
Introduction Application Second Model Next Step References

Dynamics and Bifurcations in Variable Population
Interactions

Jordan Whitener

REU 2013

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions



Introduction Application Second Model Next Step References

Model Formulation

Typical Predator-Prey Model:

dx

dt
= . . .− a

c + mx
xy

dy

dt
= . . .+

b

c + mx
xy (1)

Where x and y represent the number of prey and predators respectively,
dx
dt and dy

dt represent the growth rates of the populations, t represents
time, and a, b, c , and m are positive parameters representing ecological
factors.
For this model, the relationship between x and y is fixed.
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Model Formulation

However in nature, some interactions between two species are not
necessarily static, but rather depend on the state of the system:

Rock Lobsters vs. Whelks

Ants vs Aphids

In such cases, a fixed classification and modeling of the interaction
between x and y is inadequate.
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Generalize Model

Instead, generalize (1) to

dx

dt
= . . .+

α1(x , y)

c + mx
xy

dy

dt
= . . .+

α2(x , y)

c + mx
xy (2)

where the functions α1 and α2 can take positive and negative
values. Since these functions are not constant, the interaction
between x and y can shift from mutualistic to host-parasitic to
competitive, depending on the signs.
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Some Examples

The type of α function used affects the magnitude of benefit or
detriment the species undergo when they interact:

α(x)=a−bx
(a>0, b>0)

α(x)=ax(b−x)
(a>0, b>0)

α(x)=(ax−x 2)/(1+bx 2)

(a>0, b>0)
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First Model

dx
dt = x(r1 − k1x) + ay(b − y)xy − hx

e+x
dy
dt = y(r2 − k2y) + cx(d − x)xy

This model includes the harvesting function H(x) = hx
e+x and has

quadratic α functions.
All parameters ∈ R+, r1, r2 represent the intrinsic growth rates, k1,
k2 represent the intra-specific competition coefficients, h represents
the rate of harvesting limit, e represents the number of species x it
takes to reach half of the rate of harvesting limit, and a, b, c, d
represent changes in environmental conditions.
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Equilibrium Points

Definition

Equilibrium Point:
A point x0 ∈ Rn is an equilibrium of

ẋ = f (x)

if f (x0) = 0 ∀t.

Boundary Equilibria

Coexistence Equilibria
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Boundary Equilibria

A Boundary Equilibrium occurs along the x or y axis, when either
one or both species is extinct.
For x0 a boundary equilibrium, x0 may have the form:

(0, 0)

(x±, 0)

(0, r2k2 )

where x± and r2
k2

are the carrying capacities for the respective
species.
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Restrictions for x±

x± =
(r1 − k1e)±

√
(r1 + k1e)2 − 4k1h

2k1
.

Have restrictions on parameter values to get at least one positive,
real xk . Must have:

h ≤ (r1+k1e)2

4k1
.

If h < r1e, then only x+ > 0.

If h = r1e and r1 > k1e, then x+ = r1−k1e
k1

and x− = 0.

If r1e < h < (r1+k1e)
2

4k1

and r1 > k1e, then x± > 0.

and r1 < k1e, then x± < 0.
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Coexistence Equilibria

A coexistence equilibrium is of the form x0 = (x∗, y∗),
x∗ > 0, y∗ > 0. Remember the system is:

dx

dt
= x

[
r1 − k1x + ay(b − y)y − h

e + x

]
dy

dt
= y [r2 − k2y + cx(d − x)x ]

Thus a coexistence equilibrium (x∗, y∗) is a solution of:

r1 − k1x + ay(b − y)y − h

e + x
= 0 (3)

r2 − k2y + cx(d − x)x = 0 (4)

These are the nullclines for the system.
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Coexistence Equilibria

To find x∗, have:

ac3

k3
2

x10+(
ac3e

k3
2

− 3ac3d

k3
2

)x9+. . .+(r1e−h+
aber22

k2
2

− aer32
k3
2

) = 0

Then put x∗ values in to:

y =
1

k2
[r2 + cx2(d − x)]

Coexistence Equilibria are classified as mutualistic, host-parasitic,
or competitive, and I use two methods of classification:

Slope Method

Carrying Capacity Method
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Slope Method

Through implicit differentiation, find equations for the slopes of
the nullclines:

m1 =
k1(e + x)2 − h

ay(2b − 3y)(e + x)2

m2 =
1

k2
[cx(2d − 3x)]

To determine the type of coexistence equilibrium, evaluate the
slopes at (x∗, y∗):

mutualistic if m1 > 0 and m2 > 0

host-parasitic if m1 > 0 and m2 < 0 or m1 < 0 and m2 > 0

competitive if m1 < 0 and m2 < 0
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Conditions for Classifications

Mutualistic:

Must have x < 2d
3 .

