Eulerian non-commuting graphs

Gerhardt Hinkle

Missouri State University REU, 2013

Eulerian non-commuting graphs

- A graph is Eulerian if a path can be drawn through it that goes through every edge exactly once and ends at the same vertex that it started at.

Introduction
Groups with a

Eulerian non-commuting graphs

- A graph is Eulerian if a path can be drawn through it that goes through every edge exactly once and ends at the same vertex that it started at.
- A graph is path Eulerian if it isn't Eulerian but a path can be drawn through it that goes through every edge exactly once and ends at a different vertex than it started at.

Eulerian non-commuting graphs

- A graph is Eulerian if a path can be drawn through it that goes through every edge exactly once and ends at the same vertex that it started at.
- A graph is path Eulerian if it isn't Eulerian but a path can be drawn through it that goes through every edge exactly once and ends at a different vertex than it started at.
- A graph is Eulerian if and only if every vertex has even degree and path Eulerian if and only if exactly two vertices have odd degree.

Eulerian non-commuting graphs

- A graph is Eulerian if a path can be drawn through it that goes through every edge exactly once and ends at the same vertex that it started at.
- A graph is path Eulerian if it isn't Eulerian but a path can be drawn through it that goes through every edge exactly once and ends at a different vertex than it started at.
- A graph is Eulerian if and only if every vertex has even degree and path Eulerian if and only if exactly two vertices have odd degree.
- For an element $v \in G$, the degree of the vertex corresponding to v in $\Gamma(G)$, the non-commuting graph of G, is $d(v)=|G|-\left|C_{G}(v)\right|$.

Conjugacy classes

- The conjugacy class of an element $x \in G$, written $[x]$, is the set of all $y \in G$ for which there exists a $g \in G$ so that $y=g \times g^{-1}$.

Conjugacy classes

Gerhardt Hinkle the set of all $y \in G$ for which there exists a $g \in G$ so that $y=g \times g^{-1}$.

- All distinct conjugacy classes are disjoint.

Conjugacy classes

Gerhardt Hinkle

- The conjugacy class of an element $x \in G$, written $[x]$, is the set of all $y \in G$ for which there exists a $g \in G$ so that $y=g \times g^{-1}$.
- All distinct conjugacy classes are disjoint.
- $|[x]|=\frac{|G|}{\left|C_{G}(x)\right|}$

Groups with a particular order

- By Lagrange's theorem, if H is a subgroup of G, then $|H|$ divides $|G|$.

Groups with a particular order

- By Lagrange's theorem, if H is a subgroup of G, then $|H|$ divides $|G|$.
- $C_{G}(v)$ is a subgroup of G.

Introduction
Groups with a particular order

Groups with a particular order

- By Lagrange's theorem, if H is a subgroup of G, then $|H|$ divides $|G|$.
- $C_{G}(v)$ is a subgroup of G.
- If $|G|$ is odd, then $\left|C_{G}(v)\right|$ must be odd for all $v \in G$, so $d(v)=|G|-\left|C_{G}(v)\right|$ is even for all $v \in G$ and $\Gamma(G)$ is Eulerian.

Groups with a particular order

- By Lagrange's theorem, if H is a subgroup of G, then $|H|$ divides $|G|$.
- $C_{G}(v)$ is a subgroup of G.
- If $|G|$ is odd, then $\left|C_{G}(v)\right|$ must be odd for all $v \in G$, so $d(v)=|G|-\left|C_{G}(v)\right|$ is even for all $v \in G$ and $\Gamma(G)$ is Eulerian.
- If $|G|=2^{n}$, then $\left|C_{G}(v)\right|=2^{m}$ for some nonnegative integer $m \leq n . C_{G}(v)$ must contain at least e and v, so $m \geq 1$ (when $v=e, C_{G}(v)=G$). Therefore, $|G|$ is even and $\left|C_{G}(v)\right|$ is even for all $v \in G$, so $d(v)=|G|-\left|C_{G}(v)\right|$ is even for all $v \in G$ and $\Gamma(G)$ is Eulerian.

Groups with a particular order

Direct products

- $|G \times H|=|G||H|$ and
$C_{G \times H}((v, w))\left|=\left|C_{G}(v)\right|\right| C_{H}(w) \mid$

Introduction
Groups with a

Direct products

Symmetric group

Dihedral group
Semidirect products

Path Eulerian
non-commuting
graphs
Further research

Direct products

- $|G \times H|=|G||H|$ and $C_{G \times H}((v, w))\left|=\left|C_{G}(v)\right|\right| C_{H}(w) \mid$
- $d((v, w))=|G||H|-\left|C_{G}(v)\right|\left|C_{H}(w)\right|$

Introduction
 Groups with a

Direct products

Direct products

- $|G \times H|=|G||H|$ and $\left|C_{G \times H}((v, w))\right|=\left|C_{G}(v)\right|\left|C_{H}(w)\right|$
- $d((v, w))=|G||H|-\left|C_{G}(v)\right|\left|C_{H}(w)\right|$
- If $|G|$ and $|H|$ are both odd, then $|G \times H|$ is odd, so $\Gamma(G \times H)$ is Eulerian by the previous result.

Direct products

- $|G \times H|=|G||H|$ and $\left|C_{G \times H}((v, w))\right|=\left|C_{G}(v)\right|\left|C_{H}(w)\right|$
- $d((v, w))=|G||H|-\left|C_{G}(v)\right|\left|C_{H}(w)\right|$
- If $|G|$ and $|H|$ are both odd, then $|G \times H|$ is odd, so $\Gamma(G \times H)$ is Eulerian by the previous result.
- If $|G|$ is even and $|H|$ is odd, then $\left|C_{G}(v)\right|$ must be even for all $v \in G$, so $\Gamma(G \times H)$ is Eulerian if and only if $\Gamma(G)$ is Eulerian.

Direct products

- $|G \times H|=|G||H|$ and $\left|C_{G \times H}((v, w))\right|=\left|C_{G}(v)\right|\left|C_{H}(w)\right|$
- $d((v, w))=|G||H|-\left|C_{G}(v)\right|\left|C_{H}(w)\right|$
- If $|G|$ and $|H|$ are both odd, then $|G \times H|$ is odd, so $\Gamma(G \times H)$ is Eulerian by the previous result.
- If $|G|$ is even and $|H|$ is odd, then $\left|C_{G}(v)\right|$ must be even for all $v \in G$, so $\Gamma(G \times H)$ is Eulerian if and only if $\Gamma(G)$ is Eulerian.
- If $|G|$ and $|H|$ are both even, then it must be true that either $\left|C_{G}(v)\right|$ is even for all $v \in G$ or $\left|C_{H}(w)\right|$ is even for all $w \in H$, so $\Gamma(G \times H)$ is Eulerian if and only if either $\Gamma(G)$ is Eulerian or $\Gamma(H)$ is Eulerian.

Symmetric group

- Any two elements of S_{n} are conjugate if and only if they have the same cycle structure.

