Introduction to Non-Commuting Graphs

G. Hinkle¹ C. Robichaux² R. Wood³

¹Department of Mathematics Rice University

²Department of Mathematics Louisiana State University

³Department of Mathematics Missouri State University

Missouri State University REU, 2013

・ロット 本語 マ キョット キョット うらう

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition Properties

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

Outline

Groups

Definition Properties Examples Functions

Graph

Definition Properties

Non-commuting Graphs

Define Our Research Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

r ropertie:

Examples

Functions

Graph

Definition

Properties

Non-commuting Graphs Define

Our Research

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Definition of a group

- A group (G, ★) consists of a set G and a binary operation ★ that satisfies these four conditions:
 - Closed (For all $x, y \in G, x \star y \in G$.)
 - Associative (For all $x, y, z \in G$, $(x \star y) \star z = x \star (y \star z)$.)
 - Identity (There exists a unique element e ∈ G so that for all x ∈ G, x ★ e = e ★ x = x.)
 - Inverse (For every x ∈ G, there exists a unique x⁻¹ ∈ G so that x ★ x⁻¹ = x⁻¹ ★ x = e.)

・ロット 本語 マ キョット キョット うらう

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition

lon-commuti

Define

Our Research

Abelian groups

- An abelian group is a group with the added property of commutativity. That is, for all x, y ∈ G, x ★ y = y ★ x.
- Examples:
 - The integers under addition
 - The integers $\{1, 2, ..., p-1\}$ under multiplication mod p

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition Properties

Non-commuting Graphs Define Our Research

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Non-abelian groups

- A non-abelian group is any group that is not an abelian group. That is, there exist some x, y ∈ G so that x ★ y ≠ y ★ x.
- Examples:
 - Rubik's cube group
 - Dihedral group
- Note that even in a non-abelian group, there are still some pairs of elements that commute with each other.
 - e and any $x \in G$
 - Any $x \in G$ and x^{-1}
 - etc.

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition Properties

Non-commuting Graphs Define Our Research

Summary

・ロット 本語 マ キョット キョット うらう

Terminology and notation

- ► The order of a group, written |G|, is the number of elements in the group.
- ► The order of an element x ∈ G, written o(x), is the smallest positive integer n such that xⁿ = 1. All elements of a finite group have finite order.
- The center of a group, written Z(G), is the set of all elements z ∈ G that commute with all elements of G. If G is abelian, then Z(G) = G.
- The centralizer of an element x ∈ G, written C_G(x), is the set of all elements of G that commute with x. If x ∈ Z(G), then C_G(x) = G.
- An AC group is a group G such that for all $x \in (G \setminus Z(G)), C_G(x)$ is abelian.

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition Properties

Non-commuting Graphs Define Our Research

Cyclic group

- ► The cyclic group of order *n* is the group generated by one element of order *n*. That is, it consists of the elements {1, *a*, *a*², *a*³, ..., *a*^{*n*-1}}, with *aⁿ* = 1.
- Written C_n or \mathbb{Z}_n

•
$$\mathbb{Z}_n = \langle a | a^n = 1 \rangle$$

Abelian

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition

Properties

Non-commuting Graphs Define

Our Researd

Summary

・ロット 本語 マ キョット キョット うらう

Dihedral group

► The dihedral group of order 2*n* is the group of the symmetries of a regular *n*-gon. It contains rotations by $0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}$ of a full rotation as well as each of these rotations followed by a reflection.

•
$$r = rotation$$
 by $\frac{1}{n}$

s = reflection

$$\blacktriangleright r^n = s^2 = 1$$

Reflecting and then rotating is the same as rotating in the opposite direction and then reflecting, so sr = r⁻¹s.

•
$$D_{2n} = \langle r, s | r^n = s^2 = 1, sr = r^{-1}s \rangle$$

Non-abelian

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Properties

Examples

unctions

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

Symmetric group

- The symmetric group S_n is the group of all permutations of n elements under composition.
- e.g. $\{1, 2, 3, 4, 5\} \rightarrow \{4, 5, 1, 3, 2\}$
- Cycle notation: (1,4,3)(2,5)
- Evaluated from right to left (like functions)
- e.g. (1,3,2,4)(2,5,3) = (1,3,4)(2,5),(2,5,3)(1,3,2,4) = (1,2,4)(3,5)
- Non-abelian
- Cayley's theorem: Every group is isomorphic to a subgroup of a symmetric group.

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Properties

Examples

unctions

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

Homomorphisms, isomorphisms, and automorphisms

- A homomorphism from a group (G, \star) to a group (H, \star) is a function $\phi : G \to H$ that satisfies $\phi(x \star y) = \phi(x) \star \phi(y)$.
- An isomorphism is a bijective homomorphism. If two groups are isomorphic, then they are fundamentally the same, just with different names for the elements.
- An automorphism is an isomorphism from a group to itself.

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition Properties

Examples

Definite

Properties

Non-commuting Graphs Define Our Research

Direct product

► The direct product of two groups (G, *) and (H, *) is the group (G × H, •), where the set G × H is the Cartesian product of G and H and the operation • acts componentwise:

•
$$(g_1, h_1) \bullet (g_2, h_2) = (g_1 \star g_2, h_1 \star h_2)$$

 Fundamental theorem of finite abelian groups: Every finite abelian group is isomorphic to a direct product of some number of cyclic groups.

・ロット 本語 マ キョット キョット うらう

• If
$$gcd(m, n) = 1$$
, then $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$.

