Dynamics and Bifurcations in Variable Population Interactions

Jordan Whitener

REU 2013

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions

・ロン ・四マ ・ヨマ ・ヨマ

Model Formulation

Typical Predator-Prey Model:

$$\frac{dx}{dt} = \dots - \frac{a}{c + mx} xy$$
$$\frac{dy}{dt} = \dots + \frac{b}{c + mx} xy$$
(1)

Where x and y represent the number of prey and predators respectively, $\frac{dx}{dt}$ and $\frac{dy}{dt}$ represent the growth rates of the populations, t represents time, and *a*, *b*, *c*, and *m* are positive parameters representing ecological factors.

For this model, the relationship between x and y is fixed.

イロト 不得 とくき とくき とうき

Model Formulation

However in nature, some interactions between two species are not necessarily static, but rather depend on the state of the system:

- Rock Lobsters vs. Whelks
- Ants vs Aphids

In such cases, a fixed classification and modeling of the interaction between ${\sf x}$ and ${\sf y}$ is inadequate.

Generalize Model

Instead, generalize (1) to

$$\frac{dx}{dt} = \dots + \frac{\alpha_1(x, y)}{c + mx} xy$$
$$\frac{dy}{dt} = \dots + \frac{\alpha_2(x, y)}{c + mx} xy$$
(2)

where the functions α_1 and α_2 can take positive and negative values. Since these functions are not constant, the interaction between x and y can shift from mutualistic to host-parasitic to competitive, depending on the signs.

Some Examples

The type of α function used affects the magnitude of benefit or detriment the species undergo when they interact:

First Model

Application

Introduction

$$\frac{dx}{dt} = x(r_1 - k_1 x) + ay(b - y)xy - \frac{hx}{e + x} \frac{dy}{dt} = y(r_2 - k_2 y) + cx(d - x)xy$$

This model includes the harvesting function $H(x) = \frac{hx}{e+x}$ and has quadratic α functions.

All parameters $\in \mathbb{R}^+$, r_1 , r_2 represent the intrinsic growth rates, k_1 , k_2 represent the intra-specific competition coefficients, h represents the rate of harvesting limit, e represents the number of species x it takes to reach half of the rate of harvesting limit, and a, b, c, d represent changes in environmental conditions.

Equilibrium Points

Definition

Equilibrium Point:

A point $\mathbf{x}_0 \in R^n$ is an equilibrium of

$$\dot{\mathbf{x}} = f(\mathbf{x})$$

if $f(\mathbf{x}_0) = 0 \quad \forall t$.

- Boundary Equilibria
- Coexistence Equilibria

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Boundary Equilibria

A Boundary Equilibrium occurs along the ${\sf x}$ or ${\sf y}$ axis, when either one or both species is extinct.

For x_0 a boundary equilibrium, x_0 may have the form:

- (0,0)
- (x_±, 0)
- $(0, \frac{r_2}{k_2})$

where x_{\pm} and $\frac{r_2}{k_2}$ are the carrying capacities for the respective species.

Restrictions for x_{\pm}

Application

Introduction

$$x_{\pm} = rac{(r_1 - k_1 e) \pm \sqrt{(r_1 + k_1 e)^2 - 4k_1 h}}{2k_1}.$$

Have restrictions on parameter values to get at least one positive, real x_k . Must have:

•
$$h \leq \frac{(r_1+k_1e)^2}{4k_1}$$
.
• If $h < r_1e$, then only $x_+ > 0$.
• If $h = r_1e$ and $r_1 > k_1e$, then $x_+ = \frac{r_1 - k_1e}{k_1}$ and $x_- = 0$.
• If $r_1e < h < \frac{(r_1+k_1e)^2}{4k_1}$
• and $r_1 > k_1e$, then $x_{\pm} > 0$.
• and $r_1 < k_1e$, then $x_{\pm} < 0$.

(日) (同) (E) (E) (E)

Coexistence Equilibria

Application

.

Introduction

A coexistence equilibrium is of the form $\mathbf{x_0} = (x^*, y^*)$, $x^* > 0$, $y^* > 0$. Remember the system is:

$$\frac{dx}{dt} = x \Big[r_1 - k_1 x + a y (b - y) y - \frac{h}{e + x} \Big]$$

$$\frac{dy}{dt} = y[r_2 - k_2y + cx(d-x)x]$$

Thus a coexistence equilibrium (x^*, y^*) is a solution of:

$$r_1 - k_1 x + a y (b - y) y - \frac{h}{e + x} = 0$$
 (3)

$$r_2 - k_2 y + c x (d - x) x = 0$$
 (4)

These are the nullclines for the system.