Introduction

Groups with a particular order

Direct products
Symmetric group
Dihedral group
Semidirect
products
Path Eulerian
non-commuting
graphs
Further research

Symmetric group

- Any two elements of S_{n} are conjugate if and only if they have the same cycle structure.
- There are $\frac{n!}{n}=(n-1)!n$-cycles in S_{n}, so if $x=\left(a_{1} a_{2} \ldots a_{n}\right)$ is an arbitrary n-cycle, then $[x]=(n-1)!$. Then, $\left|C_{S_{n}}(x)\right|=\frac{n!}{(n-1)!}=n$. Therefore, if n is odd, then $d(x)$ is odd for all n-cycles x. If $n=3$, then there are two 3 -cycles, so $\Gamma\left(S_{3}\right)$ is path Eulerian. For any larger odd n, there are more than two n-cycles, so $\Gamma\left(S_{n}\right)$ is non-Eulerian.

Symmetric group

- Any two elements of S_{n} are conjugate if and only if they have the same cycle structure.
- There are $\frac{n!}{n}=(n-1)$! n-cycles in S_{n}, so if $x=\left(a_{1} a_{2} \ldots a_{n}\right)$ is an arbitrary n-cycle, then $[x]=(n-1)!$. Then, $\left|C_{S_{n}}(x)\right|=\frac{n!}{(n-1)!}=n$. Therefore, if n is odd, then $d(x)$ is odd for all n-cycles x. If $n=3$, then there are two 3 -cycles, so $\Gamma\left(S_{3}\right)$ is path Eulerian. For any larger odd n, there are more than two n-cycles, so $\Gamma\left(S_{n}\right)$ is non-Eulerian.
- There are $\frac{n!}{n-1}(n-1)$-cycles in S_{n}, so if $x=\left(a_{1} a_{2} \ldots a_{n-1}\right)$ is an arbitrary $(n-1)$-cycle, then $[x]=\frac{n!}{n-1}$. Then, $\left|C_{S_{n}}(x)\right|=\frac{n!}{\frac{n!}{n-1}}=n-1$. Therefore, if n is even, then $d(x)$ is odd for all $(n-1)$-cycles x. For all even $n \geq 4$, there are more than two ($n-1$)-cycles, so $\Gamma\left(S_{n}\right)$ is non-Eulerian.

Symmetric group

- Any two elements of S_{n} are conjugate if and only if they have the same cycle structure.
- There are $\frac{n!}{n}=(n-1)$! n-cycles in S_{n}, so if $x=\left(a_{1} a_{2} \ldots a_{n}\right)$ is an arbitrary n-cycle, then $[x]=(n-1)$!. Then, $\left|C_{S_{n}}(x)\right|=\frac{n!}{(n-1)!}=n$. Therefore, if n is odd, then $d(x)$ is odd for all n-cycles x. If $n=3$, then there are two 3 -cycles, so $\Gamma\left(S_{3}\right)$ is path Eulerian.
For any larger odd n, there are more than two n-cycles, so $\Gamma\left(S_{n}\right)$ is non-Eulerian.
- There are $\frac{n!}{n-1}(n-1)$-cycles in S_{n}, so if $x=\left(a_{1} a_{2} \ldots a_{n-1}\right)$ is an arbitrary $(n-1)$-cycle, then $[x]=\frac{n!}{n-1}$. Then, $\left|C_{S_{n}}(x)\right|=\frac{n!}{\frac{n!}{n-1}}=n-1$. Therefore, if n is even, then $d(x)$ is odd for all $(n-1)$-cycles x. For all even $n \geq 4$, there are more than two ($n-1$)-cycles, so $\Gamma\left(S_{n}\right)$ is non-Eulerian.
- Therefore, $\Gamma\left(S_{3}\right)$ is path Eulerian and $\Gamma\left(S_{n}\right)$ is non-Eulerian for all larger n.

Dihedral group

Eulerian

$D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s r=r^{-1} s\right\rangle$

Introduction

Groups with a
particular order
Direct products
Symmetric group
Dihedral group
Semidirect
products
Path Euterian
non-commuting
graphs
Further research

Dihedral group

- $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s r=r^{-1} s\right\rangle$
- r^{i} and r^{j} commute for all i, j.

Introduction

Groups with a
particular order
Direct products
Symmetric group
Dihedral group
Semidirect
products
Path Eulerian
non-commuting
graphs
Further research

Dihedral group

- $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s r=r^{-1} s\right\rangle$
- r^{i} and r^{j} commute for all i, j.
- r^{i} and $r^{j} s$ commute if and only if $i=0$ or n is even and $i=\frac{n}{2}$.

Dihedral group

- $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s r=r^{-1} s\right\rangle$
- r^{i} and r^{j} commute for all i, j.
- r^{i} and $r^{j} s$ commute if and only if $i=0$ or n is even and $i=\frac{n}{2}$.
- $r^{i} s$ and $r^{j} s$ commute if and only if $i=j$ or n is even and $|j-i|=\frac{n}{2}$.

Gerhardt Hinkle

Dihedral group

- $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s r=r^{-1} s\right\rangle$
- r^{i} and r^{j} commute for all i, j.
- r^{i} and $r^{j} s$ commute if and only if $i=0$ or n is even and $i=\frac{n}{2}$.
- $r^{i} s$ and $r^{j} s$ commute if and only if $i=j$ or n is even and $|j-i|=\frac{n}{2}$.
- If n is odd, then $Z\left(D_{2 n}\right)=\{1\}$. If n is even, then

$$
Z\left(D_{2 n}\right)=\left\{1, r^{\frac{n}{2}}\right\} .
$$

Dihedral group

- $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s r=r^{-1} s\right\rangle$
- r^{i} and r^{j} commute for all i, j.
- r^{i} and $r^{j} s$ commute if and only if $i=0$ or n is even and $i=\frac{n}{2}$.
- $r^{i} s$ and $r^{j} s$ commute if and only if $i=j$ or n is even and $|j-i|=\frac{n}{2}$.
- If n is odd, then $Z\left(D_{2 n}\right)=\{1\}$. If n is even, then $Z\left(D_{2 n}\right)=\left\{1, r^{\frac{n}{2}}\right\}$.
- If n is odd, then $\left|C_{D_{2 n}}\left(r^{i}\right)\right|=n(1 \leq i \leq n-1)$ and $\left|C_{D_{2 n}}\left(r^{i} s\right)\right|=2(0 \leq i \leq n-1)$, so $\Gamma\left(D_{2 n}\right)$ is non-Eulerian, except that $\Gamma\left(D_{6}\right)$ is path Eulerian.

Dihedral group

- $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s r=r^{-1} s\right\rangle$
- r^{i} and r^{j} commute for all i, j.
- r^{i} and $r^{j} s$ commute if and only if $i=0$ or n is even and $i=\frac{n}{2}$.
- $r^{i} s$ and $r^{j} s$ commute if and only if $i=j$ or n is even and $|j-i|=\frac{n}{2}$.
- If n is odd, then $Z\left(D_{2 n}\right)=\{1\}$. If n is even, then $Z\left(D_{2 n}\right)=\left\{1, r^{\frac{n}{2}}\right\}$.
- If n is odd, then $\left|C_{D_{2 n}}\left(r^{i}\right)\right|=n(1 \leq i \leq n-1)$ and $\left|C_{D_{2 n}}\left(r^{i} s\right)\right|=2(0 \leq i \leq n-1)$, so $\Gamma\left(D_{2 n}\right)$ is non-Eulerian, except that $\Gamma\left(D_{6}\right)$ is path Eulerian.
- If n is even, then $\left|C_{D_{2 n}}\left(r^{i}\right)\right|=n\left(1 \leq i \leq \frac{n}{2}-1\right.$ or $\left.\frac{n}{2}+1 \leq i \leq n-1\right)$ and $\left|C_{D_{2 n}}\left(r^{i} s\right)\right|=4(0 \leq i \leq n-1)$, so $\Gamma\left(D_{2 n}\right)$ is Eulerian.

