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Automorphisms
I For a group G , an automorphism of G is a function

f : G → G that is bijective and satisfies
f (xy) = f (x)f (y) for all x , y ∈ G .

I The set of automorphisms of G forms a group under
function composition. The automorphism group of G is
written Aut(G ).

I The inner automorphism group of G , written Inn(G ), is
the group of automorphisms of the form fg (x) = gxg−1

for a fixed g ∈ G .
I The center of G , written Z (G ), comprises those

elements of G that commute with every element of G .
I Inn(G ) ∼= G/Z (G )
I G/Z (G ) is the group of left cosets of Z (G ) in G (i.e.

sets of the form gZ (G ) for some g ∈ G ). It can also be
thought of as taking G and setting every element of
Z (G ) equal to the identity element e.

I |Inn(G )| divides |Aut(G )| and |G |.
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Cyclic groups

I For a positive integer n, the cyclic group of order n,
written Zn, is the group of order n generated by one
element. It is isomorphic to the group of the integers
under addition mod n.

I Zn
∼= 〈a|an = 1〉

I Aut(Zn) ∼= Z×n , where Z×n is the group of the integers
relatively prime to n under multiplication mod n.

I |Aut(Zn)| = φ(n)

I φ(n) is Euler’s totient function, which gives the number
of positive integers less than or equal to n that are
relatively prime to n.

I Fundamental theorem of finite abelian groups: Every
finite abelian group is isomorphic to the direct product
of some number of cyclic groups.

I If gcd(m, n) = 1, then Zmn
∼= Zm × Zn.
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Original problem

I For a group G , define d(G ) = |Aut(G )| − |G |. Prove
that d(G ) = 0 occurs infinitely often, prove that
d(G ) = 1 never occurs, and characterize when
d(G ) = −1.

I If n 6= 2, 6, then Aut(Sn) ∼= Sn. Therefore, d(Sn) = 0
for all n 6= 2, 6.
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Original problem (continued)

I d(G ) = |Aut(G )| − |G | = ±1

I Because |Inn(G )| divides |Aut(G )| and |G |, it must
divide ±1, so |Inn(G )| = 1. Therefore, |G | = |Z (G )|, so
G is abelian.

I G ∼= Zp
a1
1
× Zp

a2
2
× ...× Zp

ak
k

I Aut(G ) ≥ Aut(Zp
a1
1

)× Aut(Zp
a2
2

)× ...× Aut(Zp
ak
k

)

I |Aut(Zp
ai
i

)| = pai−1
i (pi − 1)

I a1 = a2 = ... = ak = 1

I G ∼= Zp1 × Zp2 × ...× Zpk
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Original problem (continued)

I What if two of the primes are the same?

I Suppose G ≥ Zp × Zp.

I |Aut(Zp × Zp)| = (p2 − 1)(p2 − p)

I Then, p divides |Aut(G )| and |G |, a contradiction.

I Therefore, G ∼= Zp1 × Zp2 × ...× Zpk for distinct primes
p1, p2, ..., pk .

I |G | = p1p2...pk and
|Aut(G )| = (p1 − 1)(p2 − 1)...(pk − 1)

I |Aut(G )| < |G |, so |Aut(G )| − |G | = 1 is impossible.

I If (p1 − 1)(p2 − 1)...(pk − 1)− p1p2...pk = −1, then
k = 1.

I Therefore, d(G ) = 1 is impossible, and d(G ) = −1 if
and only if G ∼= Zp for some prime p.
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I What if two of the primes are the same?

I Suppose G ≥ Zp × Zp.
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Generalizations

I What groups give d(G ) = ±p?

I What groups give d(G ) = ±p2?

I What values of d(G ) are possible?
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Prime difference

I d(G ) = |Aut(G )| − |G | = ±p

I |Inn(G )| = 1, p

I The only group of order p is Zp, but it is impossible for
G/Z (G ) to be a nontrivial cyclic group.

I Therefore, |Inn(G )| = 1, so G is abelian.

I By a similar argument to the d(G ) = ±1 case, all prime
factors must be distinct and have exponent 1, except
that there could be either two ps or one p2 (but not
both).

I Possible cases: (q1, q2, ...qk distinct primes not equal to
p)

I G ∼= Zq1 × Zq2 × ...× Zqk
I G ∼= Zp × Zq1 × Zq2 × ...× Zqk
I G ∼= Zp2 × Zq1 × Zq2 × ...× Zqk
I G ∼= Zp × Zp × Zq1 × Zq2 × ...× Zqk
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Prime difference (continued)

I G ∼= Zq1 × Zq2 × ...× Zqk

I (q1 − 1)(q2 − 1)...(qk − 1)− q1q2...qk = ±p
I (q1 − 1)(q2 − 1)...(qk − 1)− q1q2...qk = −p
I There is no general form for the solutions, although

they appear to exist for all p.

