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introduction



Introduction: Groups

A group is a set G with an operation ∗ such that:

∙ The group is closed under ∗.
∙ ∗ is associative.
∙ G has an identity element under ∗.
∙ Every element of G has an inverse under ∗.

Examples: Z under addition, R under multiplication, C5 under
modular addition.
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Introduction: Non-cyclic graphs

If G is a group, then the non-cyclic graph of G is the graph Γ(G)
defined as follows:

∙ Vertices are elements of G.
∙ Connect two vertices if the corresponding elements do not
generate a cyclic group together. (In other words, x and y are
connected iff ⟨x, y⟩ is non-cyclic.)

∙ Remove all vertices that are not connected to anything.
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eulerian circuits and paths



Eulerian paths

An Eulerian path is a path that uses every edge of a graph exactly
once.

Source: https://www.mathsisfun.com

A graph has an Eulerian path iff precisely two vertices are of odd
degree, and all others are of even degree. Such a graph is called
path-Eulerian.
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Eulerian circuits

An Eulerian circuit is an Eulerian path that starts and ends at the
same vertex.

Source: https://www.math.ku.edu/~jmartin/courses/math105-F11/Lectures/chapter5-part2.pdf

A graph has an Eulerian circuit iff every vertex has even degree. Such
a graph is called Eulerian.
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Eulerian groups

What is the degree of an element in Γ(G)?

The cyclicizer of an element x, written CycG(x), is the set of all y ∈ G
such that ⟨x, y⟩ is cyclic.

G is Eulerian if |G| and |CycG(x)| are either both even or both odd for
all elements x.
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Families of Eulerian groups

The following groups are Eulerian:

∙ All groups of odd order.
∙ All abelian groups.
∙ All 2-groups.

The following are non-Eulerian:

∙ Sn for n ≥ 3.
∙ All nonabelian simple groups.
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More results on Eulerian groups

∙ If H has odd order, then G× H is Eulerian iff G is Eulerian.

∙ If H has even order, then G× H is Eulerian whenever at least one
of G or H is Eulerian.

∙ S3 is the only path-Eulerian group.
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Centralizers

The centralizer of x, written CG(x), is the set of all elements that
commute with x.

If G has even order, then |CycG(x)| and |CG(x)| always have the same
even-odd parity.
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Non-commuting graph of a group

If G is a group, then the non-commuting graph of G is the graph
defined as follows:

∙ Vertices are elements of G.
∙ Connect two vertices if the corresponding elements do not
commute.

∙ Remove all vertices that are not connected to anything.

Eulerianness of non-cyclic and non-commuting graphs is equivalent.
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hamiltonian circuits



Hamiltonian circuits

A Hamiltonian circuit is a path that uses every vertex of a graph
exactly once and starts and ends at the same vertex.

Source: Wikipedia 14



Hamiltonian preliminaries

The independence number α(Γ) of a graph Γ is the size of the
largest set of mutually non-connected vertices in Γ.

A quotient group G/N of a group G is a group obtained by
aggregating distinct elements in G into equivalence classes that
preserve aspects of the group structure of G.

Example: Cn, the integers modulo n.
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Hamiltonian circuits

Theorem (Dirac)

If δ(Γ) ≥ n/2, where δ(Γ) is the minimum vertex degree in Γ and
n = |Γ|, then Γ is Hamiltonian.

Theorem

In a non-cyclic graph Γ(G), α(Γ(G)) < m, where m is the size of the
largest cyclic subgroup of G.
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Hamiltonicity of Complete Multipartite Γ(G)

Theorem

Any complete multipartite non-cyclic graph Γ is Hamiltonian.

Proof.

Since G is not a cyclic group, the largest a cyclic subgroup of G can
be is |G|/2. This implies that α(Γ) < |Γ|/2. Since Γ is complete
multipartite, every vertex in a maximal independent set is connected
to every vertex outside of that set, thus d(x) > |Γ|/2 for any
x ∈ V(Γ).
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Hamiltonian circuits

Conjecture

The non-cyclic graph of every non-cyclic group contains a
Hamiltonian circuit.
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Other Hamiltonicity Theorems

Theorem (Abdollahi & Hassanabadi)

If Γ(G/Cyc(G)) is Hamiltonian, then Γ(G) is Hamiltonian.