Semidirect products

- $G \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots

Introduction
Groups with a particular order

Direct products
Symmetric group
Dihedral group
Semidirect
products
Path Eulerian
non-commuting
graphs
Further research

Semidirect products

- $G \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a_{1}, a_{2}, \ldots, b \mid a_{i}^{p_{i}^{e_{i}}}=b^{2^{n}}=1, a_{j} a_{i}=a_{i} a_{j}, b a_{i}=a_{i}^{k_{i}} b\right\rangle$

Introduction
Groups with a particular order

Direct products Symmetric group

Semidirect products

Semidirect products

- $G \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a_{1}, a_{2}, \ldots, b \mid a_{i}^{p_{i}^{e_{i}}}=b^{2^{n}}=1, a_{j} a_{i}=a_{i} a_{j}, b a_{i}=a_{i}^{k_{i}} b\right\rangle$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}^{e_{i}}$

Introduction
Groups with a particular order

Direct products Symmetric group

Semidirect products

- $G \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a_{1}, a_{2}, \ldots, b \mid a_{i}^{p_{i}^{e_{i}}}=b^{2^{n}}=1, a_{j} a_{i}=a_{i} a_{j}, b a_{i}=a_{i}^{k_{i}} b\right\rangle$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}^{e_{i}}$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}$

Introduction
Groups with a particular order

Direct products Symmetric group

Semidirect products

- $G \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a_{1}, a_{2}, \ldots, b \mid a_{i}^{p_{i}^{e_{i}}}=b^{2^{n}}=1, a_{j} a_{i}=a_{i} a_{j}, b a_{i}=a_{i}^{k_{i}} b\right\rangle$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}^{e_{i}}$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}$
- $o_{p_{i}}\left(k_{i}\right)$ divides 2^{n}

Introduction
Groups with a

Semidirect products

- $G \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a_{1}, a_{2}, \ldots, b \mid a_{i}^{p_{i}^{e_{i}}}=b^{2^{n}}=1, a_{j} a_{i}=a_{i} a_{j}, b a_{i}=a_{i}^{k_{i}} b\right\rangle$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}^{e_{i}}$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}$
- $o_{p_{i}}\left(k_{i}\right)$ divides 2^{n}
- Let $u_{g}=\prod_{o_{p_{i}}\left(k_{i}\right)=2^{g}} p_{i}^{e_{i}}$

Semidirect products

- $G \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a_{1}, a_{2}, \ldots, b \mid a_{i}^{p_{i}^{e_{i}}}=b^{2^{n}}=1, a_{j} a_{i}=a_{i} a_{j}, b a_{i}=a_{i}^{k_{i}} b\right\rangle$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}^{e_{i}}$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}$
- $o_{p_{i}}\left(k_{i}\right)$ divides 2^{n}
- Let $u_{g}=\prod_{o_{p_{i}}\left(k_{i}\right)=2^{g}} p_{i}^{e_{i}}$
$-\mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}} \cong \mathbb{Z}_{u_{0}} \times\left(\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}\right)$

Semidirect products

- $G \cong \mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a_{1}, a_{2}, \ldots, b \mid a_{i}^{p_{i}^{e_{i}}}=b^{2^{n}}=1, a_{j} a_{i}=a_{i} a_{j}, b a_{i}=a_{i}^{k_{i}} b\right\rangle$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}^{e_{i}}$
- $k_{i}^{2^{n}} \equiv 1 \bmod p_{i}$
- $o_{p_{i}}\left(k_{i}\right)$ divides 2^{n}
- Let $u_{g}=\prod_{o_{p_{i}}\left(k_{i}\right)=2^{g}} p_{i}^{e_{i}}$
$-\mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}} \cong \mathbb{Z}_{u_{0}} \times\left(\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}\right)$
- $\Gamma(G)$ Eulerian if and only if $\Gamma\left(\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}\right)$ Eulerian

Semidirect products (continued)

$-\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}=\left\langle a_{1}, a_{2}, \ldots, a_{n}, b\right| a_{i}^{u_{i}}=b^{2^{n}}=1, a_{j} a_{i}=$ $\left.a_{i} a_{j}, b a_{i}=a_{i}^{l_{i}} b\right\rangle$, where $o_{u_{i}}\left(l_{i}\right)=2^{i}$

Semidirect products (continued)

$-\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}=\left\langle a_{1}, a_{2}, \ldots, a_{n}, b\right| a_{i}^{u_{i}}=b^{2^{n}}=1, a_{j} a_{i}=$ $\left.a_{i} a_{j}, b a_{i}=a_{i}^{l_{i}} b\right\rangle$, where $o_{u_{i}}\left(l_{i}\right)=2^{i}$

- Suppose $a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}} b^{y}$ and $a_{1}^{x_{1}^{\prime}} a_{2}^{x_{2}^{\prime}} \ldots a_{n}^{x_{n}^{\prime}} b^{y^{\prime}}$ commute. Then, $x_{i}\left(l_{i}^{y^{\prime}}-1\right) \equiv x_{i}^{\prime}\left(l_{i}^{y}-1\right)$ for all $0 \leq i \leq n$.

Semidirect products (continued)

$-\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}=\left\langle a_{1}, a_{2}, \ldots, a_{n}, b\right| a_{i}^{u_{i}}=b^{2^{n}}=1, a_{j} a_{i}=$ $\left.a_{i} a_{j}, b a_{i}=a_{i}^{l_{i}} b\right\rangle$, where $o_{u_{i}}\left(l_{i}\right)=2^{i}$

- Suppose $a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}} b^{y}$ and $a_{1}^{x_{1}^{\prime}} a_{2}^{x_{2}^{\prime}} \ldots a_{n}^{x_{n}^{\prime}} b^{y^{\prime}}$ commute. Then, $x_{i}\left(l_{i}^{y^{\prime}}-1\right) \equiv x_{i}^{\prime}\left(l_{i}^{y}-1\right)$ for all $0 \leq i \leq n$.
- If $u_{n} \neq 1$, then for all elements of G with $y=0$ and $x_{n} \neq 0,\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}}\right)\right|=u_{1} u_{2} \ldots u_{n}$, which is odd.

Semidirect products (continued)

$-\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}=\left\langle a_{1}, a_{2}, \ldots, a_{n}, b\right| a_{i}^{u_{i}}=b^{2^{n}}=1, a_{j} a_{i}=$ $\left.a_{i} a_{j}, b a_{i}=a_{i}^{l_{i}} b\right\rangle$, where $o_{u_{i}}\left(l_{i}\right)=2^{i}$

- Suppose $a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}} b^{y}$ and $a_{1}^{x_{1}^{\prime}} a_{2}^{x_{2}^{\prime}} \ldots a_{n}^{x_{n}^{\prime}} b^{y^{\prime}}$ commute. Then, $x_{i}\left(l_{i}^{y^{\prime}}-1\right) \equiv x_{i}^{\prime}\left(l_{i}^{y}-1\right)$ for all $0 \leq i \leq n$.
- If $u_{n} \neq 1$, then for all elements of G with $y=0$ and $x_{n} \neq 0,\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}}\right)\right|=u_{1} u_{2} \ldots u_{n}$, which is odd.
- If $u_{n}=1$, then the congruence for $i=n$ is trivially true.

