Automorphism groups

Introduction

Automorphisms Original problem

Gerhardt Hinkle

Missouri State University REU, 2013

Automorphisms

- For a group G, an automorphism of G is a function $f: G \rightarrow G$ that is bijective and satisfies
$f(x y)=f(x) f(y)$ for all $x, y \in G$.

Gerhardt Hinkle

Automorphisms

Original problem

Automorphisms

- For a group G, an automorphism of G is a function $f: G \rightarrow G$ that is bijective and satisfies $f(x y)=f(x) f(y)$ for all $x, y \in G$.
- The set of automorphisms of G forms a group under function composition. The automorphism group of G is written $\operatorname{Aut}(G)$.

Automorphisms

- For a group G, an automorphism of G is a function $f: G \rightarrow G$ that is bijective and satisfies $f(x y)=f(x) f(y)$ for all $x, y \in G$.
- The set of automorphisms of G forms a group under function composition. The automorphism group of G is written Aut(G).
- The inner automorphism group of G, written $\operatorname{Inn}(G)$, is the group of automorphisms of the form $f_{g}(x)=g \times g^{-1}$ for a fixed $g \in G$.

Automorphisms

- For a group G, an automorphism of G is a function $f: G \rightarrow G$ that is bijective and satisfies $f(x y)=f(x) f(y)$ for all $x, y \in G$.
- The set of automorphisms of G forms a group under function composition. The automorphism group of G is written Aut(G).
- The inner automorphism group of G, written $\operatorname{Inn}(G)$, is the group of automorphisms of the form $f_{g}(x)=g \times g^{-1}$ for a fixed $g \in G$.
- The center of G, written $Z(G)$, comprises those elements of G that commute with every element of G.

Automorphisms

- For a group G, an automorphism of G is a function $f: G \rightarrow G$ that is bijective and satisfies $f(x y)=f(x) f(y)$ for all $x, y \in G$.
- The set of automorphisms of G forms a group under function composition. The automorphism group of G is written Aut(G).
- The inner automorphism group of G, written $\operatorname{Inn}(G)$, is the group of automorphisms of the form $f_{g}(x)=g \times g^{-1}$ for a fixed $g \in G$.
- The center of G, written $Z(G)$, comprises those elements of G that commute with every element of G.
- $\operatorname{Inn}(G) \cong G / Z(G)$

Automorphisms

- For a group G, an automorphism of G is a function $f: G \rightarrow G$ that is bijective and satisfies $f(x y)=f(x) f(y)$ for all $x, y \in G$.
- The set of automorphisms of G forms a group under function composition. The automorphism group of G is written $\operatorname{Aut}(G)$.
- The inner automorphism group of G, written $\operatorname{Inn}(G)$, is the group of automorphisms of the form $f_{g}(x)=g \times g^{-1}$ for a fixed $g \in G$.
- The center of G, written $Z(G)$, comprises those elements of G that commute with every element of G.
- $\operatorname{lnn}(G) \cong G / Z(G)$
- $G / Z(G)$ is the group of left cosets of $Z(G)$ in G (i.e. sets of the form $g Z(G)$ for some $g \in G)$. It can also be thought of as taking G and setting every element of $Z(G)$ equal to the identity element e.

Automorphisms

- For a group G, an automorphism of G is a function $f: G \rightarrow G$ that is bijective and satisfies $f(x y)=f(x) f(y)$ for all $x, y \in G$.
- The set of automorphisms of G forms a group under function composition. The automorphism group of G is written $\operatorname{Aut}(G)$.
- The inner automorphism group of G, written $\operatorname{Inn}(G)$, is the group of automorphisms of the form $f_{g}(x)=g \times g^{-1}$ for a fixed $g \in G$.
- The center of G, written $Z(G)$, comprises those elements of G that commute with every element of G.
- $\operatorname{lnn}(G) \cong G / Z(G)$
- $G / Z(G)$ is the group of left cosets of $Z(G)$ in G (i.e. sets of the form $g Z(G)$ for some $g \in G)$. It can also be thought of as taking G and setting every element of $Z(G)$ equal to the identity element e.
- $|\operatorname{Inn}(G)|$ divides $|\operatorname{Aut}(G)|$ and $|G|$.

Cyclic groups

- For a positive integer n, the cyclic group of order n, written \mathbb{Z}_{n}, is the group of order n generated by one element. It is isomorphic to the group of the integers under addition mod n.

Gerhardt Hinkle

Cyclic groups

- For a positive integer n, the cyclic group of order n, written \mathbb{Z}_{n}, is the group of order n generated by one element. It is isomorphic to the group of the integers under addition mod n.
- $\mathbb{Z}_{n} \cong\left\langle a \mid a^{n}=1\right\rangle$

Automorphisms

Cyclic groups

- For a positive integer n, the cyclic group of order n, written \mathbb{Z}_{n}, is the group of order n generated by one element. It is isomorphic to the group of the integers under addition mod n.
- $\mathbb{Z}_{n} \cong\left\langle a \mid a^{n}=1\right\rangle$
- $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z}_{n}^{\times}$, where \mathbb{Z}_{n}^{\times}is the group of the integers relatively prime to n under multiplication $\bmod n$.

Cyclic groups

- For a positive integer n, the cyclic group of order n, written \mathbb{Z}_{n}, is the group of order n generated by one element. It is isomorphic to the group of the integers under addition mod n.
- $\mathbb{Z}_{n} \cong\left\langle a \mid a^{n}=1\right\rangle$
- $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z}_{n}^{\times}$, where \mathbb{Z}_{n}^{\times}is the group of the integers relatively prime to n under multiplication $\bmod n$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{n}\right)\right|=\phi(n)$

Cyclic groups

- For a positive integer n, the cyclic group of order n, written \mathbb{Z}_{n}, is the group of order n generated by one element. It is isomorphic to the group of the integers under addition mod n.
- $\mathbb{Z}_{n} \cong\left\langle a \mid a^{n}=1\right\rangle$
- $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z}_{n}^{\times}$, where \mathbb{Z}_{n}^{\times}is the group of the integers relatively prime to n under multiplication $\bmod n$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{n}\right)\right|=\phi(n)$
- $\phi(n)$ is Euler's totient function, which gives the number of positive integers less than or equal to n that are relatively prime to n.

Cyclic groups

- For a positive integer n, the cyclic group of order n, written \mathbb{Z}_{n}, is the group of order n generated by one element. It is isomorphic to the group of the integers under addition mod n.
- $\mathbb{Z}_{n} \cong\left\langle a \mid a^{n}=1\right\rangle$
- $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z}_{n}^{\times}$, where \mathbb{Z}_{n}^{\times}is the group of the integers relatively prime to n under multiplication $\bmod n$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{n}\right)\right|=\phi(n)$
- $\phi(n)$ is Euler's totient function, which gives the number of positive integers less than or equal to n that are relatively prime to n.
- Fundamental theorem of finite abelian groups: Every finite abelian group is isomorphic to the direct product of some number of cyclic groups.

Cyclic groups

- For a positive integer n, the cyclic group of order n, written \mathbb{Z}_{n}, is the group of order n generated by one element. It is isomorphic to the group of the integers under addition mod n.
- $\mathbb{Z}_{n} \cong\left\langle a \mid a^{n}=1\right\rangle$
- $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z}_{n}^{\times}$, where \mathbb{Z}_{n}^{\times}is the group of the integers relatively prime to n under multiplication $\bmod n$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{n}\right)\right|=\phi(n)$
- $\phi(n)$ is Euler's totient function, which gives the number of positive integers less than or equal to n that are relatively prime to n.
- Fundamental theorem of finite abelian groups: Every finite abelian group is isomorphic to the direct product of some number of cyclic groups.
- If $\operatorname{gcd}(m, n)=1$, then $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$.