Corollary

If every group with trivial cyclicizer is Hamiltonian, then every
non-cyclic group is Hamiltonian.

Theorem (Abdollahi & Hassanabadi)

If Z(G) = Cyc(G), then Γ(G) is Hamiltonian.
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automorphisms



Automorphisms of Groups

An automorphism of a group G is a bijective function ϕ : G→ G that
preserves the group structure of G, so that

ϕ(ab) = ϕ(a)ϕ(b)

for any a,b ∈ G.

A characteristic subgroup H of G is a subgroup that is invariant
under every automorphism of G. I.e., for ϕ an automorphism of G
and any h ∈ H, ϕ(h) = h′, where h′ ∈ H.
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Automorphisms of Graphs

An automorphism of a graph Γ is a bijective function ϕ : V(Γ) → V(Γ)
such that if ab ∈ E(Γ), then ϕ(a)ϕ(b) ∈ E(Γ).

Any automorphism of a group G must induce an automorphism on
the non-cyclic graph Γ(G).
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Automorphisms of Q8

The quaternion group Q8 is the group that satisfies the presentation
Q8 = ⟨−1, i, j, k | (−1)2 = 1, i2 = j2 = k2 = ijk = −1⟩.

k

-j

-k

j

i

-i
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Correspondence between Aut(G) and Aut(Γ)

Theorem

There is no group G such that its non-cyclic graph Γ(G) has no
non-trivial graph automorphisms.

Theorem

Cyc(G) is a characteristic subgroup of G.
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orientable and nonorientable genera



Graph embeddings

The genus of a graph is the smallest integer n such that the graph
can be embedded (no overlapping points or edges) in a surface of
genus n.

The genus of an orientable surface refers to its number of “holes”. It
is denoted γ.

The non-orientable genus of a surface, written γ̃, refers to its
number of cross-caps.
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Orientable Genus

Source: http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/embedding.htm
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Non-orientable surfaces
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Determining the genus of a graph

If v is the number of vertices and e is the number of edges in a
graph, then

γ ≥ e
6 − v

2 + 1 and

γ̃ ≥ e
3 − v+ 1.

If the RHS is an integer n, then a graph has a genus-n embedding if
and only if it is a triangular embedding.
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Genera of non-cyclic graphs

First, find a lower bound for the number of edges e.

∙ The probability that two randomly selected elements of a
non-cyclic group generate a cyclic subgroup together is

1− 2e
n2 ,

where n is the order of the group.
∙ This probability is bounded above by 5/8.
∙ Therefore, e is bounded below by 3n2/16.

30



Genera of non-cyclic graphs

If G is a non-cyclic group of order n, then

γ(Γ(G)) ≥
⌈
n2 − 16n+ 48

32

⌉
and

γ̃(Γ(G)) ≥
⌈
n2 − 16n+ 48

16

⌉
.

If γ ≤ 3 or γ̃ ≤ 6, then n ≤ 19.
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Determining the genus of a graph

∙ Is there a subgraph we know the genus of? Is the graph itself a
subgraph of a well-known graph?

∙ Does the formula only hold true for triangular embeddings? Can
such an embedding exist?

∙ Can we draw an embedding in a surface of this genus?
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Determining the genus of a graph

How do we get from a polygonal configuration to an embedding?

Figure: Dic12 nonorientable genus 4 embedding
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Figure: Eliminating point 2̄ from the perimeter
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Figure: Eliminating point 2 from the perimeter
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Figure: Eliminating point 3 from the perimeter
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Figure: Dic12, nonorientable genus 4
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Figure: D10, orientable genus 2
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Figure: Dic12, orientable genus 3
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Genera of non-cyclic graphs

Group γ γ̃

C2 × C2 0
S3 0

C2 × C4 1 1
D8 1 1
Q8 0
C32 1 3

C3 × C3 1 3
D10 2 4
Dic12 3 4
D12 ≥ 4 6

C2 × C2 × C3 1 3
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Future Work

∙ Orientable genus 4

∙ Genera of families of groups

∙ Further Hamiltonian classification

∙ Eulerianness of semi-direct products
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