Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion

Dynamics of the Pentagram Map

Supervised by Dr. Xingping Sun

H. Dinkins, E. Pavlechko, K. Williams

Missouri State University

July 28th, 2016

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
•••••				
Review				

Problem of midpoint iterations

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
•••••				
Review				

- Problem of midpoint iterations
- Finite Fourier Transforms

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
•••••				
Review				

- Problem of midpoint iterations
- Finite Fourier Transforms
- Coefficients of ergodicity

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
•••••				
Review				

- Problem of midpoint iterations
- Finite Fourier Transforms
- Coefficients of ergodicity
- Elementary geometry

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
0000000000				
Review				

Variation

First proposed in 1800's

FIGURE – Pentagram mapping on a pentagon

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
0000000000				
Review				

Variation

- First proposed in 1800's
- Solved using Brouwer's fixed point theorem

FIGURE – Pentagram mapping on a pentagon

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
0000000000				
Review				

Variation

- First proposed in 1800's
- Solved using Brouwer's fixed point theorem
- Projective geometry

FIGURE – Pentagram mapping on a pentagon

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Review				

Our Work

Looked into the generalizations to any n-gon

FIGURE - Pentagram mapping on a pentagon

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Review				

FIGURE - Pentagram mapping on a pentagon

Our Work

- Looked into the generalizations to any n-gon
- Shown that the max rate of area decrease for any pentagon is 14/15

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
0000000000				
Review				

FIGURE – Pentagram mapping on a pentagon

Our Work

- Looked into the generalizations to any n-gon
- Shown that the max rate of area decrease for any pentagon is 14/15
- Proved convergence for any regular n-gon

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
0000000000				
Review				
Midterm Goals				

Generalize the pentagon's area method to *n*-gons

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Review				
Midterm Goals				

- Generalize the pentagon's area method to *n*-gons
- Show the area method converges to a point

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Review				
Midterm Goals				

- Generalize the pentagon's area method to n-gons
- Show the area method converges to a point
- Use the matrices to prove convergence of vertices

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Review				
Midtorm Goolo				
wildlern Goals				

Generalize the pentagon's area method to *n*-gons

Use the matrices to prove convergence of vertices

Show the area method converges to a point

Explore connections to projective geometry

H. Dinkins, E. Pavlechko, K. Williams MSU

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Review				

Contents

Introduction

- Review
- Extending Previous Results

2 Ergodicity

Coefficients of Ergodicity

3 Parametrization

- Set-up
- Linear Transformation
- Python Program

4 Unifying the Maps

- Construction
- Basic Properties of the Map
- Regular Polygon Case
- General Polygons
- The Pentagon Case

5 Conclusion

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				
Schwartz's Pro	oof			

Richard Schwartz [4] proved that the pentagram map converges on any convex polygon.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				

Richard Schwartz [4] proved that the pentagram map converges on any convex polygon.

Definition

The cross ratio of collinear points $A, B, C, D \in \mathbb{R}^2$ is defined as

$$\chi(A, B, C, D) = \frac{|A - C| \cdot |B - D|}{|A - B| \cdot |C - D|}$$

where $|\cdot|$ denotes the Euclidean distance.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				

Richard Schwartz [4] proved that the pentagram map converges on any convex polygon.

Definition

The cross ratio of collinear points $A, B, C, D \in \mathbb{R}^2$ is defined as

$$\chi(A, B, C, D) = \frac{|A - C| \cdot |B - D|}{|A - B| \cdot |C - D|}$$

where $|\cdot|$ denotes the Euclidean distance.

If the four points are ordered A, B, C, D, then $\chi(A, B, C, D) \ge 1$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				

Definition

Let v be a vertex of a polygon Π . The vertex invariant of v, written $\chi(v)$ is defined by

$$\chi(\mathbf{v}) = \chi(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$$

where A, B, C, and D are the points defined in the diagram.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				

Definition

Let v be a vertex of a polygon Π . The vertex invariant of v, written $\chi(v)$ is defined by

$$\chi(v) = \chi(A, B, C, D)$$

where A, B, C, and D are the points defined in the diagram.

The pentagram map preserves the vertex invariants of a pentagon.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				

Definition

Let v be a vertex of a polygon Π . The vertex invariant of v, written $\chi(v)$ is defined by

$$\chi(v) = \chi(A, B, C, D)$$

where A, B, C, and D are the points defined in the diagram.

The pentagram map preserves the vertex invariants of a pentagon.