Semidirect products (continued)

$-\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}=\left\langle a_{1}, a_{2}, \ldots, a_{n}, b\right| a_{i}^{u_{i}}=b^{2^{n}}=1, a_{j} a_{i}=$ $\left.a_{i} a_{j}, b a_{i}=a_{i}^{l_{i}} b\right\rangle$, where $o_{u_{i}}\left(l_{i}\right)=2^{i}$

- Suppose $a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}} b^{y}$ and $a_{1}^{x_{1}^{\prime}} a_{2}^{x_{2}^{\prime}} \ldots a_{n}^{x_{n}^{\prime}} b^{y^{\prime}}$ commute. Then, $x_{i}\left(l_{i}^{y^{\prime}}-1\right) \equiv x_{i}^{\prime}\left(l_{i}^{y}-1\right)$ for all $0 \leq i \leq n$.
- If $u_{n} \neq 1$, then for all elements of G with $y=0$ and $x_{n} \neq 0,\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}}\right)\right|=u_{1} u_{2} \ldots u_{n}$, which is odd.
- If $u_{n}=1$, then the congruence for $i=n$ is trivially true.
- For any y, let s be the largest power of 2 that divides y (i.e. 2^{s} divides y but 2^{s+1} does not). Then, the values of $x_{s+1}^{\prime}, x_{s+2}^{\prime}, \ldots, x_{n-1}^{\prime}$ are forced.

Semidirect products (continued)

$-\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}=\left\langle a_{1}, a_{2}, \ldots, a_{n}, b\right| a_{i}^{u_{i}}=b^{2^{n}}=1, a_{j} a_{i}=$ $\left.a_{i} a_{j}, b a_{i}=a_{i}^{l_{i}} b\right\rangle$, where $o_{u_{i}}\left(l_{i}\right)=2^{i}$

- Suppose $a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}} b^{y}$ and $a_{1}^{x_{1}^{\prime}} a_{2}^{x_{2}^{\prime}} \ldots a_{n}^{x_{n}^{\prime}} b^{y^{\prime}}$ commute. Then, $x_{i}\left(l_{i}^{y^{\prime}}-1\right) \equiv x_{i}^{\prime}\left(l_{i}^{y}-1\right)$ for all $0 \leq i \leq n$.
- If $u_{n} \neq 1$, then for all elements of G with $y=0$ and $x_{n} \neq 0,\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}}\right)\right|=u_{1} u_{2} \ldots u_{n}$, which is odd.
- If $u_{n}=1$, then the congruence for $i=n$ is trivially true.
- For any y, let s be the largest power of 2 that divides y (i.e. 2^{s} divides y but 2^{s+1} does not). Then, the values of $x_{s+1}^{\prime}, x_{s+2}^{\prime}, \ldots, x_{n-1}^{\prime}$ are forced.
- If r is the smallest integer less than or equal to s for which $x_{r+1}=x_{r+2}=\ldots=x_{s}=0$, then 2^{r} divides y^{\prime}.

Semidirect products (continued)

$-\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}=\left\langle a_{1}, a_{2}, \ldots, a_{n}, b\right| a_{i}^{u_{i}}=b^{2^{n}}=1, a_{j} a_{i}=$ $\left.a_{i} a_{j}, b a_{i}=a_{i}^{l_{i}} b\right\rangle$, where $o_{u_{i}}\left(l_{i}\right)=2^{i}$

- Suppose $a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}} b^{y}$ and $a_{1}^{x_{1}^{\prime}} a_{2}^{x_{2}^{\prime}} \ldots a_{n}^{x_{n}^{\prime}} b^{y^{\prime}}$ commute. Then, $x_{i}\left(l_{i}^{y^{\prime}}-1\right) \equiv x_{i}^{\prime}\left(l_{i}^{y}-1\right)$ for all $0 \leq i \leq n$.
- If $u_{n} \neq 1$, then for all elements of G with $y=0$ and $x_{n} \neq 0,\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}}\right)\right|=u_{1} u_{2} \ldots u_{n}$, which is odd.
- If $u_{n}=1$, then the congruence for $i=n$ is trivially true.
- For any y, let s be the largest power of 2 that divides y (i.e. 2^{s} divides y but 2^{s+1} does not). Then, the values of $x_{s+1}^{\prime}, x_{s+2}^{\prime}, \ldots, x_{n-1}^{\prime}$ are forced.
- If r is the smallest integer less than or equal to s for which $x_{r+1}=x_{r+2}=\ldots=x_{s}=0$, then 2^{r} divides y^{\prime}.
- Then, $\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n-1}^{x_{n-1}} b^{y}\right)\right|=2^{n-r} u_{1} u_{2} \ldots u_{s}$. $r \leq n-1$, so $\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n-1}^{x_{n-1}} b^{y}\right)\right|$ is always even.

Semidirect products (continued)

$-\mathbb{Z}_{u_{1} u_{2} \ldots u_{n}} \rtimes \mathbb{Z}_{2^{n}}=\left\langle a_{1}, a_{2}, \ldots, a_{n}, b\right| a_{i}^{u_{i}}=b^{2^{n}}=1, a_{j} a_{i}=$ $\left.a_{i} a_{j}, b a_{i}=a_{i}^{l_{i}} b\right\rangle$, where $o_{u_{i}}\left(l_{i}\right)=2^{i}$

- Suppose $a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}} b^{y}$ and $a_{1}^{x_{1}^{\prime}} a_{2}^{x_{2}^{\prime}} \ldots a_{n}^{x_{n}^{\prime}} b^{y^{\prime}}$ commute. Then, $x_{i}\left(l_{i}^{y^{\prime}}-1\right) \equiv x_{i}^{\prime}\left(l_{i}^{y}-1\right)$ for all $0 \leq i \leq n$.
- If $u_{n} \neq 1$, then for all elements of G with $y=0$ and $x_{n} \neq 0,\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n}^{x_{n}}\right)\right|=u_{1} u_{2} \ldots u_{n}$, which is odd.
- If $u_{n}=1$, then the congruence for $i=n$ is trivially true.
- For any y, let s be the largest power of 2 that divides y (i.e. 2^{s} divides y but 2^{s+1} does not). Then, the values of $x_{s+1}^{\prime}, x_{s+2}^{\prime}, \ldots, x_{n-1}^{\prime}$ are forced.
- If r is the smallest integer less than or equal to s for which $x_{r+1}=x_{r+2}=\ldots=x_{s}=0$, then 2^{r} divides y^{\prime}.
- Then, $\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n-1}^{x_{n-1}} b^{y}\right)\right|=2^{n-r} u_{1} u_{2} \ldots u_{s}$. $r \leq n-1$, so $\left|C_{G}\left(a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{n-1}^{x_{n-1}} b^{y}\right)\right|$ is always even.
- Therefore, $\Gamma\left(\mathbb{Z}_{m} \rtimes \mathbb{Z}_{2^{n}}\right)$ is Eulerian if and only if $o_{p_{i}}\left(k_{i}\right) \neq 2^{n}$ for all primes $p_{i} \mid m$.