Original problem

Gerhardt Hinkle

Introduction
Automorphisms

Original problem

Generalizations

Prime difference
Prime square $d(G)=1$ never occurs, and characterize when $d(G)=-1$.

Original problem

- For a group G, define $d(G)=|A u t(G)|-|G|$. Prove that $d(G)=0$ occurs infinitely often, prove that $d(G)=1$ never occurs, and characterize when $d(G)=-1$.
- If $n \neq 2,6$, then $\operatorname{Aut}\left(S_{n}\right) \cong S_{n}$. Therefore, $d\left(S_{n}\right)=0$ for all $n \neq 2,6$.

Original problem (continued)

Automorphism groups

Gerhardt Hinkle

- $d(G)=|A u t(G)|-|G|= \pm 1$

Automorphisms

Original problem (continued)

Gerhardt Hinkle

ntroduction

Automorphisms
Original problem

Prime difference
Prime square difference

Original problem (continued)

Gerhardt Hinkle

Introduction
Automorphisms
Original problem

Prime difference
Prime square difference
$-G \cong \mathbb{Z}_{p_{1}^{a_{1}}} \times \mathbb{Z}_{p_{2}^{a_{2}}} \times \ldots \times \mathbb{Z}_{p_{k}^{a_{K}}}$

Original problem (continued)

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm 1$
- Because $|\operatorname{Inn}(G)|$ divides $|\operatorname{Aut}(G)|$ and $|G|$, it must divide ± 1, so $|\operatorname{Inn}(G)|=1$. Therefore, $|G|=|Z(G)|$, so G is abelian.
$-G \cong \mathbb{Z}_{p_{1}^{a_{1}}} \times \mathbb{Z}_{p_{2}^{a_{2}}} \times \ldots \times \mathbb{Z}_{p_{k}^{a_{k}}}$
- $\operatorname{Aut}(G) \geq \operatorname{Aut}\left(\mathbb{Z}_{p_{1}^{a_{1}}}\right) \times \operatorname{Aut}\left(\mathbb{Z}_{p_{2}^{a_{2}}}\right) \times \ldots \times \operatorname{Aut}\left(\mathbb{Z}_{p_{k}^{a_{k}}}\right)$

Original problem

Prime difference
Prime square difference

Original problem (continued)

groups
$-G \cong \mathbb{Z}_{p_{1}^{a_{1}}} \times \mathbb{Z}_{p_{2}^{a_{2}}} \times \ldots \times \mathbb{Z}_{p_{k}^{a_{k}}}$

- $\operatorname{Aut}(G) \geq \operatorname{Aut}\left(\mathbb{Z}_{p_{1}^{a_{1}}}\right) \times \operatorname{Aut}\left(\mathbb{Z}_{p_{2}^{a_{2}}}\right) \times \ldots \times \operatorname{Aut}\left(\mathbb{Z}_{p_{k}^{a_{k}}}\right)$
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p_{i}^{a_{i}}}\right)\right|=p_{i}^{a_{i}-1}\left(p_{i}-1\right)$

Original problem (continued)

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm 1$
- Because $|\operatorname{Inn}(G)|$ divides $|\operatorname{Aut}(G)|$ and $|G|$, it must divide ± 1, so $|\operatorname{Inn}(G)|=1$. Therefore, $|G|=|Z(G)|$, so G is abelian.
- $G \cong \mathbb{Z}_{p_{1}^{a_{1}}} \times \mathbb{Z}_{p_{2}^{a_{2}}} \times \ldots \times \mathbb{Z}_{p_{k}^{a_{k}}}$
- $\operatorname{Aut}(G) \geq \operatorname{Aut}\left(\mathbb{Z}_{p_{1}^{a_{1}}}\right) \times \operatorname{Aut}\left(\mathbb{Z}_{p_{2}^{a_{2}}}\right) \times \ldots \times \operatorname{Aut}\left(\mathbb{Z}_{p_{k}^{a_{k}}}\right)$
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p_{i}^{a_{i}}}\right)\right|=p_{i}^{a_{i}-1}\left(p_{i}-1\right)$
- $a_{1}=a_{2}=\ldots=a_{k}=1$

Original problem

Original problem (continued)

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm 1$
- Because $|\operatorname{Inn}(G)|$ divides $|\operatorname{Aut}(G)|$ and $|G|$, it must divide ± 1, so $|\operatorname{Inn}(G)|=1$. Therefore, $|G|=|Z(G)|$, so G is abelian.
- $G \cong \mathbb{Z}_{p_{1}^{a_{1}}} \times \mathbb{Z}_{p_{2}^{a_{2}}} \times \ldots \times \mathbb{Z}_{p_{k}^{a_{k}}}$
- $\operatorname{Aut}(G) \geq \operatorname{Aut}\left(\mathbb{Z}_{p_{1}^{a_{1}}}\right) \times \operatorname{Aut}\left(\mathbb{Z}_{p_{2}^{a_{2}}}\right) \times \ldots \times \operatorname{Aut}\left(\mathbb{Z}_{p_{k}^{a_{k}}}\right)$
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p_{i}^{a_{i}}}\right)\right|=p_{i}^{a_{i}-1}\left(p_{i}-1\right)$
- $a_{1}=a_{2}=\ldots=a_{k}=1$
- $G \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \ldots \times \mathbb{Z}_{p_{k}}$

Original problem (continued)

Automorphism groups

Gerhardt Hinkle

- What if two of the primes are the same?

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

Original problem (continued)

Automorphism groups

Gerhardt Hinkle

- What if two of the primes are the same?
- Suppose $G \geq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

Original problem (continued)

Gerhardt Hinkle

- What if two of the primes are the same?
- Suppose $G \geq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)\right|=\left(p^{2}-1\right)\left(p^{2}-p\right)$

Introduction

Automorphisms
Original problem

Original problem (continued)

Gerhardt Hinkle

- What if two of the primes are the same?
- Suppose $G \geq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)\right|=\left(p^{2}-1\right)\left(p^{2}-p\right)$
- Then, p divides $|\operatorname{Aut}(G)|$ and $|G|$, a contradiction.

Introduction
Automorphisms
Original problem

Original problem (continued)

- What if two of the primes are the same?
- Suppose $G \geq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)\right|=\left(p^{2}-1\right)\left(p^{2}-p\right)$
- Then, p divides $|\operatorname{Aut}(G)|$ and $|G|$, a contradiction.
- Therefore, $G \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \ldots \times \mathbb{Z}_{p_{k}}$ for distinct primes $p_{1}, p_{2}, \ldots, p_{k}$.

Original problem (continued)

Automorphism groups

- What if two of the primes are the same?
- Suppose $G \geq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)\right|=\left(p^{2}-1\right)\left(p^{2}-p\right)$
- Then, p divides $|\operatorname{Aut}(G)|$ and $|G|$, a contradiction.
- Therefore, $G \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \ldots \times \mathbb{Z}_{p_{k}}$ for distinct primes $p_{1}, p_{2}, \ldots, p_{k}$.
- $|G|=p_{1} p_{2} \ldots p_{k}$ and

$$
|\operatorname{Aut}(G)|=\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right)
$$

Original problem (continued)

- What if two of the primes are the same?
- Suppose $G \geq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)\right|=\left(p^{2}-1\right)\left(p^{2}-p\right)$
- Then, p divides $|\operatorname{Aut}(G)|$ and $|G|$, a contradiction.
- Therefore, $G \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \ldots \times \mathbb{Z}_{p_{k}}$ for distinct primes $p_{1}, p_{2}, \ldots, p_{k}$.
- $|G|=p_{1} p_{2} \ldots p_{k}$ and $|\operatorname{Aut}(G)|=\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right)$
- $|\operatorname{Aut}(G)|<|G|$, so $|\operatorname{Aut}(G)|-|G|=1$ is impossible.