I k = 2: q1 + q2 = p + 1
I Increasing any qi increases the magnitude of the

difference, so the lower bound for what values of p can
be obtained for a given k is
3 · 5 · 7 · ... · pk+1 − 2 · 4 · 6 · ... · (pk+1 − 1). This can be
reversed to get an upper bound on k for a given p.

I k = 2: p ≥ 7
I k = 3: p ≥ 57
I k = 4: p ≥ 675
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Prime difference (continued)

I G ∼= Zp × Zq1 × Zq2 × ...× Zqk

I (p − 1)(q1 − 1)(q2 − 1)...(qk − 1)− pq1q2...qk = ±p
I (p − 1)(q1 − 1)(q2 − 1)...(qk − 1)− pq1q2...qk = −p
I p(q1q2...qk − (q1 − 1)(q2 − 1)...(qk − 1)− 1) + (q1 −

1)(q2 − 1)...(qk − 1) = 0

I Both terms on the left side are positive, so there is no
solution.
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Prime difference (continued)

I G ∼= Zp2 × Zq1 × Zq2 × ...× Zqk

I (p2 − p)(q1 − 1)(q2 − 1)...(qk − 1)− p2q1q2...qk = ±p
I (p2 − p)(q1 − 1)(q2 − 1)...(qk − 1)− p2q1q2...qk = −p
I (p − 1)(q1 − 1)(q − 2− 1)...(qk − 1)− pq1q2...qk = −1

I Only possible if k = 0

I G ∼= Zp2
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Prime difference (continued)

I f (3) = 16(q1 − 1)(q2 − 1)...(qk − 1)− 3q1q2...qk ∓ 1

I f ′(3) = 20(q1 − 1)(q2 − 1)...(qk − 1)− q1q2...qk
I f ′′(p) = (6p − 2)(q1 − 1)(q2 − 1)...(qk − 1)

I f ′′(p) > 0 for all p ≥ 3 always holds.

I No solutions if
16(q1 − 1)(q2 − 1)...(qk − 1)− 3q1q2...qk > 0, unless
16(q1 − 1)(q2 − 1)...(qk − 1)− 3q1q2...qk = 1, in which
case d(G ) = p and p = 3

I If 16(q1 − 1)(q2 − 1)...(qk − 1)− 3q1q2...qk > 0, then
20(q1 − 1)(q2 − 1)...(qk − 1)− q1q2...qk > 0.
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I There are only solutions if
16(q1 − 1)(q2 − 1)...(qk − 1)− 3q1q2...qk ≤ 0
(excluding the one previously-mentioned exception).

I
(

1− 1
q1

)(
1− 1

q2

)
...
(

1− 1
qk

)
≤ 3

16

I If q1 = 2, 3, then there are no solutions.

I Minimum value when q1 = 5, q2 = 7, ..., qk = pk+2,
where pk+2 is the (k + 2)th prime

I
(
1− 1

5

) (
1− 1

7

)
...
(

1− 1
pk+2

)
≤ 3

16

I k ≥ 994

I Other possibility: k = 993, p = 3,
G ∼= Z3 × Z3 × Z5 × Z7 × ...× Zp995 , and d(G ) = 3
(can be easily confirmed to be false)

I Therefore, a solution to d(G ) = ±p exists if and only if
k ≥ 994.
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Prime difference (continued)

I We can use a similar manner to find a lower bound on
the values of k that give a difference of at least ±p0.

I
(
1− 1

3

) (
1− 1

5

)
...
(

1− 1
pk+2

)
≤ p0

(p2
0−1)(p0−1)

, where the

product excludes the term containing p0 so that there
are k terms in total.

I The product in the left side of the inequality goes to 0
as k goes to ∞, so there will always exist a value of k
so that the inequality is satisfied.

I Let k(p0) be the lowest value of k satisfying the
inequality for a given p0. Then, any group G for which
d(G ) = ±p0 must have k ≥ k(p0), except that it could
be possible to have k = k(p0)− 1,
{q1, q2, ..., qk} = {3, 5, 7, ..., pk+2} \ {p0}, and
d(G ) = p0.
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Prime difference (continued)

I k(p0) increases very rapidly.

I k(3) = 994

I k(5) is too large to compute easily. (much greater than
20 million)

I The numbers are so large that the chance of getting ±1
is very remote, so I conjecture that there are no
solutions.
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Prime square difference

I d(G ) = |Aut(G )| − |G | = ±p2

I |Inn(G )| = 1, p, p2

I The only group of order p is Zp, and the only groups of
order p2 are Zp2 and Zp × Zp.