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition Properties

Non-commuting Graphs Define Our Research Summary

Semidirect product

- Generalization of the direct product
- Not uniquely defined
- $\phi: H \to Aut(G)$
- $G \rtimes_{\phi} H$ (or $G \rtimes H$ if the choice of ϕ is clear)
- Any two elements of G interact the same in G ⋊ H as they do in G; any two elements of H interact the same in G ⋊ H as they do in H.
- ▶ If $g \in G$ and $h \in H$, then $hgh^{-1} = \phi(h)(g)$. When $\phi(h) = id$, this reduces to the direct product.
- It is sufficient to define how each of the generators of H acts on each of the generators of G.
- ▶ $D_{2n} = \mathbb{Z}_n \rtimes_{\phi} \mathbb{Z}_2$, where $\phi(b)$ is the inverse function in \mathbb{Z}_n (i.e., $\phi(b)(a) = a^{-1}$, so $bab^{-1} = a^{-1}$).

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition Properties

Non-commuting Graphs Define Our Research

Graph

Definition

Graph: A graph Γ is an ordered pair of disjoint sets (V, E) such that E is a subset of V in the form of unordered pairs. The set V contains all vertices x_i , and the set E contains all edges $x_i x_j$, which connect vertices. Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition Properties

Examples

Functions

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

Summary

・ロット 本語 マ キョット キョット うらう

Definition

Order:

The order of a graph \varGamma , denoted by $|\varGamma|$ is the number of vertices.

Degree:

The degree of a vertex, denoted by d(x) is the number of vertices adjacent to a vertex x.

Connected:

A graph is connected provided that there exists a path between each pair of vertices.

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition Properties

Functions

```
Graph
```

Definition

Properties

Non-commuting Graphs Define Our Research

Example

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

- .

= ...

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

Definition

Isomorphism: Two graphs are isomorphic if there exists a correspondence between the sets of vertices which preserves adjacency.

Eulerian: A graph is Eulerian if there exists a circuit containing all edges each only once.

Complete:

A graph is complete provided that each pair of vertices has an edge between them or, in other words, are adjacent. G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Examples

Functions

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

ounnun

Definition

Clique Number:

The clique number of a graph Γ is the maximum order of a complete subgraph of Γ .

Chromatic Number:

The chromatic number of a graph is the minimum number of 'colors' that can be assigned to each vertex such that no vertices of the same color are adjacent.

Genus:

The genus of a graph is the minimum number of handles that must be added to a surface such that the graph may be drawn on the surface with no edges crossing. Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition Properties Examples Functions

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

・ロト ・日下・・日下・・日下・ シュア

Example

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition Properties

Examples

Functions

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Graph Types

Definition K-partite Graph:

A graph is k-partite if the vertices can be separated in classes $V_1, V_2, ..., V_k$ such that $V = V_1 \cup V_2 \cup ... \cup V_k, V_i \cap V_j = \emptyset$ for $1 \le i < j \le k$, and no edge joins two vertices of the same class.

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

- ·

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

Graph Types

Definition Complete K-Partite Graph:

A graph is complete k-partite denoted by $K_{n_1,...,n_k}$ if the graph has every n_i vertices in the *i*th class and contains all edges joining vertices in distinct classes.

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition Properties

Examples

i uncero

Graph

Definition

Properties

Non-commuting Graphs Define Our Research

Summary

・ロット 本語 マ キョット キョット うらう

Outline

Groups

Definition Properties Examples Functions

Graph

Definition Properties

Non-commuting Graphs Define

Our Research

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Propertie

Examples

Functions

Graph

Definition

Properties

Non-commuting Graphs

Define

Our Research

Summary

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Non-Commuting Graph

Definition

Definition

A non-commuting graph of a group G is the vertex set G - Z(G) where two distinct vertices x and y are joined by an edge whenever $xy \neq yx$ is called the non-commuting graph of a group.

- The non-commuting graph of a group G will be denoted Γ(G).
- First considered by Paul Erdos in 1975

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition Properties

Functions

Graph

Definition Properties

Non-commuting Graphs

Define

Summary

・ロット 本語 マ キョット キョット うらう

Non-commuting Graphs

Examples

Example

Figure : $\Gamma(M_{16})$

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Functions

Graph

Definition

Properties

Non-commuting Graphs

Define

Our Research

Summary

くしゃ 本語 * 本語 * 本語 * くし *

Non-commuting Graphs

Examples

Example

Figure : $\Gamma(D_{12})$

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Functions

Graph

Definition

Properties

Non-commuting Graphs

Define

Our Research

Summary

くりゃく 出 (出) (日) (日)

Non-commuting Graphs

Examples

Example

Figure : $\Gamma(A_4)$

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

rioperties

Examples

Functions

Graph

Definition

Properties

Non-commuting Graphs

Define

Our Research

Summary

Outline

Groups

Definition Properties Examples Functions

Graph

Definition Properties

Non-commuting Graphs

Define Our Research Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Propertie

Examples

Functions

Graph

Definition

Properties

Non-commuting Graphs

Define

Our Research

Summary

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Characteristics of the Graph Related to the Group

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

Definition

Propertie

Examples

Functions

Graph

Definition

Properties

Non-commuting Graphs

Define

Our Research

Summary

Genus

- Characteristic Polynomial
- Chromatic Number
- Cop Number
- Graph Isomophisms
- Eulerian
- Cliche Number

▲ロ → ▲母 → ▲目 → ▲目 → ▲日 →

Summary

- Our research is looking at the non-commuting graphs of non-abelian groups and their properties.
- Understanding the non-commuting graph of a group helps us understand the structure of the group.
- Presentations:
 - ► R. Wood: Graph Genus and Other Properties
 - ► C. Robichaux: Characteristic Polynomial
 - G. Hinkle: Eulerian Non-commuting Graphs / Automorphism Groups

Introduction to Non-Commuting Graphs

G. Hinkle, C. Robichaux, R. Wood

Groups

- Definition Properties Examples Functions
- Definition Properties
- Non-commuting Graphs Define Our Research