Original problem (continued)

- What if two of the primes are the same?
- Suppose $G \geq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)\right|=\left(p^{2}-1\right)\left(p^{2}-p\right)$
- Then, p divides $|\operatorname{Aut}(G)|$ and $|G|$, a contradiction.
- Therefore, $G \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \ldots \times \mathbb{Z}_{p_{k}}$ for distinct primes $p_{1}, p_{2}, \ldots, p_{k}$.
- $|G|=p_{1} p_{2} \ldots p_{k}$ and $|\operatorname{Aut}(G)|=\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right)$
- $|\operatorname{Aut}(G)|<|G|$, so $|\operatorname{Aut}(G)|-|G|=1$ is impossible.
- If $\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right)-p_{1} p_{2} \ldots p_{k}=-1$, then $k=1$.

Original problem (continued)

- What if two of the primes are the same?
- Suppose $G \geq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- $\left|\operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)\right|=\left(p^{2}-1\right)\left(p^{2}-p\right)$
- Then, p divides $|\operatorname{Aut}(G)|$ and $|G|$, a contradiction.
- Therefore, $G \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \ldots \times \mathbb{Z}_{p_{k}}$ for distinct primes $p_{1}, p_{2}, \ldots, p_{k}$.
- $|G|=p_{1} p_{2} \ldots p_{k}$ and $|\operatorname{Aut}(G)|=\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right)$
- $|\operatorname{Aut}(G)|<|G|$, so $|\operatorname{Aut}(G)|-|G|=1$ is impossible.
- If $\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right)-p_{1} p_{2} \ldots p_{k}=-1$, then $k=1$.
- Therefore, $d(G)=1$ is impossible, and $d(G)=-1$ if and only if $G \cong \mathbb{Z}_{p}$ for some prime p.

Generalizations

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square

- What groups give $d(G)= \pm p$?

Generalizations

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square

- What groups give $d(G)= \pm p$?
- What groups give $d(G)= \pm p^{2}$?

Generalizations

Gerhardt Hinkle

Introduction

Automorphisms

Original problem

- What groups give $d(G)= \pm p$?
- What groups give $d(G)= \pm p^{2}$?
- What values of $d(G)$ are possible?

Prime difference

Automorphism groups

Gerhardt Hinkle

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

Prime difference

Automorphism groups

Gerhardt Hinkle

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$
- $|\operatorname{lnn}(G)|=1, p$

Introduction
 Automorphisms

Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Prime difference

Automorphism groups

Gerhardt Hinkle

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$
- $|\operatorname{lnn}(G)|=1, p$
- The only group of order p is \mathbb{Z}_{p}, but it is impossible for $G / Z(G)$ to be a nontrivial cyclic group.

introduction

Automorphisms
Original problem

Prime difference

Prime square difference

Prime difference

Gerhardt Hinkle

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$
- $|\operatorname{lnn}(G)|=1, p$
- The only group of order p is \mathbb{Z}_{p}, but it is impossible for $G / Z(G)$ to be a nontrivial cyclic group.
- Therefore, $|\operatorname{lnn}(G)|=1$, so G is abelian.

Prime difference

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$
- $|\operatorname{lnn}(G)|=1, p$
- The only group of order p is \mathbb{Z}_{p}, but it is impossible for $G / Z(G)$ to be a nontrivial cyclic group.
- Therefore, $|\operatorname{Inn}(G)|=1$, so G is abelian.
- By a similar argument to the $d(G)= \pm 1$ case, all prime factors must be distinct and have exponent 1 , except that there could be either two $p s$ or one p^{2} (but not both).

Prime difference

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$
- $|\operatorname{lnn}(G)|=1, p$
- The only group of order p is \mathbb{Z}_{p}, but it is impossible for $G / Z(G)$ to be a nontrivial cyclic group.
- Therefore, $|\operatorname{Inn}(G)|=1$, so G is abelian.
- By a similar argument to the $d(G)= \pm 1$ case, all prime factors must be distinct and have exponent 1 , except that there could be either two $p s$ or one p^{2} (but not both).
- Possible cases: $\left(q_{1}, q_{2}, \ldots q_{k}\right.$ distinct primes not equal to p)

Prime difference

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$
- $|\operatorname{lnn}(G)|=1, p$
- The only group of order p is \mathbb{Z}_{p}, but it is impossible for $G / Z(G)$ to be a nontrivial cyclic group.
- Therefore, $|\operatorname{Inn}(G)|=1$, so G is abelian.
- By a similar argument to the $d(G)= \pm 1$ case, all prime factors must be distinct and have exponent 1 , except that there could be either two $p s$ or one p^{2} (but not both).
- Possible cases: $\left(q_{1}, q_{2}, \ldots q_{k}\right.$ distinct primes not equal to p)

$$
-G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}
$$

Prime difference

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$
- $|\operatorname{lnn}(G)|=1, p$
- The only group of order p is \mathbb{Z}_{p}, but it is impossible for $G / Z(G)$ to be a nontrivial cyclic group.
- Therefore, $|\operatorname{Inn}(G)|=1$, so G is abelian.
- By a similar argument to the $d(G)= \pm 1$ case, all prime factors must be distinct and have exponent 1 , except that there could be either two $p s$ or one p^{2} (but not both).
- Possible cases: $\left(q_{1}, q_{2}, \ldots q_{k}\right.$ distinct primes not equal to p)
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Prime difference

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$
- $|\operatorname{lnn}(G)|=1, p$
- The only group of order p is \mathbb{Z}_{p}, but it is impossible for $G / Z(G)$ to be a nontrivial cyclic group.
- Therefore, $|\operatorname{Inn}(G)|=1$, so G is abelian.
- By a similar argument to the $d(G)= \pm 1$ case, all prime factors must be distinct and have exponent 1 , except that there could be either two $p s$ or one p^{2} (but not both).
- Possible cases: $\left(q_{1}, q_{2}, \ldots q_{k}\right.$ distinct primes not equal to p)
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Prime difference

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p$
- $|\operatorname{lnn}(G)|=1, p$
- The only group of order p is \mathbb{Z}_{p}, but it is impossible for $G / Z(G)$ to be a nontrivial cyclic group.
- Therefore, $|\operatorname{Inn}(G)|=1$, so G is abelian.
- By a similar argument to the $d(G)= \pm 1$ case, all prime factors must be distinct and have exponent 1 , except that there could be either two $p s$ or one p^{2} (but not both).
- Possible cases: $\left(q_{1}, q_{2}, \ldots q_{k}\right.$ distinct primes not equal to p)
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle
$-G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}= \pm p$

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}= \pm p$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}=-p$

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square
difference
Possible differences

Prime difference (continued)

- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}= \pm p$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}=-p$
- There is no general form for the solutions, although they appear to exist for all p.

Introduction

Automorphisms
Original problem

Prime difference
Prime square
difference
Possible differences

Prime difference (continued)

- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}= \pm p$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}=-p$
- There is no general form for the solutions, although they appear to exist for all p.
- $k=2: q_{1}+q_{2}=p+1$

ntroduction

Automorphisms
Original problem

Prime difference
Prime square
difference
Possible differences

Prime difference (continued)

Gerhardt Hinkle

- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}= \pm p$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}=-p$
- There is no general form for the solutions, although they appear to exist for all p.
- $k=2: q_{1}+q_{2}=p+1$
- Increasing any q_{i} increases the magnitude of the difference, so the lower bound for what values of p can be obtained for a given k is $3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{k+1}-2 \cdot 4 \cdot 6 \cdot \ldots \cdot\left(p_{k+1}-1\right)$. This can be reversed to get an upper bound on k for a given p.