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{m} r} \rtimes \mathbb{Z}_{2^{n}}$, where $r=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots

Introduction
Groups with a particular order

Direct products
Symmetric group
Dihedral group
Semidirect products

Path Eulerian
non-commuting

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{m} r} \rtimes \mathbb{Z}_{2^{n}}$, where $r=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| a^{2^{m}}=b_{i}^{p_{i}^{e_{i}}}=c^{2^{n}}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$

Introduction
Groups with a

Direct products Symmetric group

Dihedral group
Semidirect products

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{m} r} \rtimes \mathbb{Z}_{2^{n}}$, where $r=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| 2^{2^{m}}=b_{i}^{p_{i}^{e_{i}}}=c^{2^{n}}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$
- $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)$ divides $\left|C_{G}\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)\right|$

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{m} r} \rtimes \mathbb{Z}_{2^{n}}$, where $r=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| 2^{2^{m}}=b_{i}^{p_{i}^{e_{i}}}=c^{2^{n}}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$
- $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)$ divides $\left|C_{G}\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)\right|$
- $\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)^{t}=$

$$
a^{u\left(1+k_{0}^{w}+k_{0}^{2 w}+\ldots+k_{0}^{(t-1) w}\right) b_{1}^{v_{1}\left(1+k_{1}^{w}+k_{1}^{2 w}+\ldots+k_{1}^{(t-1) w}\right)} \ldots c^{t w} .{ }^{t w} .}
$$

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{m} r} \rtimes \mathbb{Z}_{2^{n}}$, where $r=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| 2^{2^{m}}=b_{i}^{p_{i}^{e_{i}}}=c^{2^{n}}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$
- $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)$ divides $\left|C_{G}\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)\right|$
- $\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)^{t}=$
- $o\left(c^{w}\right)$ divides $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)$.

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{m} r} \rtimes \mathbb{Z}_{2^{n}}$, where $r=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| 2^{2^{m}}=b_{i}^{p_{i}^{e_{i}}}=c^{2^{n}}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$
- $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)$ divides $\left|C_{G}\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)\right|$
- $\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)^{t}=$

- $o\left(c^{w}\right)$ divides $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)$.
- $o\left(c^{w}\right)$ is a power of 2. Therefore, if $w \neq 0$, then $o\left(c^{w}\right)$ is even, so $\left|C_{G}\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots c^{w}\right)\right|$ is even and $\Gamma(G)$ is Eulerian.

Semidirect products (continued)

Introduction

Groups with a particular order

Direct products
Symmetric group
Dihedral group
Semidirect
products
Path Eulerian
non-commuting
graphs
Further research

Semidirect products (continued)

- If $w=0$, then $o\left(a^{u}\right)$ divides $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)$.
- $o\left(a^{u}\right)$ is a power of 2 . Therefore, if $u \neq 0$, then $o\left(a^{u}\right)$ is even, so $\left|C_{G}\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)\right|$ is even and $\Gamma(G)$ is Eulerian.

Semidirect products (continued)

- If $w=0$, then $o\left(a^{u}\right)$ divides $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)$.
- $o\left(a^{u}\right)$ is a power of 2 . Therefore, if $u \neq 0$, then $o\left(a^{u}\right)$ is even, so $\left|C_{G}\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)\right|$ is even and $\Gamma(G)$ is Eulerian.
- If $u=0$, then $o\left(b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)$ is odd. However, $C_{G}\left(b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right) \geq\left\langle a, b_{1}, b_{2}, \ldots\right\rangle$, so $\left|C_{G}\left(b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)\right|$ is even and $\Gamma(G)$ is Eulerian.

Semidirect products (continued)

- If $w=0$, then $o\left(a^{u}\right)$ divides $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)$.
- $o\left(a^{u}\right)$ is a power of 2 . Therefore, if $u \neq 0$, then $o\left(a^{u}\right)$ is even, so $\left|C_{G}\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)\right|$ is even and $\Gamma(G)$ is Eulerian.
- If $u=0$, then $o\left(b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)$ is odd. However, $C_{G}\left(b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right) \geq\left\langle a, b_{1}, b_{2}, \ldots\right\rangle$, so $\left|C_{G}\left(b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)\right|$ is even and $\Gamma(G)$ is Eulerian.
- Therefore, $\Gamma(G)$ is Eulerian.

Semidirect products (continued)

- If $w=0$, then $o\left(a^{u}\right)$ divides $o\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)$.
- $o\left(a^{u}\right)$ is a power of 2 . Therefore, if $u \neq 0$, then $o\left(a^{u}\right)$ is even, so $\left|C_{G}\left(a^{u} b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)\right|$ is even and $\Gamma(G)$ is Eulerian.
- If $u=0$, then $o\left(b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)$ is odd. However, $C_{G}\left(b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right) \geq\left\langle a, b_{1}, b_{2}, \ldots\right\rangle$, so $\left|C_{G}\left(b_{1}^{v_{1}} b_{2}^{v_{2}} \ldots\right)\right|$ is even and $\Gamma(G)$ is Eulerian.
- Therefore, $\Gamma(G)$ is Eulerian.
- $\Gamma\left(\mathbb{Z}_{2 m} \rtimes \mathbb{Z}_{2^{n}}\right)$ is Eulerian for all positive integers m and n.

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{r} m} \rtimes \mathbb{Z}_{2 n}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \ldots$ for distinct odd primes q_{1}, q_{2}, \ldots and positive integers f_{1}, f_{2}, \ldots

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{r} m} \rtimes \mathbb{Z}_{2 n}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \ldots$ for distinct odd primes q_{1}, q_{2}, \ldots and positive integers f_{1}, f_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| a^{2^{r}}=b_{i}^{p_{i}}=c^{2 n}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{r} m} \rtimes \mathbb{Z}_{2 n}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \ldots$ for distinct odd primes q_{1}, q_{2}, \ldots and positive integers f_{1}, f_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| a^{2^{r}}=b_{i}^{p_{i}}=c^{2 n}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$
- o(k_{0}) divides 2^{r} and $2 n$, so $o\left(k_{0}\right)=1,2$.

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{r} m} \rtimes \mathbb{Z}_{2 n}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \ldots$ for distinct odd primes q_{1}, q_{2}, \ldots and positive integers f_{1}, f_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| a^{2^{r}}=b_{i}^{p_{i}}=c^{2 n}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$
- o(k_{0}) divides 2^{r} and $2 n$, so $o\left(k_{0}\right)=1,2$.
- If $o\left(k_{0}\right)=1$, then $k_{0}=1$, so $\mathbb{Z}_{2^{r} m} \rtimes \mathbb{Z}_{2 n} \cong \mathbb{Z}_{2^{r}} \times\left(\mathbb{Z}_{m} \rtimes \mathbb{Z}_{2 n}\right)$ and $\Gamma(G)$ is Eulerian.