For h ≤ k1e2, must have:

y < 2b
3
.

For h > k1e2, must have:

either x >
√

h
k1

− e and y < 2b
3

or 0 < x <
√

h
k1

− e and y > 2b
3
.
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Conditions for Classifications

Competitive:

Must have x > 2d
3 .

For h ≤ k1e2, must have:

y > 2b
3
.

For h > k1e2, must have:

either x >
√

h
k1

− e and y > 2b
3

or 0 < x <
√

h
k1

− e and y < 2b
3
.
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Conditions for Classifications

Host-Parasitic:

For x > 2d
3 :

For h ≤ k1e2, must have:

y < 2b
3
.

For h > k1e2, must have:

either x >
√

h
k1

− e and y < 2b
3

or 0 < x <
√

h
k1

− e and y > 2b
3
.

For x < 2d
3 :

For h ≤ k1e2, must have:

y > 2b
3
.

For h > k1e2, must have:

either x >
√

h
k1

− e and y > 2b
3

or 0 < x <
√

h
k1

− e and y < 2b
3
.
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Conditions for Classifications

Host-Parasitic:

For x > 2d
3 :

For h ≤ k1e2, must have:

y < 2b
3
.

For h > k1e2, must have:

either x >
√

h
k1

− e and y < 2b
3

or 0 < x <
√

h
k1

− e and y > 2b
3
.

For x < 2d
3 :

For h ≤ k1e2, must have:

y > 2b
3
.

For h > k1e2, must have:

either x >
√

h
k1

− e and y > 2b
3

or 0 < x <
√

h
k1

− e and y < 2b
3
.
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Carrying Capacity Method

Again the system is:

dx

dt
= x

[
r1 − k1x + ay(b − y)y − h

e + x

]
dy

dt
= y [r2 − k2y + cx(d − x)x ]

Find the carrying capacities:

yk =
r2
k2

xk =
(r1 − k1e)±

√
(r1 + k1e)2 − 4k1h

2k1
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Carrying Capacity Method

Compare coexistence equilibrium (x∗, y∗) to carrying capacities:

mutualistic if x∗ > xk and y∗ > yk

host-parasitic if x∗ > xk and y∗ < yk or x∗ < xk and y∗ > yk

competitive if x∗ < xk and y∗ < yk

y
k

x
k

Host−Parasitic

Competitive

Mutualistic

Host−Parasitic
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Local Stability Analysis

For either type of equilibrium, I analyze the behavior of the system
around the points.
There are two methods for analyzing the points:

Eigenvalue Analysis

Trace-Determinant Analysis

There are four types of behavior for a 2-D system:

Saddle

Node

Focus

Center
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Simple Examples

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−5 −4 −3 −2 −1 0 1 2 3
−4

−2

0

2

4

6

8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions



Introduction Application Second Model Next Step References

Linearization of System

Have non-linear system:

ẋ = f (x). (5)

For a linear system:

ẋ = Ax with x(0) = x0,

solutions are of the form

x(t) = eAtx0, t ∈ R, for eAt =
∞∑
k=0

Aktk

k!
.
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Linearization of System

To linearize system, have this definition:

Definition

The linearization of (5) is defined as

ẋ=Ax

where A=Df(x), the Jacobian of f.

Evaluate the Jacobian at the equilibrium to linearize around that
point; use eigenvalue or trace-determinant methods for behavior of
linear systems (good local approximation to non-linear system:
Hartman-Grobman Thm. and Stable Manifold Thm.).
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Jacobian of System

The general Jacobian for the system is:

J(x , y) =

[
r1 + ay2(b − y)− 2k1x − he

(e+x)2 axy(2b − 3y)

cxy(2d − 3x) r2 + cx2(d − x)− 2k2y

]
For coexistence equilibria, the Jacobian simplifies to:

J(x∗, y∗) =

[
−Bx∗ Bx∗

m1

m2k2y∗ −k2y∗

]