Prime difference (continued)

Gerhardt Hinkle

- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}= \pm p$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}=-p$
- There is no general form for the solutions, although they appear to exist for all p.
- $k=2: q_{1}+q_{2}=p+1$
- Increasing any q_{i} increases the magnitude of the difference, so the lower bound for what values of p can be obtained for a given k is $3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{k+1}-2 \cdot 4 \cdot 6 \cdot \ldots \cdot\left(p_{k+1}-1\right)$. This can be reversed to get an upper bound on k for a given p.
- $k=2: p \geq 7$

Prime difference (continued)

Gerhardt Hinkle

- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}= \pm p$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}=-p$
- There is no general form for the solutions, although they appear to exist for all p.
- $k=2: q_{1}+q_{2}=p+1$
- Increasing any q_{i} increases the magnitude of the difference, so the lower bound for what values of p can be obtained for a given k is $3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{k+1}-2 \cdot 4 \cdot 6 \cdot \ldots \cdot\left(p_{k+1}-1\right)$. This can be reversed to get an upper bound on k for a given p.
- $k=2: p \geq 7$
- $k=3: p \geq 57$

Prime difference (continued)

Gerhardt Hinkle

- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}= \pm p$
- $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}=-p$
- There is no general form for the solutions, although they appear to exist for all p.
- $k=2: q_{1}+q_{2}=p+1$
- Increasing any q_{i} increases the magnitude of the difference, so the lower bound for what values of p can be obtained for a given k is $3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{k+1}-2 \cdot 4 \cdot 6 \cdot \ldots \cdot\left(p_{k+1}-1\right)$. This can be reversed to get an upper bound on k for a given p.
- $k=2: p \geq 7$
- $k=3: p \geq 57$
- $k=4: p \geq 675$

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Introduction

Automorphisms
Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}= \pm p$

Introduction

Automorphisms

Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms

Original problem

Generalizations

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}= \pm p$
- $(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-p$

Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

ntroduction

Automorphisms
Original problem

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}= \pm p$
- $(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-p$
- $p\left(q_{1} q_{2} \ldots q_{k}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-1\right)+\left(q_{1}-\right.$ 1) $\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)=0$

Prime difference
Prime square

Prime difference (continued)

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}= \pm p$
- $(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-p$
- $p\left(q_{1} q_{2} \ldots q_{k}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-1\right)+\left(q_{1}-\right.$ $1)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)=0$
- Both terms on the left side are positive, so there is no solution.

Prime difference
Prime square
difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle
$-G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Introduction

Automorphisms
Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms

Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

- $\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}= \pm p$

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms

Original problem

Prime difference
Prime difference
Prime square

Prime difference (continued)

Gerhardt Hinkle

ntroduction

Automorphisms
Original problem

Prime difference
Prime square difference
Possible differences

- $\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=-p$
- $(p-1)\left(q_{1}-1\right)(q-2-1) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-1$

Prime difference (continued)

- $\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}= \pm p$
- $\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=-p$
- $(p-1)\left(q_{1}-1\right)(q-2-1) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-1$
- Only possible if $k=0$

Prime difference (continued)

- $\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}= \pm p$
- $\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=-p$
- $(p-1)\left(q_{1}-1\right)(q-2-1) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-1$
- Only possible if $k=0$
- $G \cong \mathbb{Z}_{p^{2}}$

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle
$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Introduction

Automorphisms
Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $\pm p$

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $\pm p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}= \pm 1$

Introduction

Automorphisms Original problem

Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Gerhardt Hinkle

$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $\pm p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}= \pm 1$
- $p=2$ has no solution, so $p \geq 3$.

Prime difference (continued)

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $\pm p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}= \pm 1$
- $p=2$ has no solution, so $p \geq 3$.
- $f(p)=$
$\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k} \mp 1$

Prime difference (continued)

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $\pm p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}= \pm 1$
- $p=2$ has no solution, so $p \geq 3$.
- $f(p)=$
$\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k} \mp 1$
- There are no solutions if $f(3)>0$ and $f^{\prime}(p)>0$ for all $p \geq 3$.

Prime difference (continued)

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $\pm p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}= \pm 1$
- $p=2$ has no solution, so $p \geq 3$.
- $f(p)=$
$\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k} \mp 1$
- There are no solutions if $f(3)>0$ and $f^{\prime}(p)>0$ for all $p \geq 3$.
- There are no solutions if $f(3)>0, f^{\prime}(3)>0$, and $f^{\prime \prime}(p)>0$ for all $p \geq 3$.

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- $f(3)=16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \mp 1$

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences
Further research

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- $f(3)=16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \mp 1$
- $f^{\prime}(3)=20\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}$

Introduction

Automorphisms

Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Gerhardt Hinkle

- $f(3)=16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \mp 1$
- $f^{\prime}(3)=20\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}$
- $f^{\prime \prime}(p)=(6 p-2)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)$

ntroduction

Automorphisms
Original problem

Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Gerhardt Hinkle

- $f(3)=16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \mp 1$
- $f^{\prime}(3)=20\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}$
- $f^{\prime \prime}(p)=(6 p-2)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)$
- $f^{\prime \prime}(p)>0$ for all $p \geq 3$ always holds.

Prime difference (continued)

- $f(3)=16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \mp 1$
- $f^{\prime}(3)=20\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}$
- $f^{\prime \prime}(p)=(6 p-2)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)$
- $f^{\prime \prime}(p)>0$ for all $p \geq 3$ always holds.
- No solutions if

$$
\begin{aligned}
& 16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k}>0, \text { unless } \\
& 16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k}=1, \text { in which } \\
& \text { case } d(G)=p \text { and } p=3
\end{aligned}
$$

Prime difference (continued)

- $f(3)=16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \mp 1$
- $f^{\prime}(3)=20\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}$
- $f^{\prime \prime}(p)=(6 p-2)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)$
- $f^{\prime \prime}(p)>0$ for all $p \geq 3$ always holds.
- No solutions if $16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k}>0$, unless $16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k}=1$, in which case $d(G)=p$ and $p=3$
- If $16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k}>0$, then $20\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-q_{1} q_{2} \ldots q_{k}>0$.

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- There are only solutions if $16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \leq 0$ (excluding the one previously-mentioned exception).

Automorphisms Original problem

Generalizations

Prime difference
Prime square
difference
Possible differences

Prime difference (continued)

Gerhardt Hinkle

- There are only solutions if $16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \leq 0$ (excluding the one previously-mentioned exception).
- $\left(1-\frac{1}{q_{1}}\right)\left(1-\frac{1}{q_{2}}\right) \ldots\left(1-\frac{1}{q_{k}}\right) \leq \frac{3}{16}$

Introduction
Automorphisms
Original problem

Prime difference
Prime square
difference
Possible differences

Prime difference (continued)

- There are only solutions if
$16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \leq 0$
(excluding the one previously-mentioned exception).
- $\left(1-\frac{1}{q_{1}}\right)\left(1-\frac{1}{q_{2}}\right) \ldots\left(1-\frac{1}{q_{k}}\right) \leq \frac{3}{16}$
- If $q_{1}=2,3$, then there are no solutions.
ntroduction

Prime difference (continued)

- There are only solutions if

$$
16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \leq 0
$$

(excluding the one previously-mentioned exception).