I Inn(G ) ∼= {e},Zp × Zp

I Either G is abelian or G/Z (G ) ∼= Zp × Zp.
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Abelian

I d(G ) = ±p2, G abelian

I Possibilities:

I G ∼= Zq1 × Zq2 × ...× Zqk

I Calculated like in the d(G) = ±p case; can only give
d(G) = −p2

I G ∼= Zp × Zq1 × Zq2 × ...× Zqk

I Must be calculated manually

I G ∼= Zp2 × Zq1 × Zq2 × ...× Zqk

I No solution

I G ∼= Zp3 × Zq1 × Zq2 × ...× Zqk

I G ∼= Zp3 , d(G) = −p2

I G ∼= Zp × Zp × Zq1 × Zq2 × ...× Zqk

I k = 1: p = 2, q1 = 5, d(G) = 4
I k = 2: p = 2, q1 = 5, q2 = 7, d(G) = 4
I ... (must be calculated manually)
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Non-abelian

I Inn(G ) ∼= Zp × Zp

I G/Z (G ) ∼= 〈a, b|ap = bp = 1, ba = ab〉
I In G , ap = x , bp = y , and bab−1a−1 = z , where

x , y , z ∈ Z (G ).

I There may be some elements of Z (G ) that are
unrelated to any of a, b, x , y , and z , but there can’t be
any non-central elements of G that depend on anything
but a, b, and elements of Z (G ).
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Non-abelian (continued)

I G ∼= 〈a, b, z |apk = bpl = zp = 1, ba = abz , za =
az , zb = bz〉

I Let φ, ψ, and χ be automorphisms of G , defined as
follows:

I φ(a) = a, φ(b) = bz , φ(z) = z
I ψ(a) = az , ψ(b) = b, ψ(z) = z
I χ(a) = abl , χ(b) = b, χ(z) = z

I o(φ) = o(ψ) = o(χ) = p, ψ ◦ φ = φ ◦ ψ, χ ◦ φ 6= φ ◦ χ,
χ ◦ ψ = ψ ◦ χ

I 〈φ, ψ, χ〉 ∼= (Zp × Zp) o Zp

I The group generated by φ, ψ, and χ is a subgroup of
Aut(G ).

I p3 divides |Aut(G )| and |G |, so |Aut(G )| − |G | = ±p2

is impossible.

I If there are any other elements in Z (G ), then G is a
direct product of the above group with an abelian
group, so p3 still divides |Aut(G )| and |G |.
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I All of the groups that were found in the d(G ) = ±p
case had d(G ) = −p. Therefore, if my conjecture in the
last part of that case is true, then d(G ) = p is
impossible.

I If G ∼= Zn, then d(G ) = φ(n)− n = −(n − φ(n)).

I n − φ(n) is called the cototient of n.
I Any positive integer that cannot be expressed as

n − φ(n) for any positive integer n is called a
noncototient.

I 10, 26, 34, 50, 52, 58, 86, 100, 116, ...

I The negatives of some noncototients can still be
obtained as d(G ) for some noncyclic group G .

I e.g. G ∼= Z2 × Z2 × Z385, d(G ) = −100

I If a noncototient equals 2p for some prime p, then I
conjecture that d(G ) = −2p is impossible.
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Noncototient difference

I d(G ) = |Aut(G )| − |G | = −2p, where 2p is a
noncototient

I |Inn(G )| = 1, 2, p, 2p

I Inn(G ) ∼= {e},D2p

I Either G is abelian or G/Z (G ) ∼= D2p.
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Abelian

I Possible cases:

I G ∼= Z2 × Z2 × Zq1 × Zq2 × ...× Zqk

I 6(q1 − 1)(q2 − 1)...(qk − 1)− 4q1q2...qk = −2p
I 3(q1 − 1)(q2 − 1)...(qk − 1)− 2q1q2...qk = −p
I The left side is even but the right side is odd, so there

is no solution.

I G ∼= Z2 × Z2 × Zp × Zp × Zq1 × Zq2 × ...× Zqk

I This case has the same problem as the previous case,
so there is no solution.

I G ∼= Zp × Zp × Zq1 × Zq2 × ...× Zqk
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I The left side is odd unless one of the qi s is 2, so let
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I (p2−1)(p−1)(q2−1)(q3−1)...(qk−1)−2pq2q3...qk =
−2

I ri = qi+1

I (p2−1)(p−1)(r1−1)(r2−1)...(rk−1−1)−2pr1r2...rk−1 =
−2

I Using a similar argument as in the last case for
d(G ) = ±p, the lower bound on k − 1 is k(p).

I Therefore, I conjecture that if 2p is a noncototient, then
there are no abelian groups G for which d(G ) = −2p.
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Further research

I Finish the last case for d(G ) = ±p

I Finish the abelian case for d(G ) = −2p when 2p is a
noncototient

I Do the non-abelian case for d(G ) = −2p when 2p is a
noncototient (G/Z (G ) ∼= D2p)

I Extend to d(G ) = ±pn, d(G ) = ±pq, etc.

I Determine what other differences are possible or
impossible
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