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{r} m} \rtimes \mathbb{Z}_{2 n}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \ldots$ for distinct odd primes q_{1}, q_{2}, \ldots and positive integers f_{1}, f_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| a^{2^{r}}=b_{i}^{p_{i}}=c^{2 n}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$
- o(k_{0}) divides 2^{r} and $2 n$, so $o\left(k_{0}\right)=1,2$.
- If $o\left(k_{0}\right)=1$, then $k_{0}=1$, so $\mathbb{Z}_{2^{r} m} \rtimes \mathbb{Z}_{2 n} \cong \mathbb{Z}_{2^{r}} \times\left(\mathbb{Z}_{m} \rtimes \mathbb{Z}_{2 n}\right)$ and $\Gamma(G)$ is Eulerian.
- Now, let $o\left(k_{0}\right)=2$.

Semidirect products (continued)

- $G \cong \mathbb{Z}_{2^{r} m} \rtimes \mathbb{Z}_{2 n}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$ for distinct odd primes p_{1}, p_{2}, \ldots and positive integers e_{1}, e_{2}, \ldots and $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \ldots$ for distinct odd primes q_{1}, q_{2}, \ldots and positive integers f_{1}, f_{2}, \ldots
- $G \cong\left\langle a, b_{1}, b_{2}, \ldots, c\right| a^{2^{r}}=b_{i}^{p_{i}}=c^{2 n}=1, b_{i} a=$ $\left.a b_{i}, b_{j} b_{i}=b_{i} b_{j}, c a=a^{k_{0}} c, c b_{i}=b_{i}^{k_{i}} c\right\rangle$
- o(k_{0}) divides 2^{r} and $2 n$, so $o\left(k_{0}\right)=1,2$.
- If $o\left(k_{0}\right)=1$, then $k_{0}=1$, so $\mathbb{Z}_{2^{r} m} \rtimes \mathbb{Z}_{2 n} \cong \mathbb{Z}_{2^{r}} \times\left(\mathbb{Z}_{m} \rtimes \mathbb{Z}_{2 n}\right)$ and $\Gamma(G)$ is Eulerian.
- Now, let $o\left(k_{0}\right)=2$.
- Define $u_{g}=\prod 1 p_{i}^{e_{i}}$ for all $g \mid 2 n$, except

$$
u_{2}=2^{r} \prod_{o_{p_{i}}\left(k_{i}\right)=2}^{\left.o_{p_{i}}^{e_{i}} \overline{k_{i}}\right)=g} p_{i}^{e_{i}}
$$

Semidirect products (continued)

- $G \cong \mathbb{Z}_{u_{1}} \times\left(\mathbb{Z}_{\frac{2^{r} m}{u_{1}}} \rtimes \mathbb{Z}_{2 n}\right)$, so if $H=\mathbb{Z}_{\frac{2^{r} m}{u_{1}}} \rtimes \mathbb{Z}_{2 n}$, then $\Gamma(G)$ is Eulerian if and only if $\Gamma(H)$ is Eulerian.

Introduction
Groups with a particular order

Semidirect products (continued)

- $G \cong \mathbb{Z}_{u_{1}} \times\left(\mathbb{Z}_{\frac{2^{r} m}{u_{1}}} \rtimes \mathbb{Z}_{2 n}\right)$, so if $H=\mathbb{Z}_{\frac{2^{r} m}{u_{1}}} \rtimes \mathbb{Z}_{2 n}$, then $\Gamma(G)$ is Eulerian if and only if $\Gamma(H)$ is Eulerian.
- $H \cong\left\langle a_{g}, b \mid a_{g}^{u_{g}}=b^{2 n}=1, a_{h} a_{g}=a_{g} a_{h}, b a_{g}=a_{g}^{I_{g}} b\right\rangle$, where g takes all values satisfying $g \mid 2 n$ except 1 and $o_{u_{g}}\left(I_{g}\right)=g$

Semidirect products (continued)

- $G \cong \mathbb{Z}_{u_{1}} \times\left(\mathbb{Z}_{\frac{2^{r} m}{u_{1}}} \rtimes \mathbb{Z}_{2 n}\right)$, so if $H=\mathbb{Z}_{\frac{2^{r} m}{u_{1}}} \rtimes \mathbb{Z}_{2 n}$, then $\Gamma(G)$ is Eulerian if and only if $\Gamma(H)$ is Eulerian.
- $H \cong\left\langle a_{g}, b \mid a_{g}^{u_{g}}=b^{2 n}=1, a_{h} a_{g}=a_{g} a_{h}, b a_{g}=a_{g}^{I_{g}} b\right\rangle$, where g takes all values satisfying $g \mid 2 n$ except 1 and $o_{u_{g}}\left(I_{g}\right)=g$
- $\gamma=\left(\prod_{i \mid 2 n, i \neq 1} a_{i}^{x_{i}}\right) b^{y}$ and $\gamma^{\prime}=\left(\prod_{i \mid 2 n, i \neq 1} a_{i}^{x_{i}^{\prime}}\right) b^{y^{\prime}}$
commute if and only if $x_{g}\left(l_{g}^{y^{\prime}}-1\right) \equiv x_{g}^{\prime}\left(l_{g}^{y}-1\right)$ $\bmod u_{g}$ for all $g \mid 2 n, g \neq 1$.

Semidirect products (continued)

- If y is even, then either y^{\prime} is even or $\frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}$ divides x_{2}.

Semidirect products (continued)

- If y is even, then either y^{\prime} is even or $\frac{u_{2}}{\operatorname{gcd}\left(I_{2}-1, u_{2}\right)}$ divides x_{2}.
- If y^{\prime} is even, then there are no restrictions on x_{2}^{\prime}. There are n ways to choose y^{\prime} and u_{2} ways to choose x_{2}^{\prime}, so $u_{2} n$ divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.

Semidirect products (continued)

- If y is even, then either y^{\prime} is even or $\frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}$ divides x_{2}.
- If y^{\prime} is even, then there are no restrictions on x_{2}^{\prime}. There are n ways to choose y^{\prime} and u_{2} ways to choose x_{2}^{\prime}, so $u_{2} n$ divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.
- If $\frac{u_{2}}{\operatorname{gcd}\left(I_{2}-1, u_{2}\right)}$ divides x_{2}, then all choices of x_{2}^{\prime} commute with x_{2}, so u_{2} divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.

Semidirect products (continued)

- If y is even, then either y^{\prime} is even or $\frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, \mu_{2}\right)}$ divides x_{2}.
- If y^{\prime} is even, then there are no restrictions on x_{2}^{\prime}. There are n ways to choose y^{\prime} and u_{2} ways to choose x_{2}^{\prime}, so $u_{2} n$ divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.
- If $\frac{u_{2}}{\operatorname{gcd}\left(I_{2}-1, u_{2}\right)}$ divides x_{2}, then all choices of x_{2}^{\prime} commute with x_{2}, so u_{2} divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.
- If y is odd, then $x_{2}^{\prime} \equiv x_{2}\left(\frac{l_{2}^{y^{\prime}}-1}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}\right)\left(\frac{I_{2}-1}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}\right)^{-1}$ $\bmod \frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}$, so for any choice of y^{\prime} there are $\operatorname{gcd}\left(l_{2}-1, u_{2}\right)$ choices for x_{2} and $\operatorname{gcd}\left(l_{2}-1, u_{2}\right)$ divides $\left|C_{G}(\gamma)\right|$.