Coexistence Equilibria

To find x^* , have:

$$\frac{ac^3}{k_2^3}x^{10} + (\frac{ac^3e}{k_2^3} - \frac{3ac^3d}{k_2^3})x^9 + \ldots + (r_1e - h + \frac{aber_2^2}{k_2^2} - \frac{aer_2^3}{k_2^3}) = 0$$

Then put x^* values in to:

$$y = \frac{1}{k_2}[r_2 + cx^2(d - x)]$$

Coexistence Equilibria are classified as mutualistic, host-parasitic, or competitive, and I use two methods of classification:

(日) (同) (E) (E) (E)

Coexistence Equilibria

Application

Introduction

To find x^* , have:

$$\frac{ac^3}{k_2^3}x^{10} + (\frac{ac^3e}{k_2^3} - \frac{3ac^3d}{k_2^3})x^9 + \ldots + (r_1e - h + \frac{aber_2^2}{k_2^2} - \frac{aer_2^3}{k_2^3}) = 0$$

Then put x^* values in to:

$$y = \frac{1}{k_2}[r_2 + cx^2(d - x)]$$

Coexistence Equilibria are classified as mutualistic, host-parasitic, or competitive, and I use two methods of classification:

• Slope Method

(日) (同) (E) (E) (E)

Coexistence Equilibria

Application

Introduction

To find x^* , have:

$$\frac{ac^3}{k_2^3}x^{10} + \left(\frac{ac^3e}{k_2^3} - \frac{3ac^3d}{k_2^3}\right)x^9 + \ldots + \left(r_1e - h + \frac{aber_2^2}{k_2^2} - \frac{aer_2^3}{k_2^3}\right) = 0$$

Then put x^* values in to:

$$y = \frac{1}{k_2}[r_2 + cx^2(d - x)]$$

Coexistence Equilibria are classified as mutualistic, host-parasitic, or competitive, and I use two methods of classification:

- Slope Method
- Carrying Capacity Method

Slope Method

Application

Introduction

Through implicit differentiation, find equations for the slopes of the nullclines:

$$m_1 = \frac{k_1(e+x)^2 - h}{ay(2b - 3y)(e+x)^2}$$
$$m_2 = \frac{1}{k_2}[cx(2d - 3x)]$$

To determine the type of coexistence equilibrium, evaluate the slopes at (x^*, y^*) :

- mutualistic if $m_1 > 0$ and $m_2 > 0$
- host-parasitic if $m_1 > 0$ and $m_2 < 0$ or $m_1 < 0$ and $m_2 > 0$
- competitive if $m_1 < 0$ and $m_2 < 0$

イロト イボト イヨト イヨト 二日

Conditions for Classifications

Mutualistic:

Application

• Must have $x < \frac{2d}{3}$. • For $h \le k_1 e^2$, must have: • $y < \frac{2b}{3}$. • For $h > k_1 e^2$, must have: • either $x > \sqrt{\frac{h}{k_1}} - e$ and $y < \frac{2b}{3}$. • or $0 < x < \sqrt{\frac{h}{k_1}} - e$ and $y > \frac{2b}{3}$.

(日) (同) (E) (E) (E)

Conditions for Classifications

Competitive:

Application

• Must have $x > \frac{2d}{3}$. • For $h \le k_1 e^2$, must have: • $y > \frac{2b}{3}$. • For $h > k_1 e^2$, must have: • either $x > \sqrt{\frac{h}{k_1}} - e$ and $y > \frac{2b}{3}$. • or $0 < x < \sqrt{\frac{h}{k_1}} - e$ and $y < \frac{2b}{3}$.

(日) (同) (E) (E) (E)

Conditions for Classifications

Host-Parasitic:

• either
$$x > \sqrt{\frac{h}{k_1}} - e$$
 and $y < \frac{2b}{3}$
• or $0 < x < \sqrt{\frac{h}{k_1}} - e$ and $y > \frac{2b}{3}$

イロン イロン イヨン イヨン 三日

Application

Conditions for Classifications

Host-Parasitic:

Introduction

• For
$$x > \frac{2d}{3}$$
:
• For $h \le k_1 e^2$, must have:
• $y < \frac{2b}{3}$.
• For $h > k_1 e^2$, must have:
• either $x > \sqrt{\frac{h}{k_1}} - e$ and $y < \frac{2b}{3}$
• or $0 < x < \sqrt{\frac{h}{k_1}} - e$ and $y > \frac{2b}{3}$.
• For $x < \frac{2d}{3}$:
• For $h \le k_1 e^2$, must have:
• $y > \frac{2b}{3}$.
• For $h > k_1 e^2$, must have:
• $either x > \sqrt{\frac{h}{k_1}} - e$ and $y > \frac{2b}{3}$
• or $0 < x < \sqrt{\frac{h}{k_1}} - e$ and $y > \frac{2b}{3}$.