- $\left(1-\frac{1}{q_{1}}\right)\left(1-\frac{1}{q_{2}}\right) \ldots\left(1-\frac{1}{q_{k}}\right) \leq \frac{3}{16}$
- If $q_{1}=2,3$, then there are no solutions.
- Minimum value when $q_{1}=5, q_{2}=7, \ldots, q_{k}=p_{k+2}$, where p_{k+2} is the $(k+2)$ th prime

Prime difference (continued)

Gerhardt Hinkle

- There are only solutions if

$$
16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \leq 0
$$

(excluding the one previously-mentioned exception).

- $\left(1-\frac{1}{q_{1}}\right)\left(1-\frac{1}{q_{2}}\right) \ldots\left(1-\frac{1}{q_{k}}\right) \leq \frac{3}{16}$
- If $q_{1}=2,3$, then there are no solutions.
- Minimum value when $q_{1}=5, q_{2}=7, \ldots, q_{k}=p_{k+2}$, where p_{k+2} is the $(k+2)$ th prime
- $\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right) \ldots\left(1-\frac{1}{p_{k+2}}\right) \leq \frac{3}{16}$

Prime difference (continued)

Gerhardt Hinkle

- There are only solutions if $16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \leq 0$ (excluding the one previously-mentioned exception).
- $\left(1-\frac{1}{q_{1}}\right)\left(1-\frac{1}{q_{2}}\right) \ldots\left(1-\frac{1}{q_{k}}\right) \leq \frac{3}{16}$
- If $q_{1}=2,3$, then there are no solutions.
- Minimum value when $q_{1}=5, q_{2}=7, \ldots, q_{k}=p_{k+2}$, where p_{k+2} is the $(k+2)$ th prime
- $\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right) \ldots\left(1-\frac{1}{p_{k+2}}\right) \leq \frac{3}{16}$
- $k \geq 994$

Prime difference (continued)

- There are only solutions if $16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \leq 0$ (excluding the one previously-mentioned exception).
- $\left(1-\frac{1}{q_{1}}\right)\left(1-\frac{1}{q_{2}}\right) \ldots\left(1-\frac{1}{q_{k}}\right) \leq \frac{3}{16}$
- If $q_{1}=2,3$, then there are no solutions.
- Minimum value when $q_{1}=5, q_{2}=7, \ldots, q_{k}=p_{k+2}$, where p_{k+2} is the $(k+2)$ th prime
- $\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right) \ldots\left(1-\frac{1}{p_{k+2}}\right) \leq \frac{3}{16}$
- $k \geq 994$
- Other possibility: $k=993, p=3$, $G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7} \times \ldots \times \mathbb{Z}_{p_{995}}$, and $d(G)=3$ (can be easily confirmed to be false)

Prime difference (continued)

- There are only solutions if $16\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-3 q_{1} q_{2} \ldots q_{k} \leq 0$ (excluding the one previously-mentioned exception).
- $\left(1-\frac{1}{q_{1}}\right)\left(1-\frac{1}{q_{2}}\right) \ldots\left(1-\frac{1}{q_{k}}\right) \leq \frac{3}{16}$
- If $q_{1}=2,3$, then there are no solutions.
- Minimum value when $q_{1}=5, q_{2}=7, \ldots, q_{k}=p_{k+2}$, where p_{k+2} is the $(k+2)$ th prime
- $\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right) \ldots\left(1-\frac{1}{p_{k+2}}\right) \leq \frac{3}{16}$
- $k \geq 994$
- Other possibility: $k=993, p=3$,
$G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7} \times \ldots \times \mathbb{Z}_{p_{995}}$, and $d(G)=3$
(can be easily confirmed to be false)
- Therefore, a solution to $d(G)= \pm p$ exists if and only if $k \geq 994$.

Prime difference (continued)

Gerhardt Hinkle

- We can use a similar manner to find a lower bound on the values of k that give a difference of at least $\pm p_{0}$.

Prime difference (continued)

- We can use a similar manner to find a lower bound on the values of k that give a difference of at least $\pm p_{0}$.
- $\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \ldots\left(1-\frac{1}{p_{k+2}}\right) \leq \frac{p_{0}}{\left(p_{0}^{2}-1\right)\left(p_{0}-1\right)}$, where the product excludes the term containing p_{0} so that there are k terms in total.

Prime difference (continued)

- We can use a similar manner to find a lower bound on the values of k that give a difference of at least $\pm p_{0}$.
- $\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \ldots\left(1-\frac{1}{p_{k+2}}\right) \leq \frac{p_{0}}{\left(p_{0}^{2}-1\right)\left(p_{0}-1\right)}$, where the product excludes the term containing p_{0} so that there are k terms in total.
- The product in the left side of the inequality goes to 0 as k goes to ∞, so there will always exist a value of k so that the inequality is satisfied.

Prime difference (continued)

- We can use a similar manner to find a lower bound on the values of k that give a difference of at least $\pm p_{0}$.
- $\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \ldots\left(1-\frac{1}{p_{k+2}}\right) \leq \frac{p_{0}}{\left(p_{0}^{2}-1\right)\left(p_{0}-1\right)}$, where the product excludes the term containing p_{0} so that there are k terms in total.
- The product in the left side of the inequality goes to 0 as k goes to ∞, so there will always exist a value of k so that the inequality is satisfied.
- Let $k\left(p_{0}\right)$ be the lowest value of k satisfying the inequality for a given p_{0}. Then, any group G for which $d(G)= \pm p_{0}$ must have $k \geq k\left(p_{0}\right)$, except that it could be possible to have $k=k\left(p_{0}\right)-1$, $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}=\left\{3,5,7, \ldots, p_{k+2}\right\} \backslash\left\{p_{0}\right\}$, and $d(G)=p_{0}$.

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- $k\left(p_{0}\right)$ increases very rapidly.

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Automorphism groups

Gerhardt Hinkle

- $k\left(p_{0}\right)$ increases very rapidly.
- $k(3)=994$

Introduction

Automorphisms
Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Prime difference (continued)

Gerhardt Hinkle

Introduction

Automorphisms

- $k\left(p_{0}\right)$ increases very rapidly.
- $k(3)=994$
- $k(5)$ is too large to compute easily. (much greater than 20 million)

Prime difference (continued)

- $k\left(p_{0}\right)$ increases very rapidly.
- $k(3)=994$
- $k(5)$ is too large to compute easily. (much greater than 20 million)
- The numbers are so large that the chance of getting ± 1 is very remote, so I conjecture that there are no solutions.