Semidirect products (continued)

- If y is even, then either y^{\prime} is even or $\frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, \mu_{2}\right)}$ divides x_{2}.
- If y^{\prime} is even, then there are no restrictions on x_{2}^{\prime}. There are n ways to choose y^{\prime} and u_{2} ways to choose x_{2}^{\prime}, so $u_{2} n$ divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.
- If $\frac{\mu_{2}}{\operatorname{gcd}\left(I_{2}-1, u_{2}\right)}$ divides x_{2}, then all choices of x_{2}^{\prime} commute with x_{2}, so u_{2} divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.
- If y is odd, then $x_{2}^{\prime} \equiv x_{2}\left(\frac{l_{2}^{y^{\prime}}-1}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}\right)\left(\frac{l_{2}-1}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}\right)^{-1}$ $\bmod \frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}$, so for any choice of y^{\prime} there are $\operatorname{gcd}\left(l_{2}-1, u_{2}\right)$ choices for x_{2} and $\operatorname{gcd}\left(l_{2}-1, u_{2}\right)$ divides $\left|C_{G}(\gamma)\right|$.
- Because $I_{2}^{2} \equiv 1 \bmod u_{2}$ and u_{2} is even, I_{2} is odd, so $\operatorname{gcd}\left(I_{2}-1, u_{2}\right)$ is even and $\left|C_{G}(\gamma)\right|$ is even.

Semidirect products (continued)

- If y is even, then either y^{\prime} is even or $\frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, \mu_{2}\right)}$ divides x_{2}.
- If y^{\prime} is even, then there are no restrictions on x_{2}^{\prime}. There are n ways to choose y^{\prime} and u_{2} ways to choose x_{2}^{\prime}, so $u_{2} n$ divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.
- If $\frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}$ divides x_{2}, then all choices of x_{2}^{\prime} commute with x_{2}, so u_{2} divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.
- If y is odd, then $x_{2}^{\prime} \equiv x_{2}\left(\frac{l_{2}^{y^{\prime}}-1}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}\right)\left(\frac{l_{2}-1}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}\right)^{-1}$ $\bmod \frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}$, so for any choice of y^{\prime} there are $\operatorname{gcd}\left(l_{2}-1, u_{2}\right)$ choices for x_{2} and $\operatorname{gcd}\left(l_{2}-1, u_{2}\right)$ divides $\left|C_{G}(\gamma)\right|$.
- Because $I_{2}^{2} \equiv 1 \bmod u_{2}$ and u_{2} is even, I_{2} is odd, so $\operatorname{gcd}\left(I_{2}-1, u_{2}\right)$ is even and $\left|C_{G}(\gamma)\right|$ is even.
- Therefore, $\Gamma(G)$ is Eulerian.

Semidirect products (continued)

- If y is even, then either y^{\prime} is even or $\frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}$ divides x_{2}.
- If y^{\prime} is even, then there are no restrictions on x_{2}^{\prime}. There are n ways to choose y^{\prime} and u_{2} ways to choose x_{2}^{\prime}, so $u_{2} n$ divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.
- If $\frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}$ divides x_{2}, then all choices of x_{2}^{\prime} commute with x_{2}, so u_{2} divides $\left|C_{G}(\gamma)\right|$ and $\left|C_{G}(\gamma)\right|$ is even.
- If y is odd, then $x_{2}^{\prime} \equiv x_{2}\left(\frac{l_{2}^{y^{\prime}}-1}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}\right)\left(\frac{l_{2}-1}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}\right)^{-1}$ $\bmod \frac{u_{2}}{\operatorname{gcd}\left(l_{2}-1, u_{2}\right)}$, so for any choice of y^{\prime} there are $\operatorname{gcd}\left(I_{2}-1, u_{2}\right)$ choices for x_{2} and $\operatorname{gcd}\left(I_{2}-1, u_{2}\right)$ divides $\left|C_{G}(\gamma)\right|$.
- Because $I_{2}^{2} \equiv 1 \bmod u_{2}$ and u_{2} is even, I_{2} is odd, so $\operatorname{gcd}\left(I_{2}-1, u_{2}\right)$ is even and $\left|C_{G}(\gamma)\right|$ is even.
- Therefore, $\Gamma(G)$ is Eulerian.
- Therefore, $\Gamma\left(\mathbb{Z}_{2 m} \rtimes \mathbb{Z}_{2 n}\right)$ is Eulerian for all positive integers m and odd positive integers n.

Path Eulerian non-commuting graphs

- Out of all groups that have been considered so far, the only one that has had a path Eulerian non-commuting graph is $S_{3} \cong D_{6}$. I conjecture that there is no other group G for which $\Gamma(G)$ is path Eulerian.

Path Eulerian non-commuting graphs

- Out of all groups that have been considered so far, the only one that has had a path Eulerian non-commuting graph is $S_{3} \cong D_{6}$. I conjecture that there is no other group G for which $\Gamma(G)$ is path Eulerian.
- $C_{G}(x) \geq\langle x\rangle$, so there must exist an element $x \in G$ with $o(x)=3$. Then we must have $\left|C_{G}(x)\right|$ and $\left|C_{G}\left(x^{2}\right)\right|$ both be odd.

Path Eulerian non-commuting graphs

- Out of all groups that have been considered so far, the only one that has had a path Eulerian non-commuting graph is $S_{3} \cong D_{6}$. I conjecture that there is no other group G for which $\Gamma(G)$ is path Eulerian.
- $C_{G}(x) \geq\langle x\rangle$, so there must exist an element $x \in G$ with $o(x)=3$. Then we must have $\left|C_{G}(x)\right|$ and $\left|C_{G}\left(x^{2}\right)\right|$ both be odd.
- For any $g \in G, C_{G}\left(g x g^{-1}\right)=g C_{G}(x) g^{-1}$. Suppose $y=g \times g^{-1}, y \neq x, x^{2}$. Then, $C_{G}(y)=g C_{G}(x) g^{-1}$. However, this gives $\left|C_{G}(y)\right|=\left|C_{G}(x)\right|$, so $\left|C_{G}(y)\right|$ is odd, a contradiction. Therefore, $[x]=\left\{x, x^{2}\right\}$.

Path Eulerian non-commuting graphs

- Out of all groups that have been considered so far, the only one that has had a path Eulerian non-commuting graph is $S_{3} \cong D_{6}$. I conjecture that there is no other group G for which $\Gamma(G)$ is path Eulerian.
- $C_{G}(x) \geq\langle x\rangle$, so there must exist an element $x \in G$ with $o(x)=3$. Then we must have $\left|C_{G}(x)\right|$ and $\left|C_{G}\left(x^{2}\right)\right|$ both be odd.
- For any $g \in G, C_{G}\left(g x g^{-1}\right)=g C_{G}(x) g^{-1}$. Suppose $y=g \times g^{-1}, y \neq x, x^{2}$. Then, $C_{G}(y)=g C_{G}(x) g^{-1}$. However, this gives $\left|C_{G}(y)\right|=\left|C_{G}(x)\right|$, so $\left|C_{G}(y)\right|$ is odd, a contradiction. Therefore, $[x]=\left\{x, x^{2}\right\}$.
- $\left|C_{G}(x)\right|=\frac{|G|}{\mid x] \mid}=\frac{|G|}{2}$, so $C_{G}(x) \triangleleft G$.