<ロ> (四) (四) (三) (三) (三)

Carrying Capacity Method

Again the system is:

Application

Introduction

$$\frac{dx}{dt} = x \left[r_1 - k_1 x + a y (b - y) y - \frac{h}{e + x} \right]$$
$$\frac{dy}{dt} = y \left[r_2 - k_2 y + c x (d - x) x \right]$$

Find the carrying capacities:

$$y_k = \frac{r_2}{k_2}$$
$$x_k = \frac{(r_1 - k_1 e) \pm \sqrt{(r_1 + k_1 e)^2 - 4k_1 h}}{2k_1}$$

・ロン ・回 と ・ 回 と ・ 回 と

Carrying Capacity Method

Application

Introduction

Compare coexistence equilibrium (x^*, y^*) to carrying capacities:

- mutualistic if $x^* > x_k$ and $y^* > y_k$
- host-parasitic if $x^* > x_k$ and $y^* < y_k$ or $x^* < x_k$ and $y^* > y_k$
- competitive if $x^* < x_k$ and $y^* < y_k$

Local Stability Analysis

Application

Introduction

For either type of equilibrium, I analyze the behavior of the system around the points.

There are two methods for analyzing the points:

- Eigenvalue Analysis
- Trace-Determinant Analysis

There are four types of behavior for a 2-D system:

- Saddle
- Node
- Focus
- Center

소리가 소문가 소문가 소문가

Second Model Next Step References

Simple Examples

<ロ> (四) (四) (三) (三) (三)

Linearization of System

Application

Introduction

Have non-linear system:

$$\dot{\mathbf{x}} = f(\mathbf{x}).$$
 (5)

For a linear system:

$$\dot{\mathbf{x}} = A\mathbf{x}$$
 with $\mathbf{x}(0) = \mathbf{x}_0$,

solutions are of the form

$$\mathbf{x}(t) = e^{At}\mathbf{x_0}, \quad t \in \mathbb{R}, \quad \text{for} \quad e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}.$$

・ロン ・回と ・ヨン ・ヨン

æ

Linearization of System

Application

To linearize system, have this definition:

Definition

Introduction

The linearization of (5) is defined as

 $\dot{\mathbf{x}} = A\mathbf{x}$

where $A=Df(\mathbf{x})$, the Jacobian of f.

Evaluate the Jacobian at the equilibrium to linearize around that point; use eigenvalue or trace-determinant methods for behavior of linear systems (good local approximation to non-linear system: **Hartman-Grobman Thm**. and **Stable Manifold Thm**.).

Jacobian of System

Application

Introduction

The general Jacobian for the system is:

$$\mathbf{J}(x,y) = \begin{bmatrix} r_1 + ay^2(b-y) - 2k_1x - \frac{he}{(e+x)^2} & axy(2b-3y) \\ cxy(2d-3x) & r_2 + cx^2(d-x) - 2k_2y \end{bmatrix}$$

For coexistence equilibria, the Jacobian simplifies to:

$$\mathbf{J}(x^*, y^*) = \left[\begin{array}{cc} -Bx^* & \frac{Bx^*}{m_1} \\ m_2k_2y^* & -k_2y^* \end{array} \right]$$

For $B = \frac{k_1(e+x^*)^2 - h}{(e+x^*)^2}$ and m_1 , m_2 the slopes of the nullclines evaluated at (x^*, y^*) .

(日) (四) (王) (王) (王)

Eigenvalue Analysis

Once I have the eigenvalues of the Jacobian, can determine the type of equilibrium:

- λ_1 , $\lambda_2 \in \mathbb{R}$, $\lambda_1 < 0 < \lambda_2$ or $\lambda_1 > 0 > \lambda_2$: Saddle point
- λ_1 , $\lambda_2 \in \mathbb{R}$, $\lambda_1 \leq \lambda_2 < 0$ or $\lambda_1 \geq \lambda_2 > 0$: Node
- $\lambda = a \pm bi$ for a, $b \in \mathbb{R}$: Focus
- $\lambda = \pm bi$ for $b \in \mathbb{R}$: Center

Note: If λ is purely imaginary, then the equilibrium is said to be non-hyperbolic.

Trace-Determinant Analysis

Application

Introduction

Use this method when finding an explicit expression for the eigenvalues is difficult.

The formula for the eigenvalues can be written as:

$$\lambda = \frac{T \pm \sqrt{T^2 - 4D}}{2}$$

for A=the Jacobian of the system evaluated at the equilibrium, T = trA, and D = detA. Thus

- if D<0: Saddle Point
- if D>0 and T²−4D≥0: Node (Stable if T<0, unstable if T>0)
- if D>0 and T²-4D<0: Focus (Stable if T<0, unstable if T>0)
- if D>0 and T=0: Center

Conditions for Solution Behavior

For (0,0):

- $h < r_1 e$: Unstable Node.
- $h > r_1 e$: Saddle Point.
- Cannot be a stable node, focus, or of center-type.