Prime square difference

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Prime square difference

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem

Generalizations

Prime difference

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p^{2}$
- $|\operatorname{Inn}(G)|=1, p, p^{2}$

Prime square difference

Gerhardt Hinkle

Introduction

Automorphisms

Original problem

Generalizations

Prime difference

Prime square difference
Possible differences

- $|\operatorname{Inn}(G)|=1, p, p^{2}$
- The only group of order p is \mathbb{Z}_{p}, and the only groups of order p^{2} are $\mathbb{Z}_{p^{2}}$ and $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

Prime square difference

Gerhardt Hinkle

introduction

Automorphisms

Original problem

Generalizations

Prime difference

- $d(G)=|\operatorname{Aut}(G)|-|G|= \pm p^{2}$
- $|\operatorname{Inn}(G)|=1, p, p^{2}$
- The only group of order p is \mathbb{Z}_{p}, and the only groups of order p^{2} are $\mathbb{Z}_{p^{2}}$ and $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
$-\operatorname{Inn}(G) \cong\{e\}, \mathbb{Z}_{p} \times \mathbb{Z}_{p}$

Prime square difference

Gerhardt Hinkle

Introduction

Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

- $|\operatorname{Inn}(G)|=1, p, p^{2}$
- The only group of order p is \mathbb{Z}_{p}, and the only groups of order p^{2} are $\mathbb{Z}_{p^{2}}$ and $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
- $\operatorname{Inn}(G) \cong\{e\}, \mathbb{Z}_{p} \times \mathbb{Z}_{p}$
- Either G is abelian or $G / Z(G) \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian

Introduction
Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:

Introduction
 Automorphisms

Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Introduction
 Automorphisms

Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$

Introduction

Automorphisms
Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Introduction

Automorphisms
Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Must be calculated manually

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Must be calculated manually
- $G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Must be calculated manually
- $G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- No solution

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$

introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Must be calculated manually
- $G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- No solution
- $G \cong \mathbb{Z}_{p^{3}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Must be calculated manually
- $G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- No solution
- $G \cong \mathbb{Z}_{p^{3}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p^{3}}, d(G)=-p^{2}$

Abelian

Automorphism groups

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$
ntroduction
Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Must be calculated manually
$\vee G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- No solution
- $G \cong \mathbb{Z}_{p^{3}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p^{3}}, d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Abelian

Automorphism groups

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Must be calculated manually
- $G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- No solution
- $G \cong \mathbb{Z}_{p^{3}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p^{3}}, d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $k=1: p=2, q_{1}=5, d(G)=4$

Abelian

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Must be calculated manually
- $G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- No solution
- $G \cong \mathbb{Z}_{p^{3}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p^{3}}, d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $k=1: p=2, q_{1}=5, d(G)=4$
- $k=2: p=2, q_{1}=5, q_{2}=7, d(G)=4$

Abelian

Gerhardt Hinkle

- $d(G)= \pm p^{2}, G$ abelian
- Possibilities:
- $G \cong \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Calculated like in the $d(G)= \pm p$ case; can only give $d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- Must be calculated manually
- $G \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- No solution
- $G \cong \mathbb{Z}_{p^{3}} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $G \cong \mathbb{Z}_{p^{3}}, d(G)=-p^{2}$
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $k=1: p=2, q_{1}=5, d(G)=4$
- $k=2: p=2, q_{1}=5, q_{2}=7, d(G)=4$
- ... (must be calculated manually)
ntroduction
Automorphisms
Original problem
Generalizations

Non-abelian

Automorphism groups

Gerhardt Hinkle
$-\operatorname{lnn}(G) \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$

Introduction

Automorphisms
Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Non-abelian

Automorphism groups

Gerhardt Hinkle

- $\operatorname{Inn}(G) \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$
- $G / Z(G) \cong\left\langle a, b \mid a^{p}=b^{p}=1, b a=a b\right\rangle$

Introduction

Automorphisms

Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Non-abelian

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms

Original problem

- $\operatorname{Inn}(G) \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$
- $G / Z(G) \cong\left\langle a, b \mid a^{p}=b^{p}=1, b a=a b\right\rangle$
- $\operatorname{In} G, a^{p}=x, b^{p}=y$, and $b a b^{-1} a^{-1}=z$, where $x, y, z \in Z(G)$.

Non-abelian

- $\operatorname{Inn}(G) \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$
- $G / Z(G) \cong\left\langle a, b \mid a^{p}=b^{p}=1, b a=a b\right\rangle$
- In $G, a^{p}=x, b^{p}=y$, and $b a b^{-1} a^{-1}=z$, where $x, y, z \in Z(G)$.
- There may be some elements of $Z(G)$ that are unrelated to any of a, b, x, y, and z, but there can't be any non-central elements of G that depend on anything but a, b, and elements of $Z(G)$.

Non-abelian (continued)

- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$

$$
a z, z b=b z\rangle
$$

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square difference
Possible differences

Non-abelian (continued)

- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$ $a z, z b=b z\rangle$
- Let ϕ, ψ, and χ be automorphisms of G, defined as follows:

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Non-abelian (continued)

- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$ $a z, z b=b z\rangle$
- Let ϕ, ψ, and χ be automorphisms of G, defined as follows:
- $\phi(a)=a, \phi(b)=b z, \phi(z)=z$

Automorphism groups

Gerhardt Hinkle

```
ntroduction
```

Automorphisms Original problem

Non-abelian (continued)

- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$ $a z, z b=b z\rangle$
- Let ϕ, ψ, and χ be automorphisms of G, defined as follows:
- $\phi(a)=a, \phi(b)=b z, \phi(z)=z$
- $\psi(a)=a z, \psi(b)=b, \psi(z)=z$

Automorphism groups

Gerhardt Hinkle

```
ntroduction
```


Non-abelian (continued)

- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$ $a z, z b=b z\rangle$
- Let ϕ, ψ, and χ be automorphisms of G, defined as follows:
- $\phi(a)=a, \phi(b)=b z, \phi(z)=z$
- $\psi(a)=a z, \psi(b)=b, \psi(z)=z$
- $\chi(a)=a b^{\prime}, \chi(b)=b, \chi(z)=z$

Gerhardt Hinkle

```
ntroduction
```

Automorphisms Original problem

Generalizations

Prime difference
Prime square difference
Possible differences

Non-abelian (continued)

- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$ $a z, z b=b z\rangle$
- Let ϕ, ψ, and χ be automorphisms of G, defined as follows:
- $\phi(a)=a, \phi(b)=b z, \phi(z)=z$
- $\psi(a)=a z, \psi(b)=b, \psi(z)=z$
- $\chi(a)=a b^{\prime}, \chi(b)=b, \chi(z)=z$
- $o(\phi)=o(\psi)=o(\chi)=p, \psi \circ \phi=\phi \circ \psi, \chi \circ \phi \neq \phi \circ \chi$, $\chi \circ \psi=\psi \circ \chi$

Non-abelian (continued)

 groups- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$ $a z, z b=b z\rangle$
- Let ϕ, ψ, and χ be automorphisms of G, defined as follows:
- $\phi(a)=a, \phi(b)=b z, \phi(z)=z$
- $\psi(a)=a z, \psi(b)=b, \psi(z)=z$
- $\chi(a)=a b^{\prime}, \chi(b)=b, \chi(z)=z$
$\triangleright o(\phi)=o(\psi)=o(\chi)=p, \psi \circ \phi=\phi \circ \psi, \chi \circ \phi \neq \phi \circ \chi$, $\chi \circ \psi=\psi \circ \chi$
- $\langle\phi, \psi, \chi\rangle \cong\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{p}$

Gerhardt Hinkle ntroduction
Automorphisms Original problem

Non-abelian (continued)

 groups- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$ $a z, z b=b z\rangle$
- Let ϕ, ψ, and χ be automorphisms of G, defined as follows:
- $\phi(a)=a, \phi(b)=b z, \phi(z)=z$
- $\psi(a)=a z, \psi(b)=b, \psi(z)=z$
- $\chi(a)=a b^{\prime}, \chi(b)=b, \chi(z)=z$
- $o(\phi)=o(\psi)=o(\chi)=p, \psi \circ \phi=\phi \circ \psi, \chi \circ \phi \neq \phi \circ \chi$, $\chi \circ \psi=\psi \circ \chi$
$-\langle\phi, \psi, \chi\rangle \cong\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{p}$
- The group generated by ϕ, ψ, and χ is a subgroup of Aut(G).

