NON-CYCLIC GRAPHS OF FINITE GROUPS

Daniel Costa, Veronica Davis, and Kenny Gill Supervised by Dr. Les Reid

July 29, 2016

Missouri State University (Summer REU 2016)

- \cdot Introduction
- · Eulerian Circuits and Paths
- · Hamiltonian Circuits
- · Automorphisms
- $\cdot\,$ Small Orientable and Nonorientable Genera
- \cdot Future Work

INTRODUCTION

A **group** is a set *G* with an operation * such that:

- \cdot The group is *closed* under *.
- * is associative.
- · G has an identity element under *.
- Every element of *G* has an *inverse* under *.

Examples: \mathbb{Z} under addition, \mathbb{R} under multiplication, C_5 under modular addition.

If G is a group, then the **non-cyclic graph** of G is the graph $\Gamma(G)$ defined as follows:

- · Vertices are elements of *G*.
- Connect two vertices if the corresponding elements do *not* generate a cyclic group together. (In other words, *x* and *y* are connected iff $\langle x, y \rangle$ is non-cyclic.)
- $\cdot\,$ Remove all vertices that are not connected to anything.

EULERIAN CIRCUITS AND PATHS

An **Eulerian path** is a path that uses every edge of a graph exactly once.

Source: https://www.mathsisfun.com

A graph has an Eulerian path iff precisely two vertices are of odd degree, and all others are of even degree. Such a graph is called **path-Eulerian**.

An **Eulerian circuit** is an Eulerian path that starts and ends at the same vertex.

Source: https://www.math.ku.edu/~jmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

A graph has an Eulerian circuit iff every vertex has even degree. Such a graph is called **Eulerian**.

What is the **degree** of an element in $\Gamma(G)$?

The **cyclicizer** of an element *x*, written $Cyc_G(x)$, is the set of all $y \in G$ such that $\langle x, y \rangle$ is cyclic.

G is **Eulerian** if |G| and $|Cyc_G(x)|$ are either both even or both odd for all elements *x*.

The following groups are Eulerian:

- $\cdot\,$ All groups of odd order.
- $\cdot\,$ All abelian groups.
- · All 2-groups.

The following are non-Eulerian:

- · S_n for $n \ge 3$.
- · All nonabelian simple groups.

- · If *H* has odd order, then $G \times H$ is Eulerian iff *G* is Eulerian.
- · If *H* has even order, then $G \times H$ is Eulerian whenever at least one of *G* or *H* is Eulerian.
- \cdot S₃ is the only path-Eulerian group.

The **centralizer** of x, written $C_G(x)$, is the set of all elements that commute with x.

If G has even order, then $|Cyc_G(x)|$ and $|C_G(x)|$ always have the same even-odd parity.

If *G* is a group, then the **non-commuting graph** of *G* is the graph defined as follows:

- \cdot Vertices are elements of G.
- Connect two vertices if the corresponding elements do not commute.
- \cdot Remove all vertices that are not connected to anything.

Eulerianness of non-cyclic and non-commuting graphs is equivalent.

HAMILTONIAN CIRCUITS

A **Hamiltonian circuit** is a path that uses every vertex of a graph exactly once and starts and ends at the same vertex.

The **independence number** $\alpha(\Gamma)$ of a graph Γ is the size of the largest set of mutually non-connected vertices in Γ .

A **quotient group** G/N of a group G is a group obtained by aggregating distinct elements in G into equivalence classes that preserve aspects of the group structure of G.

Example: *C_n*, the integers modulo *n*.

Theorem (Dirac)

If $\delta(\Gamma) \ge n/2$, where $\delta(\Gamma)$ is the minimum vertex degree in Γ and $n = |\Gamma|$, then Γ is Hamiltonian.

Theorem

In a non-cyclic graph $\Gamma(G)$, $\alpha(\Gamma(G)) < m$, where m is the size of the largest cyclic subgroup of G.

Theorem

Any complete multipartite non-cyclic graph ${\pmb \Gamma}$ is Hamiltonian.

Proof.

Since *G* is not a cyclic group, the largest a cyclic subgroup of *G* can be is |G|/2. This implies that $\alpha(\Gamma) < |\Gamma|/2$. Since Γ is complete multipartite, every vertex in a maximal independent set is connected to every vertex outside of that set, thus $d(x) > |\Gamma|/2$ for any $x \in V(\Gamma)$.

Conjecture

The non-cyclic graph of every non-cyclic group contains a Hamiltonian circuit.

