Introduction to Non-Commuting Graphs

G. Hinkle,
C. Robichaux, R. Wood

G. Hinkle ${ }^{1} \quad$ C. Robichaux ${ }^{2} \quad$ R. Wood ${ }^{3}$

${ }^{1}$ Department of Mathematics
Rice University
${ }^{2}$ Department of Mathematics
Louisiana State University
${ }^{3}$ Department of Mathematics
Missouri State University

Missouri State University REU, 2013

Outline

Introduction to Non-Commuting Graphs
G. Hinkle,
C. Robichaux, R. Wood

Groups
Definition
Properties
Examples
Functions

Graph
Definition
Properties

Non-commuting Graphs
Define
Our Research

Definition of a group

Definition

Properties

Abelian groups

Introduction to Non-Commuting

Graphs
G. Hinkle,
C. Robichaux, R. Wood

Groups

Definition

Properties

Examples
Functions
Graph
Definition
Properties

Non-abelian groups

- A non-abelian group is any group that is not an abelian group. That is, there exist some $x, y \in G$ so that $x \star y \neq y \star x$.
- Examples:
- Rubik's cube group
- Dihedral group
- Note that even in a non-abelian group, there are still some pairs of elements that commute with each other.
- e and any $x \in G$
- Any $x \in G$ and x^{-1}
- etc.

Terminology and notation

- The order of a group, written $|G|$, is the number of elements in the group.
- The order of an element $x \in G$, written $o(x)$, is the smallest positive integer n such that $x^{n}=1$. All elements of a finite group have finite order.
- The center of a group, written $Z(G)$, is the set of all elements $z \in G$ that commute with all elements of G. If G is abelian, then $Z(G)=G$.
- The centralizer of an element $x \in G$, written $C_{G}(x)$, is the set of all elements of G that commute with x. If $x \in Z(G)$, then $C_{G}(x)=G$.
- An AC group is a group G such that for all $x \in(G \backslash Z(G)), C_{G}(x)$ is abelian.

Cyclic group

Introduction to Non-Commuting Graphs
G. Hinkle,
C. Robichaux, R. Wood

Groups

Definition
Properties
Examples
Functions

Definition
Properties
Non-commuting

Dihedral group

- The dihedral group of order $2 n$ is the group of the symmetries of a regular n-gon. It contains rotations by $0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$ of a full rotation as well as each of these rotations followed by a reflection.
- $r=$ rotation by $\frac{1}{n}$
- $s=$ reflection
- $r^{n}=s^{2}=1$
- Reflecting and then rotating is the same as rotating in the opposite direction and then reflecting, so $s r=r^{-1} s$.
- $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s r=r^{-1} s\right\rangle$
- Non-abelian

Symmetric group

- The symmetric group S_{n} is the group of all permutations of n elements under composition.
- e.g. $\{1,2,3,4,5\} \rightarrow\{4,5,1,3,2\}$
- Cycle notation: $(1,4,3)(2,5)$
- Evaluated from right to left (like functions)
- e.g. $(1,3,2,4)(2,5,3)=(1,3,4)(2,5)$, $(2,5,3)(1,3,2,4)=(1,2,4)(3,5)$
- Non-abelian
- Cayley's theorem: Every group is isomorphic to a subgroup of a symmetric group.

Homomorphisms, isomorphisms, and automorphisms

Direct product

- The direct product of two groups (G, \star) and $(H, *)$ is the group $(G \times H, \bullet)$, where the set $G \times H$ is the Cartesian product of G and H and the operation \bullet acts componentwise:

$$
\bullet\left(g_{1}, h_{1}\right) \bullet\left(g_{2}, h_{2}\right)=\left(g_{1} \star g_{2}, h_{1} * h_{2}\right)
$$

- Fundamental theorem of finite abelian groups: Every finite abelian group is isomorphic to a direct product of some number of cyclic groups.
- If $\operatorname{gcd}(m, n)=1$, then $\mathbb{Z}_{m} \times \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}$.

Semidirect product

- Generalization of the direct product
- Not uniquely defined
- $\phi: H \rightarrow \operatorname{Aut}(G)$
- $G \rtimes_{\phi} H$ (or $G \rtimes H$ if the choice of ϕ is clear)
- Any two elements of G interact the same in $G \rtimes H$ as they do in G; any two elements of H interact the same in $G \rtimes H$ as they do in H.
- If $g \in G$ and $h \in H$, then $h g h^{-1}=\phi(h)(g)$. When $\phi(h)=i d$, this reduces to the direct product.
- It is sufficient to define how each of the generators of H acts on each of the generators of G.
- $D_{2 n}=\mathbb{Z}_{n} \rtimes_{\phi} \mathbb{Z}_{2}$, where $\phi(b)$ is the inverse function in \mathbb{Z}_{n} (i.e., $\phi(b)(a)=a^{-1}$, so $b a b^{-1}=a^{-1}$).