Non-abelian (continued)

- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$ $a z, z b=b z\rangle$
- Let ϕ, ψ, and χ be automorphisms of G, defined as follows:
- $\phi(a)=a, \phi(b)=b z, \phi(z)=z$
- $\psi(a)=a z, \psi(b)=b, \psi(z)=z$
- $\chi(a)=a b^{\prime}, \chi(b)=b, \chi(z)=z$
- $o(\phi)=o(\psi)=o(\chi)=p, \psi \circ \phi=\phi \circ \psi, \chi \circ \phi \neq \phi \circ \chi$, $\chi \circ \psi=\psi \circ \chi$
- $\langle\phi, \psi, \chi\rangle \cong\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{p}$
- The group generated by ϕ, ψ, and χ is a subgroup of Aut(G).
- p^{3} divides $|\operatorname{Aut}(G)|$ and $|G|$, so $|\operatorname{Aut}(G)|-|G|= \pm p^{2}$ is impossible.

Non-abelian (continued)

- $G \cong\langle a, b, z| a^{p k}=b^{p l}=z^{p}=1, b a=a b z, z a=$ $a z, z b=b z\rangle$
- Let ϕ, ψ, and χ be automorphisms of G, defined as follows:
- $\phi(a)=a, \phi(b)=b z, \phi(z)=z$
- $\psi(a)=a z, \psi(b)=b, \psi(z)=z$
- $\chi(a)=a b^{\prime}, \chi(b)=b, \chi(z)=z$
$\triangleright o(\phi)=o(\psi)=o(\chi)=p, \psi \circ \phi=\phi \circ \psi, \chi \circ \phi \neq \phi \circ \chi$, $\chi \circ \psi=\psi \circ \chi$
- $\langle\phi, \psi, \chi\rangle \cong\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{p}$
- The group generated by ϕ, ψ, and χ is a subgroup of Aut(G).
- p^{3} divides $|\operatorname{Aut}(G)|$ and $|G|$, so $|\operatorname{Aut}(G)|-|G|= \pm p^{2}$ is impossible.
- If there are any other elements in $Z(G)$, then G is a direct product of the above group with an abelian group, so p^{3} still divides $|\operatorname{Aut}(G)|$ and $|G|$.

Possible differences

- All of the groups that were found in the $d(G)= \pm p$ case had $d(G)=-p$. Therefore, if my conjecture in the last part of that case is true, then $d(G)=p$ is impossible.

```
ntroduction
```


Possible differences

- All of the groups that were found in the $d(G)= \pm p$ case had $d(G)=-p$. Therefore, if my conjecture in the last part of that case is true, then $d(G)=p$ is impossible.
- If $G \cong \mathbb{Z}_{n}$, then $d(G)=\phi(n)-n=-(n-\phi(n))$.

```
ntroduction
```


Possible differences

- All of the groups that were found in the $d(G)= \pm p$ case had $d(G)=-p$. Therefore, if my conjecture in the last part of that case is true, then $d(G)=p$ is impossible.
- If $G \cong \mathbb{Z}_{n}$, then $d(G)=\phi(n)-n=-(n-\phi(n))$.
- $n-\phi(n)$ is called the cototient of n.

Possible differences

- All of the groups that were found in the $d(G)= \pm p$ case had $d(G)=-p$. Therefore, if my conjecture in the last part of that case is true, then $d(G)=p$ is impossible.
- If $G \cong \mathbb{Z}_{n}$, then $d(G)=\phi(n)-n=-(n-\phi(n))$.
- $n-\phi(n)$ is called the cototient of n.
- Any positive integer that cannot be expressed as $n-\phi(n)$ for any positive integer n is called a noncototient.

Possible differences

- All of the groups that were found in the $d(G)= \pm p$ case had $d(G)=-p$. Therefore, if my conjecture in the last part of that case is true, then $d(G)=p$ is impossible.
- If $G \cong \mathbb{Z}_{n}$, then $d(G)=\phi(n)-n=-(n-\phi(n))$.
- $n-\phi(n)$ is called the cototient of n.
- Any positive integer that cannot be expressed as $n-\phi(n)$ for any positive integer n is called a noncototient.
- $10,26,34,50,52,58,86,100,116, \ldots$

Possible differences

- All of the groups that were found in the $d(G)= \pm p$ case had $d(G)=-p$. Therefore, if my conjecture in the last part of that case is true, then $d(G)=p$ is impossible.
- If $G \cong \mathbb{Z}_{n}$, then $d(G)=\phi(n)-n=-(n-\phi(n))$.
- $n-\phi(n)$ is called the cototient of n.
- Any positive integer that cannot be expressed as $n-\phi(n)$ for any positive integer n is called a noncototient.
- $10,26,34,50,52,58,86,100,116, \ldots$
- The negatives of some noncototients can still be obtained as $d(G)$ for some noncyclic group G.

Possible differences

- All of the groups that were found in the $d(G)= \pm p$ case had $d(G)=-p$. Therefore, if my conjecture in the last part of that case is true, then $d(G)=p$ is impossible.
- If $G \cong \mathbb{Z}_{n}$, then $d(G)=\phi(n)-n=-(n-\phi(n))$.
- $n-\phi(n)$ is called the cototient of n.
- Any positive integer that cannot be expressed as $n-\phi(n)$ for any positive integer n is called a noncototient.
- $10,26,34,50,52,58,86,100,116, \ldots$
- The negatives of some noncototients can still be obtained as $d(G)$ for some noncyclic group G.
- e.g. $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{385}, d(G)=-100$

Possible differences

- All of the groups that were found in the $d(G)= \pm p$ case had $d(G)=-p$. Therefore, if my conjecture in the last part of that case is true, then $d(G)=p$ is impossible.
- If $G \cong \mathbb{Z}_{n}$, then $d(G)=\phi(n)-n=-(n-\phi(n))$.
- $n-\phi(n)$ is called the cototient of n.
- Any positive integer that cannot be expressed as $n-\phi(n)$ for any positive integer n is called a noncototient.
- $10,26,34,50,52,58,86,100,116, \ldots$
- The negatives of some noncototients can still be obtained as $d(G)$ for some noncyclic group G.
- e.g. $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{385}, d(G)=-100$
- If a noncototient equals $2 p$ for some prime p, then I conjecture that $d(G)=-2 p$ is impossible.

Noncototient difference

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square
difference
Possible differences

- $d(G)=|\operatorname{Aut}(G)|-|G|=-2 p$, where $2 p$ is a noncototient

Noncototient difference

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square
difference
Possible differences

- $d(G)=|\operatorname{Aut}(G)|-|G|=-2 p$, where $2 p$ is a noncototient
- $|\operatorname{Inn}(G)|=1,2, p, 2 p$

Noncototient difference

Gerhardt Hinkle

Introduction

Automorphisms

- $|\operatorname{Inn}(G)|=1,2, p, 2 p$
- $\operatorname{Inn}(G) \cong\{e\}, D_{2 p}$

Noncototient difference

Gerhardt Hinkle

introduction

Automorphisms

- $d(G)=|\operatorname{Aut}(G)|-|G|=-2 p$, where $2 p$ is a noncototient
- $|\operatorname{Inn}(G)|=1,2, p, 2 p$
- $\operatorname{Inn}(G) \cong\{e\}, D_{2 p}$
- Either G is abelian or $G / Z(G) \cong D_{2 p}$.