For $(0, \frac{r_2}{k_2})$:

•
$$h < r_1 e + \frac{aer_2^2}{k_2^2}(b - \frac{r_2}{k_2})$$
: Saddle Point.

- $h > r_1 e + \frac{aer_2^2}{k_2^2}(b \frac{r_2}{k_2})$: Stable Node.
- Cannot be an unstable node, focus, or of center-type.

Conditions for Solution Behavior

For $(\mathbf{x}_+, \mathbf{0})$: $\lambda_1 \leq 0$ for $h \leq \frac{(r_1+k_1e)^2}{4k_1}$, but $h \leq \frac{(r_1+k_1e)^2}{4k_1}$ is necessary for $x_+ \in \mathbb{R}$. Make inequality strict so as to keep λ_1 hyperbolic. Also have $\lambda_1 \in \mathbb{R}$ for $x_+ \in \mathbb{R}$. Thus $\lambda_1 < 0$ and $\lambda_1 \in \mathbb{R}$, so x_+ may only be a saddle point or stable node. For $(\mathbf{x}_-, \mathbf{0})$: $\lambda_1 > 0$ for $h < \frac{(r_1+k_1e)^2}{4k_1}$, but $h < \frac{(r_1+k_1e)^2}{4k_1}$ is necessary for $x_- \in \mathbb{R}$ and for x_- to exist.

(At $h = \frac{(r_1+k_1e)^2}{4k_1}$, $x_+ = x_-$). Also $\lambda_1 \in \mathbb{R}$ for $x_- \in \mathbb{R}$. Thus x_- may only be a saddle point or unstable node.

Conditions for Solution Behavior

Special case for
$$h = r_1 e$$
.
 $x_- = 0$ and $x_+ = \frac{r_1 - k_1 e}{k_1}$.
Let $F = 2cd^3 + 27r_2 + 3\sqrt{12cd^3r_2 + 81r_2^2}$.
• If $r_1 > \frac{k_1}{3} \left[d + \sqrt[3]{\frac{F}{2c}} + \sqrt[3]{\frac{2cd^6}{F}} \right] + k_1 e$,
then $(x_+, 0)$ is a stable node.
• If $r_1 < \frac{k_1}{3} \left[d + \sqrt[3]{\frac{F}{2c}} + \sqrt[3]{\frac{2cd^6}{F}} \right] + k_1 e$,
then $(x_+, 0)$ is a saddle point.

<ロ> (四) (四) (三) (三) (三)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Introduction Application

Conditions for Solution Behavior

Let $x_B = \frac{-k_1 e + \sqrt{k_1 h}}{k_1}$, with B, m_1 , and m_2 the same as before. **Then for** $(\mathbf{x}^*, \mathbf{y}^*)$:

• If
$$(Bx + k_2y)^2 - 4Bk_2(1 - \frac{m_2}{m_1})xy \ge 0$$

• and
$$e > \sqrt{rac{h}{k_1}}$$
 and $rac{m_2}{m_1} < 1$: Stable Node.

• and
$$e < \sqrt{\frac{h}{k_1}}$$
, $x > x_B$, and $\frac{m_2}{m_1} < 1$: Stable Node.

• and $e < \sqrt{\frac{h}{k_1}}$, $x < x_B$, $\frac{m_2}{m_1} > 1$, and $Bx + k_2y > 0$: Stable Node.

•
$$e < \sqrt{rac{h}{k_1}}$$
, $x < x_B$, $Bx + k_2y < 0$, and $rac{m_2}{m_1} > 1$: Unstable Node.

Conditions for Solution Behavior

For
$$(\mathbf{x}^*, \mathbf{y}^*)$$
:
• If $e > \sqrt{\frac{h}{k_1}}$ and $\frac{m_2}{m_1} > 1$: Saddle Point.
• If $e < \sqrt{\frac{h}{k_1}}$, $x > x_B$, and $\frac{m_2}{m_1} > 1$: Saddle Point.
• If $e < \sqrt{\frac{h}{k_1}}$, $x < x_B$, $Bx + k_2y \neq 0$, and $\frac{m_2}{m_1} < 1$: Saddle Point.
• If $(Bx + k_2y)^2 < 4Bk_2(1 - \frac{m_2}{m_1})xy$
• and $Bx + k_2y > 0$: Stable Focus.
• and $Bx + k_2y < 0$: Unstable Focus.

• and $h>k_1(e+x)^2$, $\frac{m_2}{m_1}>1$, and $Bx+k_2y=0$: Center.