Path Eulerian non-commuting graphs

- Out of all groups that have been considered so far, the only one that has had a path Eulerian non-commuting graph is $S_{3} \cong D_{6}$. I conjecture that there is no other group G for which $\Gamma(G)$ is path Eulerian.
- $C_{G}(x) \geq\langle x\rangle$, so there must exist an element $x \in G$ with $o(x)=3$. Then we must have $\left|C_{G}(x)\right|$ and $\left|C_{G}\left(x^{2}\right)\right|$ both be odd.
- For any $g \in G, C_{G}\left(g x g^{-1}\right)=g C_{G}(x) g^{-1}$. Suppose $y=g \times g^{-1}, y \neq x, x^{2}$. Then, $C_{G}(y)=g C_{G}(x) g^{-1}$. However, this gives $\left|C_{G}(y)\right|=\left|C_{G}(x)\right|$, so $\left|C_{G}(y)\right|$ is odd, a contradiction. Therefore, $[x]=\left\{x, x^{2}\right\}$.
- $\left|C_{G}(x)\right|=\frac{|G|}{|x| \mid}=\frac{|G|}{2}$, so $C_{G}(x) \triangleleft G$.
- $C_{G}(x)=C_{G}\left(x^{2}\right)$

Path Eulerian non-commuting graphs

- Out of all groups that have been considered so far, the only one that has had a path Eulerian non-commuting graph is $S_{3} \cong D_{6}$. I conjecture that there is no other group G for which $\Gamma(G)$ is path Eulerian.
- $C_{G}(x) \geq\langle x\rangle$, so there must exist an element $x \in G$ with $o(x)=3$. Then we must have $\left|C_{G}(x)\right|$ and $\left|C_{G}\left(x^{2}\right)\right|$ both be odd.
- For any $g \in G, C_{G}\left(g x g^{-1}\right)=g C_{G}(x) g^{-1}$. Suppose $y=g \times g^{-1}, y \neq x, x^{2}$. Then, $C_{G}(y)=g C_{G}(x) g^{-1}$. However, this gives $\left|C_{G}(y)\right|=\left|C_{G}(x)\right|$, so $\left|C_{G}(y)\right|$ is odd, a contradiction. Therefore, $[x]=\left\{x, x^{2}\right\}$.
- $\left|C_{G}(x)\right|=\frac{|G|}{\mid x] \mid}=\frac{|G|}{2}$, so $C_{G}(x) \triangleleft G$.
- $C_{G}(x)=C_{G}\left(x^{2}\right)$
- $|G|$ is even, so there exists a $t \in G$ with $o(t)=2$.

Path Eulerian non-commuting graphs

- Out of all groups that have been considered so far, the only one that has had a path Eulerian non-commuting graph is $S_{3} \cong D_{6}$. I conjecture that there is no other group G for which $\Gamma(G)$ is path Eulerian.
- $C_{G}(x) \geq\langle x\rangle$, so there must exist an element $x \in G$ with $o(x)=3$. Then we must have $\left|C_{G}(x)\right|$ and $\left|C_{G}\left(x^{2}\right)\right|$ both be odd.
- For any $g \in G, C_{G}\left(g x g^{-1}\right)=g C_{G}(x) g^{-1}$. Suppose $y=g \times g^{-1}, y \neq x, x^{2}$. Then, $C_{G}(y)=g C_{G}(x) g^{-1}$. However, this gives $\left|C_{G}(y)\right|=\left|C_{G}(x)\right|$, so $\left|C_{G}(y)\right|$ is odd, a contradiction. Therefore, $[x]=\left\{x, x^{2}\right\}$.
- $\left|C_{G}(x)\right|=\frac{|G|}{\| x \mid}=\frac{|G|}{2}$, so $C_{G}(x) \triangleleft G$.
- $C_{G}(x)=C_{G}\left(x^{2}\right)$
- $|G|$ is even, so there exists a $t \in G$ with $o(t)=2$.
- $G \cong C_{G}(x) \rtimes \mathbb{Z}_{2}$

Path Eulerian non-commuting graphs (continued)

- Suppose there exists a $z \in C_{G}(x)$ with $z \neq 1, x, x^{2}$.

Path Eulerian non-commuting graphs (continued)

- Suppose there exists a $z \in C_{G}(x)$ with $z \neq 1, x, x^{2}$.
- Because $\Gamma(G)$ is path Eulerian, $\left|C_{G}(z)\right|$ must be even. Therefore, there exists a $u \in C_{G}(z)$ with $o(u)=2$.

Path Eulerian non-commuting graphs (continued)

- Suppose there exists a $z \in C_{G}(x)$ with $z \neq 1, x, x^{2}$.
- Because $\Gamma(G)$ is path Eulerian, $\left|C_{G}(z)\right|$ must be even. Therefore, there exists a $u \in C_{G}(z)$ with $o(u)=2$.
- If $u \in C_{G}(x)$, then $\left|C_{G}(x)\right|$ is even, a contradiction.

Therefore, $u=h t$ with $h \in C_{G}(x)$.

Path Eulerian non-commuting graphs (continued)

- Suppose there exists a $z \in C_{G}(x)$ with $z \neq 1, x, x^{2}$.
- Because $\Gamma(G)$ is path Eulerian, $\left|C_{G}(z)\right|$ must be even. Therefore, there exists a $u \in C_{G}(z)$ with $o(u)=2$.
- If $u \in C_{G}(x)$, then $\left|C_{G}(x)\right|$ is even, a contradiction. Therefore, $u=h t$ with $h \in C_{G}(x)$.
- $1=(h t)^{2}=h t h t=h h^{\prime} t^{2}=h h^{\prime}$, so $h^{\prime}=h^{-1}$ and $t h=h^{-1} t$.

Path Eulerian non-commuting graphs (continued)

- Suppose there exists a $z \in C_{G}(x)$ with $z \neq 1, x, x^{2}$.
- Because $\Gamma(G)$ is path Eulerian, $\left|C_{G}(z)\right|$ must be even. Therefore, there exists a $u \in C_{G}(z)$ with $o(u)=2$.
- If $u \in C_{G}(x)$, then $\left|C_{G}(x)\right|$ is even, a contradiction. Therefore, $u=h t$ with $h \in C_{G}(x)$.
- $1=(h t)^{2}=h t h t=h h^{\prime} t^{2}=h h^{\prime}$, so $h^{\prime}=h^{-1}$ and $t h=h^{-1} t$.
- Because $[x]=\left\{x, x^{2}\right\}=\left\{x, x^{-1}\right\}$, txt $t^{-1}=x^{-1}$, so $t x=x^{-1} t$.

Further research

Eulerian
non-commuting graphs

Gerhardt Hinkle

Introduction

Groups with a
particular order
Direct products
Symmetric group
Dihedral group
Semidirect
products
Path Eulerian
non-commuting
graphs
Further research

Further research

Further research

- $\Gamma\left(\mathbb{Z}_{m} \rtimes \mathbb{Z}_{n}\right)$ for more m and n
- $\Gamma(G \rtimes H)$ for other groups G and H
- Complete the proof that $S_{3} \cong D_{6}$ is the only group for which $\Gamma(G)$ is path Eulerian