Abelian

- Possible cases:

Introduction
Automorphisms
Original problem
Generalizations
Prime difference
Prime square
difference
Possible differences

Abelian

Automorphism groups

Gerhardt Hinkle

- Possible cases:
$-G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square
difference
Possible differences

Abelian

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem

Prime difference

Prime square

- $6\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-4 q_{1} q_{2} \ldots q_{k}=-2 p$

Abelian

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem

- Possible cases:
- $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $6\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-4 q_{1} q_{2} \ldots q_{k}=-2 p$
- $3\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-2 q_{1} q_{2} \ldots q_{k}=-p$

Prime difference
Prime square
difference
Possible differences

Abelian

Automorphism groups

Gerhardt Hinkle

introduction

Automorphisms
Original problem

- Possible cases:
- $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $6\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-4 q_{1} q_{2} \ldots q_{k}=-2 p$
- $3\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-2 q_{1} q_{2} \ldots q_{k}=-p$
- The left side is even but the right side is odd, so there is no solution.

Abelian

Automorphism groups

Gerhardt Hinkle

introduction

Automorphisms
Original problem

- Possible cases:
- $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $6\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-4 q_{1} q_{2} \ldots q_{k}=-2 p$
- $3\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-2 q_{1} q_{2} \ldots q_{k}=-p$
- The left side is even but the right side is odd, so there is no solution.
- $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Generalizations

Prime difference
Prime square
difference
Possible differences

Abelian

Gerhardt Hinkle
ntroduction
Automorphisms
Original problem

- Possible cases:
- $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $6\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-4 q_{1} q_{2} \ldots q_{k}=-2 p$
- $3\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-2 q_{1} q_{2} \ldots q_{k}=-p$
- The left side is even but the right side is odd, so there is no solution.
- $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- This case has the same problem as the previous case, so there is no solution.

Abelian

Automorphism groups

Gerhardt Hinkle

ntroduction

Automorphisms

- Possible cases:
- $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- $6\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-4 q_{1} q_{2} \ldots q_{k}=-2 p$
- $3\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-2 q_{1} q_{2} \ldots q_{k}=-p$
- The left side is even but the right side is odd, so there is no solution.
$-G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$
- This case has the same problem as the previous case, so there is no solution.
- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Abelian (continued)

- $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem
Generalizations
Prime difference
Prime square
difference
Possible differences

Abelian (continued)

Automorphism groups

Gerhardt Hinkle

$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $-2 p$

Introduction
Automorphisms
Original problem
Generalizations
Prime difference
Prime square
difference
Possible differences

Abelian (continued)

Gerhardt Hinkle

$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $-2 p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-2$

Introduction
 Automorphisms
 Original problem

Generalizations
Prime difference
Prime square
Possible differences

Abelian (continued)

Gerhardt Hinkle
$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $-2 p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-2$
- The left side is odd unless one of the $q_{i} s$ is 2 , so let $q_{1}=2$.

Abelian (continued)

Gerhardt Hinkle
$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $-2 p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-2$
- The left side is odd unless one of the q_{i} is 2 , so let $q_{1}=2$.
- $\left(p^{2}-1\right)(p-1)\left(q_{2}-1\right)\left(q_{3}-1\right) \ldots\left(q_{k}-1\right)-2 p q_{2} q_{3} \ldots q_{k}=$ -2

Abelian (continued)

Gerhardt Hinkle
$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $-2 p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-2$
- The left side is odd unless one of the q_{i} is 2 , so let $q_{1}=2$.
- $\left(p^{2}-1\right)(p-1)\left(q_{2}-1\right)\left(q_{3}-1\right) \ldots\left(q_{k}-1\right)-2 p q_{2} q_{3} \ldots q_{k}=$ -2
- $r_{i}=q_{i+1}$

Abelian (continued)

Gerhardt Hinkle
$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $-2 p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-2$
- The left side is odd unless one of the q_{i} is 2 , so let $q_{1}=2$.
- $\left(p^{2}-1\right)(p-1)\left(q_{2}-1\right)\left(q_{3}-1\right) \ldots\left(q_{k}-1\right)-2 p q_{2} q_{3} \ldots q_{k}=$ -2
- $r_{i}=q_{i+1}$
- $\left(p^{2}-1\right)(p-1)\left(r_{1}-1\right)\left(r_{2}-1\right) \ldots\left(r_{k-1}-1\right)-2 p r_{1} r_{2} \ldots r_{k-1}=$ -2

Abelian (continued)

Gerhardt Hinkle
$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $-2 p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-2$
- The left side is odd unless one of the q_{i} is 2 , so let $q_{1}=2$.
- $\left(p^{2}-1\right)(p-1)\left(q_{2}-1\right)\left(q_{3}-1\right) \ldots\left(q_{k}-1\right)-2 p q_{2} q_{3} \ldots q_{k}=$ -2
- $r_{i}=q_{i+1}$
- $\left(p^{2}-1\right)(p-1)\left(r_{1}-1\right)\left(r_{2}-1\right) \ldots\left(r_{k-1}-1\right)-2 p r_{1} r_{2} \ldots r_{k-1}=$ -2
- Using a similar argument as in the last case for $d(G)= \pm p$, the lower bound on $k-1$ is $k(p)$.

Abelian (continued)

$-G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q_{1}} \times \mathbb{Z}_{q_{2}} \times \ldots \times \mathbb{Z}_{q_{k}}$

- $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p^{2} q_{1} q_{2} \ldots q_{k}=$ $-2 p$
- $\left(p^{2}-1\right)(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{k}-1\right)-p q_{1} q_{2} \ldots q_{k}=-2$
- The left side is odd unless one of the q_{i} is 2 , so let $q_{1}=2$.
- $\left(p^{2}-1\right)(p-1)\left(q_{2}-1\right)\left(q_{3}-1\right) \ldots\left(q_{k}-1\right)-2 p q_{2} q_{3} \ldots q_{k}=$ -2
- $r_{i}=q_{i+1}$
- $\left(p^{2}-1\right)(p-1)\left(r_{1}-1\right)\left(r_{2}-1\right) \ldots\left(r_{k-1}-1\right)-2 p r_{1} r_{2} \ldots r_{k-1}=$ -2
- Using a similar argument as in the last case for $d(G)= \pm p$, the lower bound on $k-1$ is $k(p)$.
- Therefore, I conjecture that if $2 p$ is a noncototient, then there are no abelian groups G for which $d(G)=-2 p$.

Further research

Automorphism groups

Gerhardt Hinkle

Introduction

Automorphisms
Original problem

Further research

Introduction

Automorphisms
Original problem

- Finish the last case for $d(G)= \pm p$
- Finish the abelian case for $d(G)=-2 p$ when $2 p$ is a noncototient

Prime difference
Prime square

Further research

 groupsGerhardt Hinkle

ntroduction

Automorphisms

- Finish the last case for $d(G)= \pm p$
- Finish the abelian case for $d(G)=-2 p$ when $2 p$ is a noncototient

```
alizations
```

Prime difference
Prime square
difference
Possible differences

- Do the non-abelian case for $d(G)=-2 p$ when $2 p$ is a noncototient $\left(G / Z(G) \cong D_{2 p}\right)$

Further research

- Finish the last case for $d(G)= \pm p$
- Finish the abelian case for $d(G)=-2 p$ when $2 p$ is a noncototient
- Do the non-abelian case for $d(G)=-2 p$ when $2 p$ is a noncototient $\left(G / Z(G) \cong D_{2 p}\right)$
- Extend to $d(G)= \pm p^{n}, d(G)= \pm p q$, etc.

Further research

- Finish the last case for $d(G)= \pm p$
- Finish the abelian case for $d(G)=-2 p$ when $2 p$ is a noncototient
- Do the non-abelian case for $d(G)=-2 p$ when $2 p$ is a noncototient $\left(G / Z(G) \cong D_{2 p}\right)$
- Extend to $d(G)= \pm p^{n}, d(G)= \pm p q$, etc.
- Determine what other differences are possible or impossible