For B = k1(e+x∗)2−h
(e+x∗)2

and m1, m2 the slopes of the nullclines

evaluated at (x∗,y∗).
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Eigenvalue Analysis

Once I have the eigenvalues of the Jacobian, can determine the
type of equilibrium:

λ1, λ2 ∈ R, λ1 < 0 < λ2 or λ1 > 0 > λ2: Saddle point

λ1, λ2 ∈ R, λ1 ≤ λ2 < 0 or λ1 ≥ λ2 > 0: Node

λ = a±bi for a, b ∈ R: Focus

λ = ±bi for b ∈ R: Center

Note: If λ is purely imaginary, then the equilibrium is said to be
non-hyperbolic.
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Trace-Determinant Analysis

Use this method when finding an explicit expression for the
eigenvalues is difficult.
The formula for the eigenvalues can be written as:

λ = T±
√
T 2−4D
2

for A=the Jacobian of the system evaluated at the equilibrium,
T = trA, and D = detA. Thus

if D<0: Saddle Point

if D>0 and T2−4D≥0: Node
(Stable if T<0, unstable if T>0)

if D>0 and T2−4D<0: Focus
(Stable if T<0, unstable if T>0)

if D>0 and T=0: Center

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions



Introduction Application Second Model Next Step References

Conditions for Solution Behavior

For (0, 0):

h < r1e: Unstable Node.

h > r1e: Saddle Point.

Cannot be a stable node, focus, or of center-type.

For (0, r2
k2

):

h < r1e +
aer22
k2
2

(b − r2
k2

): Saddle Point.

h > r1e +
aer22
k2
2

(b − r2
k2

): Stable Node.

Cannot be an unstable node, focus, or of center-type.
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Conditions for Solution Behavior

For (x+, 0):

λ1 ≤ 0 for h ≤ (r1+k1e)
2

4k1
, but h ≤ (r1+k1e)

2

4k1
is necessary for x+ ∈ R.

Make inequality strict so as to keep λ1 hyperbolic.
Also have λ1 ∈ R for x+ ∈ R.
Thus λ1 < 0 and λ1 ∈ R, so x+ may only be a saddle point or stable
node.
For (x−, 0):

λ1 > 0 for h < (r1+k1e)
2

4k1
, but h < (r1+k1e)

2

4k1
is necessary for x− ∈ R

and for x− to exist.

(At h = (r1+k1e)
2

4k1
, x+ = x−).

Also λ1 ∈ R for x− ∈ R.
Thus x− may only be a saddle point or unstable node.
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Conditions for Solution Behavior

Special case for h = r1e.

x− = 0 and x+ = r1−k1e
k1

.

Let F = 2cd3 + 27r2 + 3
√

12cd3r2 + 81r22 .

If r1 >
k1
3

[
d + 3

√
F
2c + 3

√
2cd6

F

]
+ k1e,

then (x+, 0) is a stable node.

If r1 <
k1
3

[
d + 3

√
F
2c + 3

√
2cd6

F

]
+ k1e,

then (x+, 0) is a saddle point.

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions



Introduction Application Second Model Next Step References

Conditions for Solution Behavior

Let xB = −k1e+
√
k1h

k1
, with B, m1, and m2 the same as before.

Then for (x∗, y∗):

If (Bx + k2y)2 − 4Bk2(1− m2
m1

)xy ≥ 0

and e >
√

h
k1

and m2

m1
< 1: Stable Node.

and e <
√

h
k1

, x > xB , and m2

m1
< 1: Stable Node.

and e <
√

h
k1

, x < xB , m2

m1
> 1, and Bx + k2y > 0: Stable

Node.

e <
√

h
k1

, x < xB , Bx + k2y < 0, and m2

m1
> 1: Unstable Node.
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Conditions for Solution Behavior

For (x∗, y∗):

If e >
√

h
k1

and m2
m1

> 1: Saddle Point.

If e <
√

h
k1

, x > xB , and m2
m1

> 1: Saddle Point.

If e <
√

h
k1

, x < xB , Bx + k2y 6= 0, and m2
m1

< 1: Saddle Point.

