
“close enough” to π. We know, given a circulant, stochastic action
matrix A, that limk→∞ Ak = Q where Q is a matrix of rank gcd(n, g)
(with period p = gcd(n, g , u)). If A is ergodic then Q is a rank-1 matrix
with all rows equal to [ 1

n ,
1
n , . . . ,

1
n ].

Question: At which iteration k will Ak be “close enough” to its
stationary distribution Q?
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Mixing Time

Define
d(t) := max

x∈Ω
‖P(x , ·)t − π‖TV

where Ω is our state space, our stationary distribution is π, and for two
probability distributions µ and ν and an event A in Ω, total variation
distance is defined as

‖µ− ν‖TV := max
A⊂Ω
|µ(A)− ν(A)|.

We now define mixing time, denoted by tmix(ε), as

tmix(ε) := min{t : d(t) ≤ ε}.

When we set our set of vertices Π as our state space Ω, our action matrix
A as our probability matrix P(x , ·), and our limiting matrix Q of rank
gcd(n, g) as our stationary distribution π, what is our mixing time?
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Mixing Time

Some Approaches

I begin with a basic example, the midpoint problem matrix
A = circ[ 1

2 ,
1
2 , 0, . . . , 0] with stationary distribution

Q =


1
n

1
n

1
n . . . 1

n
...

. . .
1
n

1
n

1
n . . . 1

n


and then branch out to other matrices

I explore a related topic: The parameter S =
∑n−1
ν=0 |z

(k)
ν − c |2

measures collective distance from centroid c = 1
n

∑n−1
ν=0 z

(k)
ν . If A is

ergodic and limk→∞ Ak = Q then Π(k) = (c , c , . . . , c)T . Can we use
this (or another parameter) to establish a rate of convergence for
our polygon transformation sequence?
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Schoenberg’s Conjecture

Further Investigation III: Schoenberg’s Conjecture

Begin with a convex 5-gon with vertices z0, z1, . . . , z4. Connect z0 to z2,
z1 to z3, . . . , z4 to z1. Our new 5-gon is given by the area of these new
edges. Show that the sequence of 5-gons converges to a point.

To our knowledge, this problem has not been solved... yet.
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The End
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