Theorem (Abdollahi & Hassanabadi)

If $\Gamma(G/Cyc(G))$ is Hamiltonian, then $\Gamma(G)$ is Hamiltonian.

Corollary

If every group with trivial cyclicizer is Hamiltonian, then every non-cyclic group is Hamiltonian.

Theorem (Abdollahi & Hassanabadi)

If Z(G) = Cyc(G), then $\Gamma(G)$ is Hamiltonian.

AUTOMORPHISMS

An **automorphism of a group** *G* is a bijective function $\phi : G \to G$ that preserves the group structure of *G*, so that

$$\phi(ab) = \phi(a)\phi(b)$$

for any $a, b \in G$.

A characteristic subgroup H of G is a subgroup that is invariant under every automorphism of G. I.e., for ϕ an automorphism of Gand any $h \in H$, $\phi(h) = h'$, where $h' \in H$. An **automorphism of a graph** Γ is a bijective function $\phi : V(\Gamma) \to V(\Gamma)$ such that if $ab \in E(\Gamma)$, then $\phi(a)\phi(b) \in E(\Gamma)$.

Any automorphism of a group G must induce an automorphism on the non-cyclic graph $\Gamma(G)$.

The quaternion group Q_8 is the group that satisfies the presentation $Q_8 = \langle -1, i, j, k \mid (-1)^2 = 1, i^2 = j^2 = k^2 = ijk = -1 \rangle$.

Theorem

There is no group G such that its non-cyclic graph $\Gamma(G)$ has no non-trivial graph automorphisms.

Theorem

Cyc(G) is a characteristic subgroup of G.

ORIENTABLE AND NONORIENTABLE GENERA

The **genus of a graph** is the smallest integer *n* such that the graph can be embedded (no overlapping points or edges) in a surface of genus *n*.

The **genus of an orientable surface** refers to its number of "holes". It is denoted γ .

The **non-orientable genus** of a surface, written $\tilde{\gamma}$, refers to its number of cross-caps.

ORIENTABLE GENUS

Source: http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/embedding.htm

NON-ORIENTABLE SURFACES

If *v* is the number of vertices and *e* is the number of edges in a graph, then

$$\gamma \ge \frac{e}{6} - \frac{v}{2} + 1 \quad \text{and}$$
$$\tilde{\gamma} \ge \frac{e}{3} - v + 1.$$

If the RHS is an integer *n*, then a graph has a genus-*n* embedding if and only if it is a **triangular embedding**.

First, find a lower bound for the number of edges *e*.

• The probability that two randomly selected elements of a non-cyclic group generate a cyclic subgroup together is

$$1-\frac{2e}{n^2},$$

where n is the order of the group.

- $\cdot\,$ This probability is bounded above by 5/8.
- · Therefore, *e* is bounded below by $3n^2/16$.

If G is a non-cyclic group of order n, then

$$\gamma(\Gamma(G)) \ge \left\lceil \frac{n^2 - 16n + 48}{32} \right\rceil \text{ and}$$
$$\tilde{\gamma}(\Gamma(G)) \ge \left\lceil \frac{n^2 - 16n + 48}{16} \right\rceil.$$

If $\gamma \leq$ 3 or $\tilde{\gamma} \leq$ 6, then $n \leq$ 19.

- Is there a subgraph we know the genus of? Is the graph itself a subgraph of a well-known graph?
- Does the formula only hold true for triangular embeddings? Can such an embedding exist?
- $\cdot\,$ Can we draw an embedding in a surface of this genus?

How do we get from a polygonal configuration to an embedding?

Figure: Dic₁₂ nonorientable genus 4 embedding

Figure: Eliminating point $\overline{2}$ from the perimeter

Figure: Eliminating point 2 from the perimeter

Figure: Eliminating point 3 from the perimeter

Figure: Dic₁₂, nonorientable genus 4

Figure: *D*₁₀, orientable genus 2

Figure: Dic₁₂, orientable genus 3

GENERA OF NON-CYCLIC GRAPHS

Group	γ	$\tilde{\gamma}$
$C_2 \times C_2$	0	
S ₃	0	
$C_2 \times C_4$	1	1
D_8	1	1
Q_8	0	
C_{2}^{3}	1	3
$C_3 \times C_3$	1	3
D ₁₀	2	4
Dic ₁₂	3	4
D ₁₂	≥ 4	6
$C_2 \times C_2 \times C_3$	1	3

FUTURE WORK

- · Orientable genus 4
- · Genera of families of groups
- · Further Hamiltonian classification
- · Eulerianness of semi-direct products