イロト イロト イヨト イヨト 二日

Examples

Parameter Values: a=0.9; b=0.8; c=0.9; d=0.8; e=0.6; h=0.2; k_1=0.6; k_2=0.6; r_1=0.8; r_2=0.8;

< ロ > < 回 > < 回 > < 回 > < 回 > <

Examples

Parameter Values: a=0.6; b= 0.9; c=0.8; d=1.2; e=0.7; h=0.2; k_1=0.3; k_2=0.5; r_1=0.9; r_2=0.7;

イロン イヨン イヨン イヨン

æ

Examples

Parameter Values:
a=1; b=1.3; c=0.4; d=1.5; e=0.5; h=0.72;
$$k_1$$
=0.1; k_2 =0.5; r_1 =0.6; r_2 =0.4;

<ロ> (四) (四) (三) (三) (三)

Bifurcations

The system depends on 10 parameters, so it is of the form:

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mu) \tag{6}$$

with $\mu \in \mathbb{R}^{10}$.

The solutions and behavior of the system change with variations in the parameters, but occasionally drastic changes (**bifurcations**) take place for an arbitrarily small change in one or more parameters.

If there exists a μ_0 for which (6) is not structurally stable, then μ_0 is called a **bifurcation value**.

Bifurcations

Types of bifurcations I looked for:

- <u>Transcritical</u>: Exchange of stability.
- <u>Saddle-Node(Fold)</u>: Number of equilibria goes from two to one to none or vice versa, stability properties change at bifurcation value.
- <u>Pitchfork</u>: One equilibrium bifurcates into three equilibria, initial equilibrium changes stability and two new equilibria keep stability quality.
- Hopf: An equilibrium bifurcates into a periodic orbit.
- Cusp: A two-parameter bifurcation, occurs where saddle-node bifurcations form.

Saddle-Node Bifurcation

Application

Introduction

Bifurcation Diagram:

Jordan Whitener

Dynamics and Bifurcations in Variable Population Interactions

Pitchfork Bifurcation

Bifurcation Diagram:

Jordan Whitener

Dynamics and Bifurcations in Variable Population Interactions

Finding Bifurcations

Sotomayor's Theorem

Assume have an n-dimensional system $\dot{\mathbf{x}} = f(\mathbf{x}, \mu)$ and have $f(\mathbf{x}_0, \mu_0) = 0$, $J(\mathbf{x}_0, \mu_0) = A$ has a simple eigenvalue $\lambda = 0$, ν is an eigenvector of A corresponding to $\lambda = 0$, ω is a left eigenvector of A corresponding to $\lambda = 0$, and A has k eigenvalues with negative real part and n-k-1 eigenvalues with positive real part. If $\omega^T f_{\mu}(\mathbf{x}_0, \mu_0) \neq 0$ and $\omega^T [D^2 f(\mathbf{x}_0, \mu_0)(\nu, \nu)] \neq 0$, then there is a saddle-node bifurcation at \mathbf{x}_0 when $\mu = \mu_0$. Have similar sufficient conditions to prove existence of transcritical and pitchfork bifurcations.

tion Application

Finding Bifurcations

To have a Hopf bifurcation, must meet conditions for center behavior (purely imaginary eigenvalues, i.e. detA > 0 and trA = 0) and have Liapunov number $\sigma \neq 0$.

Initially use XPPAUT to see if any bifurcations exist.

Example Hopf Bifurcation Diagram:

- (目) - (日) - (日)

Bifurcations in Model

Parameter Values: a=0.3; b=1.3; c=0.4; d=1.5; e=0.6; h=varied; $k_1=0.1$; $k_2=0.4$; $r_1=0.5$; $r_2=0.4$; Results from XPPAUT with h as free parameter:

イロト イヨト イヨト イヨト

Bifurcations in Model

XPPAUT output:

BR 1 1111	PT TY 1 EP 11 LP 12 BP 16 BP 19 EP	LAB 2 3 4 5	PAR(1) 3.009000E-01 7.840000E-01 7.685116E-01 2.999869E-01 -2.000001E-01	L2-NORM 4.400000E+00 2.200000E+00 1.806442E+00 2.222243E-05 2.208811E-27	U(1) 4.400000E+00 2.200000E+00 1.806442E+00 -2.222243E-05 -2.208811E-27	U<2> 9.881313-324 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	
BR 2222222	PT TY 7 HB 11 LP 15 LP 18 LP 21 BP 26 EP	LAB 6 7 8 9 10 11	PAR(1) 7.917271E-01 9.559545E-01 4.225300E-01 5.207979E-01 3.539988E-01 -1.138562E-03	L2-NORM 1.772165E+00 1.773096E+00 1.786045E+00 1.350943E+00 1.000000E+00 1.905265E+00	U(1) 1.762547E+00 1.574433E+00 9.713761E-01 5.043540E-01 -1.844286E-06 -6.160023E-01	U(2) 1.843790E-01 8.154938E-01 1.498794E+00 1.253265E+00 1.000000E+00 1.802936E+00	
BR	PT TY	LAB	PAR(1)	L2-NORM	U(1)	U(2)	
2	17 EP	12	2.284388E+00	2.196034E+00	1.988538E+00	-9.318173E-01	
BR	PT IY	LAB	PAR(1)	L2-NORM	U(1)	U<2>	
3	10 EP	13	2.271861E+00	1.064440E-53	-1.064440E-53	0.000000E+00	
BR	PT TY	LAB	PAR(1)	L2-NORM	U(1)	U<2>	
3	7 EP	14	-1.918603E-01	4.129194E-31	-4.129194E-31	0.000000E+00	
BR	PT TY	LAB	PAR(1)	L2-NORM	U(1)	U(2)	
4	10 EP	15	2.078648E+00	1.000000E+00	1.747150E-52	1.000000E+00	
BR	PT TY	LAB	PAR(1)	L2-NORM	U(1)	U(2)	
4	7 EP	16	-1.864762E-02	1.000000E+00	-2.571394E-38	1.000000E+00	
Beeeeeeee	PT TY 9 LP 11 LP 19 LP 31 LP 35 LP 37 LP 40 LP 42 LP	LAB 17 18 19 20 21 22 23 23	P0R(1) 8.024750E-01 8.010738E-01 8.015567E-01 8.012950E-01 8.012950E-01 8.019757E-01 8.011757E-01 8.011173E-01	L2-NORM 1.758325E+00 1.773379E+00 1.813863E+00 1.83637E+00 1.837749E+00 1.837380E+00 1.837380E+00 1.837380E+00 1.839625E+00	MAX U(1) 2.007497E+00 2.026095E+00 2.025949E+00 2.025949E+00 2.024345E+00 2.024512E+00 2.023052E+00 2.025670E+00 2.02567E+00	MAX U(2) 9.170014E-01 1.200470E+00 1.205150E+00 1.206438E+00 1.206438E+00 1.206438E+00 1.206188E+00 1.206188E+00 1.205815E+00	PERIOD 3.425564E+0 4.869325E+0 1.142182E+0 3.307053E+0 4.941244E+0 6.119847E+0 8.753723E+0 9.332094E+0 9.332094E+0
6	43 MX	- 25	8.011173E-01	1.838080E+00	2.025461E+00	1.205860E+00	9.332094E+

• Used theorems to prove existence of transcritical, saddle-node, and Hopf bifurcations.

Jordan Whitener

Dynamics and Bifurcations in Variable Population Interactions

Bifurcations in Model

Parameter Values: a=0.3; b=1.3; c=0.4; d=1.5; e=0.6; h=0.8024750; k_1=0.1; k_2=0.4; r_1=0.5; r_2=0.4;

Jordan Whitener

Dynamics and Bifurcations in Variable Population Interactions

Two-Parameter Bifurcations in Model

Parameter Values:

$$a=varied$$
; $h=varied$;
 $b=1.3$; $c=0.4$; $d=1.5$; $e=0.6$;
 $k_1=0.1$; $k_2=0.4$; $r_1=0.5$; $r_2=0.4$;

Application

Parameter Values: k_1 =varied; h=varied; a=0.3; b=1.3; c=0.4; d=1.5; e=0.6; $k_2=0.4$; $r_1=0.5$; $r_2=0.4$;

イロン イヨン イヨン イヨン

э

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions

Boundedness of Coexistence Solutions

First some necessary tools:

Differential Inequality

If $\omega(t, u)$ is a scalar function of the scalars t, u in some open connected set Ω , we say a function v(t), $a \le t \le b$, is a solution of the differential inequality

$$u(t) \le \omega(t, v(t))$$
(7)

on [a, b) if v(t) is continuous on [a, b) and has a derivative on [a, b) that satisfies (7).

(日) (同) (E) (E) (E)

Second Model Next Step References

Boundedness of Coexistence Solutions

Theorem (1)

Let $\omega(t, u)$ be continuous on an open connected set $\Omega \sqsubset \mathbb{R}^2$ and be such that the initial value problem for the scalar equation

$$\dot{u} = \omega(t, u) \tag{8}$$

has a unique solution. If u(t) is a solution of (8) on $a \le t \le b$ and v(t) is a solution of (7) on $a \le t < b$ with $v(a) \le u(a)$, then $v(t) \le u(t)$ for $a \le t \le b$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Boundedness of Coexistence Solutions

Every solution (x, y) starting in \mathbb{R}^2_+ which satisfies either

$$x \ge \frac{d + \sqrt{d^2 + b^2}}{2} \text{ or } y \ge \frac{b + \sqrt{b^2 + d^2}}{2}$$
 (9)

is bounded.

Proof

Let $w = x + \frac{a}{c}y$. Then

$$\dot{w} = x(r_1 - k_1x) + ay(b - y)xy - H(x) + \frac{a}{c}[y(r_2 - k_2y) + cx(d - x)xy],$$

and for each k > 0 we have

$$\dot{w} + kw = x(r_1 + k - k_1) + axy[y(b-y) + x(d-x)] + \frac{a}{c}y[r_2 + k - k_2y] - H(x).$$

Note: both $x(r_1 + k - k_1)$ and $\frac{a}{c}y[r_2 + k - k_2y]$ form downward opening parabolas.