If (Bx + k2y)2 < 4Bk2(1− m2
m1

)xy

and Bx + k2y > 0: Stable Focus.

and Bx + k2y < 0: Unstable Focus.

and h > k1(e + x)2, m2

m1
> 1, and Bx + k2y = 0: Center.
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Examples

Parameter Values:
a=0.9; b=0.8; c=0.9; d=0.8; e=0.6; h=0.2;
k1=0.6; k2=0.6; r1=0.8; r2=0.8;
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Examples

Parameter Values:
a=0.6; b= 0.9; c=0.8; d=1.2; e=0.7; h=0.2;
k1=0.3; k2=0.5; r1=0.9; r2=0.7;
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Examples

Parameter Values:
a=1; b=1.3; c=0.4; d=1.5; e=0.5; h=0.72;
k1=0.1; k2=0.5; r1=0.6; r2=0.4;
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Bifurcations

The system depends on 10 parameters, so it is of the form:

ẋ = f (x, µ) (6)

with µ ∈ R10.

The solutions and behavior of the system change with variations in
the parameters, but occasionally drastic changes (bifurcations)
take place for an arbitrarily small change in one or more
parameters.

If there exists a µ0 for which (6) is not structurally stable, then µ0
is called a bifurcation value.
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Bifurcations

Types of bifurcations I looked for:

Transcritical: Exchange of stability.

Saddle-Node(Fold): Number of equilibria goes from two to
one to none or vice versa, stability properties change at
bifurcation value.

Pitchfork: One equilibrium bifurcates into three equilibria,
initial equilibrium changes stability and two new equilibria
keep stability quality.

Hopf: An equilibrium bifurcates into a periodic orbit.

Cusp: A two-parameter bifurcation, occurs where saddle-node
bifurcations form.
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Saddle-Node Bifurcation

Bifurcation Diagram:
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Pitchfork Bifurcation

Bifurcation Diagram:
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Finding Bifurcations

Sotomayor’s Theorem

Assume have an n-dimensional system ẋ = f (x, µ) and have
f (x0, µ0) = 0, J(x0, µ0) = A has a simple eigenvalue λ = 0, ν is an
eigenvector of A corresponding to λ = 0, ω is a left eigenvector of
A corresponding to λ = 0, and A has k eigenvalues with negative
real part and n-k-1 eigenvalues with positive real part.
If ωT fµ(x0, µ0) 6= 0 and ωT [D2f (x0, µ0)(ν, ν)] 6= 0, then there is a
saddle-node bifurcation at x0 when µ = µ0.
Have similar sufficient conditions to prove existence of
transcritical and pitchfork bifurcations.
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Finding Bifurcations

To have a Hopf bifurcation, must meet conditions for center
behavior (purely imaginary eigenvalues, i.e. detA > 0 and trA = 0)
and have Liapunov number σ 6= 0.

Initially use XPPAUT to see if any bifurcations exist.

Example Hopf Bifurcation Diagram:
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Bifurcations in Model

Parameter Values:
a=0.3; b=1.3; c=0.4; d=1.5; e=0.6; h=varied;
k1=0.1; k2=0.4; r1=0.5; r2=0.4;

Results from XPPAUT with h as free parameter:
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Bifurcations in Model

XPPAUT output:

Used theorems to prove existence of transcritical, saddle-node,
and Hopf bifurcations.
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Bifurcations in Model

Parameter Values:
a=0.3; b=1.3; c=0.4; d=1.5; e=0.6; h=0.8024750;
k1=0.1; k2=0.4; r1=0.5; r2=0.4;
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1

1.5
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Two-Parameter Bifurcations in Model

Parameter Values:
a=varied; h=varied;
b=1.3; c=0.4; d=1.5; e=0.6;
k1=0.1; k2=0.4; r1=0.5; r2=0.4;

Parameter Values:
k1=varied; h=varied;
a=0.3; b=1.3; c=0.4; d=1.5;
e=0.6; k2=0.4; r1=0.5; r2=0.4;
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Boundedness of Coexistence Solutions

First some necessary tools:

Differential Inequality

If ω(t, u) is a scalar function of the scalars t, u in some open
connected set Ω, we say a function v(t), a ≤ t ≤ b, is a solution
of the differential inequality

v̇(t) ≤ ω(t, v(t)) (7)

on [a, b) if v(t) is continuous on [a, b) and has a derivative on
[a, b) that satisfies (7).
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Boundedness of Coexistence Solutions

Theorem (1)

Let ω(t, u) be continuous on an open connected set Ω @ R2 and
be such that the initial value problem for the scalar equation

u̇ = ω(t, u) (8)

has a unique solution.
If u(t) is a solution of (8) on a ≤ t ≤ b and v(t) is a solution of
(7) on a ≤ t < b with v(a) ≤ u(a), then v(t) ≤ u(t) for
a ≤ t ≤ b.
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Boundedness of Coexistence Solutions

Every solution (x , y) starting in R2
+ which satisfies either

x ≥ d +
√

d2 + b2

2
or y ≥ b +

√
b2 + d2

2
(9)

is bounded.