Graph

Introduction to Non-Commuting Graphs
G. Hinkle,
C. Robichaux, R. Wood

Groups

Definition

Graph Properties

Definition
Order:
The order of a graph Γ, denoted by $|\Gamma|$ is the number of vertices.

Degree:
The degree of a vertex, denoted by $d(x)$ is the number of vertices adjacent to a vertex x.

Connected:

A graph is connected provided that there exists a path between each pair of vertices.

Graph Properties

Example

Graph Properties

Definition

Isomorphism: Two graphs are isomorphic if there exists a correspondence between the sets of vertices which preserves adjacency.

Eulerian: A graph is Eulerian if there exists a circuit containing all edges each only once.

Complete:
A graph is complete provided that each pair of vertices has an edge between them or, in other words, are adjacent.

Graph Properties

Definition

Clique Number:
The clique number of a graph Γ is the maximum order of a complete subgraph of Γ.

Chromatic Number:
The chromatic number of a graph is the minimum number of 'colors' that can be assigned to each vertex such that no vertices of the same color are adjacent.

Genus:

The genus of a graph is the minimum number of handles that must be added to a surface such that the graph may be drawn on the surface with no edges crossing.

Graph Properties

Example

Graph Types

Definition

K-partite Graph:
A graph is k -partite if the vertices can be separated in classes $V_{1}, V_{2}, \ldots, V_{k}$ such that $V=V_{1} \cup V_{2} \cup \ldots \cup V_{k}, V_{i} \cap V_{j}=\emptyset$ for $1 \leq i<j \leq k$, and no edge joins two vertices of the same class.

Introduction to
Non-Commuting Graphs
G. Hinkle,
C. Robichaux, R. Wood

Groups

Definition
Properties

Graph Types

Definition

Complete K-Partite Graph:
A graph is complete k-partite denoted by $K_{n_{1}, \ldots, n_{k}}$ if the graph has every n_{i} vertices in the i th class and contains all edges joining vertices in distinct classes.

Graph

Definition
Properties

Introduction to Non-Commuting Graphs
G. Hinkle,
C. Robichaux, R. Wood

Groups

Definition
Properties
Examples
Functions

Outline

Introduction to Non-Commuting Graphs
G. Hinkle, C. Robichaux, R. Wood

Groups

Definition
Properties
Examples
Functions

Graph

Definition
Properties
Non-commuting
Graphs
Define
Our Research

Non-commuting Graphs Define

Our Research

Non-Commuting Graph

Definition

Introduction to Non-Commuting Graphs
G. Hinkle,
C. Robichaux, R. Wood

- First considered by Paul Erdos in 1975

Non-commuting Graphs

Examples

Example

Introduction to
Non-Commuting Graphs
G. Hinkle,
C. Robichaux, R. Wood

Groups

Definition
Properties
Examples
Functions

Graph

Definition
Properties

Non-commuting

Graphs
Define
Our Research
Summary

Figure : $\Gamma\left(M_{16}\right)$

Non-commuting Graphs

Examples

Example

Introduction to
Non-Commuting Graphs
G. Hinkle,
C. Robichaux, R. Wood

Groups

Definition
Properties
Examples
Functions
Graph
Definition
Properties
Non-commuting Graphs
Define
Our Research
Summary

Figure: $\Gamma\left(D_{12}\right)$

Non-commuting Graphs

Examples

Example

Figure : $\Gamma\left(A_{4}\right)$

Definition

Properties

Examples
Functions

Graph

Definition
Properties
Non-commuting
Graphs
Define
Our Research

Summary

Introduction to
Non-Commuting Graphs
G. Hinkle,
C. Robichaux,
R. Wood

Groups

Outline

Introduction to Non-Commuting Graphs
G. Hinkle, C. Robichaux, R. Wood

Groups

Definition
Properties
Examples
Functions

Graph

Definition
Properties
Non-commuting
Graphs
Define
Our Research
Non-commuting Graphs
Define
Our Research

Characteristics of the Graph Related to the Group

Introduction to Non-Commuting Graphs
G. Hinkle,
C. Robichaux, R. Wood

Groups

Definition
Properties

Our Research

Summary

- Our research is looking at the non-commuting graphs of non-abelian groups and their properties.
- Understanding the non-commuting graph of a group helps us understand the structure of the group.
- Presentations:
- R. Wood: Graph Genus and Other Properties
- C. Robichaux: Characteristic Polynomial
- G. Hinkle: Eulerian Non-commuting Graphs / Automorphism Groups

Definition
Properties