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

Introduction Application

Boundedness of Coexistence Solutions

Replacing the parabolas with their corresponding maximum values, get

$$\dot{w} + kw \leq rac{(r_1+k)^2}{4k_1} + axy[y(b-y) + x(d-x)] + rac{a}{c}[rac{(r_2+k)^2}{4k_2}] - H(x).$$

Note that
$$H(x) = \frac{hx}{e+x}$$
, so $\lim_{x\to\infty^+} H(x) = h$.
Thus $0 \le H(x) \le h$ and $h > 0$.
Set restriction that $y(b - y) + x(d - x) < 0$, which gives rise to (9).
Thus $\exists B > 0$ such that $\dot{w} + kw \le B$, or $\dot{w} \le B - kw$.
Let $\dot{u} = B - ku$ with $u(0) = w(0)$. Then $\dot{u} + ku = B$, which can be

solved explicitly by using an integrating factor. Get

$$u(t) = \frac{B}{k}(1 - e^{-kt}) + u_0 e^{-kt}$$
(10)

where $u_0 = w_0 = x_0 + \frac{a}{c}y_0$.

Boundedness of Coexistence Solutions

Let
$$w(t)$$
 be a solution of $\dot{w} \leq B - kw$.
Then by Theorem 1, $w(t) \leq u(t)$ for $0 \leq t < \infty$.
Thus $0 < w(t) \leq \frac{B}{k}(1 - e^{-kt}) + w_0e^{-kt}$, and
 $\lim_{t\to\infty} \frac{B}{k}(1 - e^{-kt}) + w_0e^{-kt} = \frac{B}{k}$. \Box

イロン イロン イヨン イヨン 三日

Conditions for no Periodic Solutions

Can establish conditions under which periodic solutions are not possible, using what is called Dulac's Criterion:

Dulac's Criterion

Application

Introduction

Let D be a simply connected open set of \mathbb{R}^2 . If there exists a real-valued function $\phi(x, y) \in C^1$ in D such that

$$\frac{\partial}{\partial x}[\phi(x,y)F_1(x,y)] + \frac{\partial}{\partial y}[\phi(x,y)F_2(x,y)]$$

is not identically zero and does not change sign in D, then the dynamical system

$$\dot{x} = F_1(x, y)$$

$$\dot{y} = F_2(x, y)$$

has no closed periodic orbits contained in D.

Conditions for no Periodic Solutions

Let *D* be
$$\mathbb{R}^2_+$$
 and use $\phi(x, y) = \frac{1}{xy}$.
Then get

$$\frac{\partial}{\partial x}[\phi(x,y)F_1(x,y)] + \frac{\partial}{\partial y}[\phi(x,y)F_2(x,y)] = \frac{hx - (k_1x + k_2y)(e+x)^2}{xy(e+x)^2}.$$

Which can be written as

Introduction

Application

$$\frac{-k_1x^3 - 2ek_1x^2 + (h - e^2k_1)x - k_2(e + x)^2y}{xy(e + x)^2}.$$

(日) (回) (E) (E) (E)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Introduction Application

Conditions for no Periodic Solutions

For
$$e \geq \sqrt{\frac{h}{k_1}}$$
, all coefficients of

$$\frac{-k_1x^3 - 2ek_1x^2 + (h - e^2k_1)x - k_2(e + x)^2y}{xy(e + x)^2}$$

are negative $\forall x, y \in \mathbb{R}^2_+$.

Then by Dulac's Criterion, when $e \ge \sqrt{\frac{h}{k_1}}$ the system has no closed periodic orbits contained in \mathbb{R}^2_+ .

Corollary: For h = 0 (no harvesting), simply have $e \ge 0$, which is always true. Thus without harvesting, no closed periodic solutions are contained in \mathbb{R}^2_+ .

So the harvesting function allows for periodic solutions,

given that $e < \sqrt{\frac{h}{k_1}}$.

Impact of Harvesting

System without harvesting:

$$\begin{array}{rcl} \frac{dx}{dt} &=& x(r_1-k_1x)+ay(b-y)xy\\ \frac{dy}{dt} &=& y(r_2-k_2y)+cx(d-x)xy \end{array}$$

Boundary equilibria are: (0,0), $(0, \frac{r_2}{k_2})$, and $(\frac{r_1}{k_1}, 0)$. versus (0,0), $(0, \frac{r_2}{k_2})$, and $(x_{\pm}, 0)$ with harvesting.