Proof
Let w = x + a

c y . Then

ẇ = x(r1 − k1x) + ay(b − y)xy − H(x) +
a

c
[y(r2 − k2y) + cx(d − x)xy ],

and for each k > 0 we have

ẇ +kw = x(r1+k−k1)+axy [y(b−y)+x(d−x)]+
a

c
y [r2+k−k2y ]−H(x).

Note: both x(r1 + k − k1) and a
c y [r2 + k − k2y ] form downward opening

parabolas.

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions



Introduction Application Second Model Next Step References

Boundedness of Coexistence Solutions

Replacing the parabolas with their corresponding maximum values, get

ẇ + kw ≤ (r1 + k)2

4k1
+ axy [y(b − y) + x(d − x)] +

a

c
[
(r2 + k)2

4k2
]− H(x).

Note that H(x) = hx
e+x , so limx→∞+ H(x) = h.

Thus 0 ≤ H(x) ≤ h and h > 0.

Set restriction that y(b − y) + x(d − x) < 0, which gives rise to (9).

Thus ∃B > 0 such that ẇ + kw ≤ B, or ẇ ≤ B − kw .

Let u̇ = B − ku with u(0) = w(0). Then u̇ + ku = B, which can be
solved explicitly by using an integrating factor. Get

u(t) =
B

k
(1− e−kt) + u0e−kt (10)

where u0 = w0 = x0 + a
c y0.
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Boundedness of Coexistence Solutions

Let w(t) be a solution of ẇ ≤ B − kw .

Then by Theorem 1, w(t) ≤ u(t) for 0 ≤ t <∞.

Thus 0 < w(t) ≤ B
k (1− e−kt) + w0e−kt , and

limt→∞
B
k (1− e−kt) + w0e−kt = B

k .
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Conditions for no Periodic Solutions

Can establish conditions under which periodic solutions are not possible,
using what is called Dulac’s Criterion:

Dulac’s Criterion

Let D be a simply connected open set of R2. If there exists a
real-valued function φ(x , y) ∈ C 1 in D such that

∂

∂x
[φ(x , y)F1(x , y)] +

∂

∂y
[φ(x , y)F2(x , y)]

is not identically zero and does not change sign in D, then the
dynamical system

ẋ = F1(x , y)

ẏ = F2(x , y)

has no closed periodic orbits contained in D.
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Conditions for no Periodic Solutions

Let D be R2
+ and use φ(x , y) = 1

xy .

Then get

∂

∂x
[φ(x , y)F1(x , y)]+

∂

∂y
[φ(x , y)F2(x , y)] =

hx − (k1x + k2y)(e + x)2

xy(e + x)2
.

Which can be written as

−k1x3 − 2ek1x2 + (h − e2k1)x − k2(e + x)2y

xy(e + x)2
.
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Conditions for no Periodic Solutions

For e ≥
√

h
k1

, all coefficients of

−k1x3 − 2ek1x2 + (h − e2k1)x − k2(e + x)2y

xy(e + x)2

are negative ∀x , y ∈ R2
+.

Then by Dulac’s Criterion, when e ≥
√

h
k1

the system has no closed

periodic orbits contained in R2
+.

Corollary: For h = 0 (no harvesting), simply have e ≥ 0, which is
always true. Thus without harvesting, no closed periodic solutions are
contained in R2

+.

So the harvesting function allows for periodic solutions,

given that e <
√

h
k1

.
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Impact of Harvesting

System without harvesting:

dx
dt = x(r1 − k1x) + ay(b − y)xy
dy
dt = y(r2 − k2y) + cx(d − x)xy

Boundary equilibria are: (0, 0), (0, r2k2 ), and ( r1
k1
, 0).

versus (0, 0), (0, r2k2 ), and (x±, 0) with harvesting.
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Impact of Harvesting

Without harvesting:

(0, 0) is always an unstable node.

(0, r2
k2

) is always a saddle or stable node.

( r1
k1
, 0) is always a saddle or stable node.

(x∗, y∗) is always either a saddle, stable node, or stable focus.

With harvesting:

(0, 0) is always a saddle or unstable node.

(0, r2
k2

) is always a saddle or stable node, though different

conditions are necessary for a saddle.

(x±, 0) is always either a saddle, stable node, or unstable node.

(x∗, y∗) can be a saddle, stable node, unstable node,

stable focus, unstable focus, or of center-type.
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Impact of Harvesting

For these parameter values,
a = 1.09, b = 1.28, c = 0.4, d = 0.21, r1 = 0.53, r2 = 0.57,
k1 = 0.76, k2 = 0.91, h = 0, e = 0,
have one coexistence equilibrium, (0.89072, 0.38898),
which is a stable focus.
By the slope and carrying-capacity classifications, (0.89072, 0.38898)
is a host-parasitic equilibrium.

With h = 1.29 and e = 1.63, have one coexistence equilibrium,
(0.062363, 0.62663), which is a stable node.
By the slope classification, (0.062363, 0.62663) is a mutualisitc
equilibrium (xk is complex).
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Impact of Harvesting

For these parameter values,
a = 1.09, b = 0.63, c = 0.76, d = 1.6, r1 = 1.68, r2 = 1.36,
k1 = 0.83, k2 = 1.29, h = 1.35, e = 1.2, have
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Second Model

Instead of using parabolic α function, use a rational α function:

dx
dt = x(r1 − k1x) + k1

(by−y2

1+ay2

)
xy − hx

e+x
dy
dt = y(r2 − k2y) + k2

(
dx−x2
1+cx2

)
xy

Compare to Dr. Hernandez’s model:

dN1
dt = N1(r1 − ( r1

k1
)N1) + r1

k1

(b1N2−N2
2

1+c1N2
2

)
N1N2

dN2
dt = N2(r2 − ( r2

k2
)N2) + r2

k2

(b2N1−N2
1

1+c2N2
1

)
N1N2
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Graphical Analysis of Bifurcations

For Dr. Hernandez’s model:
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Note: Dr. Hernandez only had saddle-node bifurcations in her model.
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Graphical Analysis of Bifurcations

For Second Model:
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For parameters:

a = 1, b = 1.3, c = 0.4, d = 1.5, e = 0.5, h = varied, r1 = 0.6, r2 = 0.4,

k1 = 0.337, k2 = 0.5. For h = 1.0515, had a hopf bifurcation.
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Periodic Orbits in Second Model

For parameters:

a = 0.2, b = 1.3, c = 0.2, d = 1.5, e = 0.6, h = 0.7816406,

r1 = 0.5, r2 = 0.4, k1 = 0.1, k2 = 0.4.
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Next Step

Mathematical analysis of second model(rational α function).

Add a refuge component to one or both species.

Make stage-structured populations.

Use more than two species, with either static or variable
interactions.

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions



Introduction Application Second Model Next Step References

References

[1] Hale, J. (1980). Ordinary Differential Equations. Wiley.

[2] Hernandez, M., & Barradas, I. (2003). Variation in the
outcome of population interactions: bifurcations and catastrophes.
Journal of Mathematical Biology, 46, 571-594.

[3] Hernandez, M. (2009). Disentangling nature, strength and
stability issues in the characterization of population interactions.
Journal of Theoretical Biology, 261, 107-119.

[4] Rebaza, J. (2012). A First Course in Applied Mathematics.
Wiley.

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions



Introduction Application Second Model Next Step References

References

[5] Rebaza, J. (2012). Dynamics of prey threshold harvesting and
refuge. Journal of Computational and Applied Mathematics, 236,
1743-1752.

[6] Rebaza, J. (2013). Bifurcations and periodic orbits in variable
population interactions. Communications on Pure and Applied
Analysis, 12 (6), 2997-3012.

[7] Zhang, B., Zhang, Z., Zhenqing, L., & Tao, L. (2007). Stability
analysis of a two-species model with transitions between population
interactions. Journal of Theoretical Biology, 248, 145-153.

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions


	Introduction
	Application
	Equilibria
	Classification of Coexistence Equilibria
	Local Stability Analysis
	Jacobian
	Bifurcations
	Boundedness
	Further Stability Analysis
	Impact of Harvesting

	Second Model
	Next Step
	References