< □ > < @ > < 注 > < 注 > ... 注

Impact of Harvesting

Application

Introduction

Without harvesting:

- (0,0) is always an unstable node.
- $(0, \frac{r_2}{k_2})$ is always a saddle or stable node.
- $(\frac{r_1}{k_1}, 0)$ is always a saddle or stable node.
- (x^*, y^*) is always either a saddle, stable node, or stable focus.

With harvesting:

- (0,0) is always a saddle or unstable node.
- $(0, \frac{r_2}{k_2})$ is always a saddle or stable node, though different conditions are necessary for a saddle.
- $(x_{\pm}, 0)$ is always either a saddle, stable node, or unstable node.
- (x*, y*) can be a saddle, stable node, unstable node, stable focus, unstable focus, or of center-type.

Impact of Harvesting

Application

Introduction

For these parameter values, a = 1.09, b = 1.28, c = 0.4, d = 0.21, $r_1 = 0.53$, $r_2 = 0.57$, $k_1 = 0.76$, $k_2 = 0.91$, h = 0, e = 0, have one coexistence equilibrium, (0.89072, 0.38898), which is a stable focus. By the slope and carrying-capacity classifications, (0.89072, 0.38898) is a *host-parasitic* equilibrium.

With h = 1.29 and e = 1.63, have one coexistence equilibrium, (0.062363, 0.62663), which is a stable node. By the slope classification, (0.062363, 0.62663) is a *mutualisitc* equilibrium (x_k is complex).

Impact of Harvesting

Application

Introduction

For these parameter values,

$$a = 1.09, b = 0.63, c = 0.76, d = 1.6, r_1 = 1.68, r_2 = 1.36,$$

 $k_1 = 0.83$, $k_2 = 1.29$, h = 1.35, e = 1.2, have

<ロ> (四) (四) (注) (注) (注) (注)

Second Model

Instead of using parabolic α function, use a rational α function:

$$\frac{dx}{dt} = x(r_1 - k_1 x) + k_1 \left(\frac{by - y^2}{1 + ay^2}\right) xy - \frac{hx}{e + x} \frac{dy}{dt} = y(r_2 - k_2 y) + k_2 \left(\frac{dx - x^2}{1 + cx^2}\right) xy$$

Compare to Dr. Hernandez's model:

$$\frac{dN_1}{dt} = N_1(r_1 - (\frac{r_1}{k_1})N_1) + \frac{r_1}{k_1}(\frac{b_1N_2 - N_2^2}{1 + c_1N_2^2})N_1N_2 \frac{dN_2}{dt} = N_2(r_2 - (\frac{r_2}{k_2})N_2) + \frac{r_2}{k_2}(\frac{b_2N_1 - N_1^2}{1 + c_2N_1^2})N_1N_2$$

<ロ> (四) (四) (注) (注) (注) (注)

Graphical Analysis of Bifurcations

For Dr. Hernandez's model:

Note: Dr. Hernandez only had saddle-node bifurcations in her model.

Jordan Whitener Dynamics and Bifurcations in Variable Population Interactions

イロト イヨト イヨト イヨト

Graphical Analysis of Bifurcations

For Second Model:

Application

For parameters:

 $a = 1, b = 1.3, c = 0.4, d = 1.5, e = 0.5, h = varied, r_1 = 0.6, r_2 = 0.4,$

 $k_1 = 0.337, k_2 = 0.5$. For h = 1.0515, had a hopf bifurcation.

Periodic Orbits in Second Model

For parameters:

a = 0.2, b = 1.3, c = 0.2, d = 1.5, e = 0.6, h = 0.7816406,

$$r_1 = 0.5, r_2 = 0.4, k_1 = 0.1, k_2 = 0.4.$$

- Mathematical analysis of second model(rational α function).
- Add a refuge component to one or both species.
- Make stage-structured populations.
- Use more than two species, with either static or variable interactions.

(日) (同) (E) (E) (E)

References

[1] Hale, J. (1980). Ordinary Differential Equations. Wiley.

[2] Hernandez, M., & Barradas, I. (2003). Variation in the outcome of population interactions: bifurcations and catastrophes. *Journal of Mathematical Biology*, *46*, 571-594.

[3] Hernandez, M. (2009). Disentangling nature, strength and stability issues in the characterization of population interactions. *Journal of Theoretical Biology, 261,* 107-119.

[4] Rebaza, J. (2012). *A First Course in Applied Mathematics*. Wiley.

References

[5] Rebaza, J. (2012). Dynamics of prey threshold harvesting and refuge. *Journal of Computational and Applied Mathematics, 236*, 1743-1752.

[6] Rebaza, J. (2013). Bifurcations and periodic orbits in variable population interactions. *Communications on Pure and Applied Analysis*, *12* (6), 2997-3012.

[7] Zhang, B., Zhang, Z., Zhenqing, L., & Tao, L. (2007). Stability analysis of a two-species model with transitions between population interactions. *Journal of Theoretical Biology, 248*, 145-153.