H. Dinkins, E. Pavlechko, K. Williams MSU

The Pentagram Map

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				
0 I I I D				

Definition

Let $A, B \in S$ where S is a convex subset of \mathbb{R}^2 . Let x and y be the intersection points of the line through A and B with the boundary of S, where the points are ordered x, A, B, y. Then the Hilbert Distance between A and B in S is defined as

 $\delta_{\mathcal{S}}(A,B) = \log(\chi(x,A,B,y))$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				
Sobwortz'o Dro				
SCHWALL S PIC				

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				
Schwartz's Pro	of			

I Assume there exists a line *L* that intersects each Π^k in a nontrivial segment.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				
Schwartz's Proc	of			

- **I** Assume there exists a line *L* that intersects each Π^k in a nontrivial segment.
- **2** The endpoints of $L \cap \Pi^k$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \to \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				
Schwartz's Pro	of			

- **I** Assume there exists a line *L* that intersects each Π^k in a nontrivial segment.
- **2** The endpoints of $L \cap \Pi^k$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \to \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).
- **I** The Hilbert Distance between the endpoints of $L \bigcap \Pi^k$ inside Π^{k-1} becomes infinite as $k \to \infty$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				
Schwartz's Pro	of			

- **I** Assume there exists a line *L* that intersects each Π^k in a nontrivial segment.
- **2** The endpoints of $L \cap \Pi^k$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \to \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).
- The Hilbert Distance between the endpoints of $L \bigcap \Pi^k$ inside Π^{k-1} becomes infinite as $k \to \infty$.
- **4** By the triangle inequality, the Hilbert Perimeter of Π^k in Π^{k-1} becomes infinite as $k \to \infty$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				
Schwartz's Pro	of			

- **I** Assume there exists a line *L* that intersects each Π^k in a nontrivial segment.
- **2** The endpoints of $L \cap \Pi^k$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \to \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).
- The Hilbert Distance between the endpoints of $L \bigcap \Pi^k$ inside Π^{k-1} becomes infinite as $k \to \infty$.
- **4** By the triangle inequality, the Hilbert Perimeter of Π^k in Π^{k-1} becomes infinite as $k \to \infty$.
- But we can show that the Hilbert Perimeter of
 ^{nk} in
 ^{nk-1} is the log of the product of the vertex invariants of
 ^{nk}, so it is invariant with respect to the pentagram map.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				
Schwartz's Pro	of			

- **I** Assume there exists a line *L* that intersects each Π^k in a nontrivial segment.
- **2** The endpoints of $L \cap \Pi^k$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \to \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).
- The Hilbert Distance between the endpoints of $L \bigcap \Pi^k$ inside Π^{k-1} becomes infinite as $k \to \infty$.
- By the triangle inequality, the Hilbert Perimeter of Π^k in Π^{k-1} becomes infinite as $k \to \infty$.
- But we can show that the Hilbert Perimeter of
 ^{nk} in
 ^{nk-1} is the log of the product of the vertex invariants of
 ^{nk}, so it is invariant with respect to the pentagram map.
- 6 Contradiction !

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

Let
$$k_i = \chi(v_i) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|}$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

Let
$$k_i = \chi(v_i) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|}$$

 $\implies |AC| < k_i |AB|$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

Let
$$k_i = \chi(v_i) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|}$$

 $\implies |AC| < k_i |AB|$
 $\implies |AD| - |CD| < k_i |AB|$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

Let
$$k_i = \chi(v_i) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|}$$

 $\implies |AC| < k_i |AB|$
 $\implies |AD| - |CD| < k_i |AB|$
 $\implies |AD| < (k_i - 1)|AB| + |AB| + |CD|$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

 $\begin{array}{l} \mathsf{Let} \ k_i = \chi(v_i) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|} \\ \implies |AC| < k_i |AB| \\ \implies |AD| - |CD| < k_i |AB| \\ \implies |AD| < (k_i - 1)|AB| + |AB| + |CD| \\ \implies |AD| < (k_i - 1)|AB| + |AD| - |BC| \end{aligned}$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

 $\begin{array}{l} \mathsf{Let} \ k_i = \chi(\mathbf{v}_i) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|} \\ \Longrightarrow \ |AC| < k_i|AB| \\ \Longrightarrow \ |AD| - |CD| < k_i|AB| \\ \Longrightarrow \ |AD| < (k_i - 1)|AB| + |AB| + |CD| \\ \Longrightarrow \ |AD| < (k_i - 1)|AB| + |AD| - |BC| \\ \Longrightarrow \ |BC| < (k_i - 1)|AB| \end{array}$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

 $\begin{array}{l} \mathsf{Let} \ k_i = \chi(v_i) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|} \\ \Longrightarrow \ |AC| < k_i |AB| \\ \Longrightarrow \ |AD| - |CD| < k_i |AB| \\ \Longrightarrow \ |AD| < (k_i - 1)|AB| + |AB| + |CD| \\ \Longrightarrow \ |AD| < (k_i - 1)|AB| + |AD| - |BC| \\ \Longrightarrow \ |BC| < (k_i - 1)|AB| \end{array}$

By symmetry $|BC| < (k_i - 1)|CD|$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

 $\begin{array}{l} \mathsf{Let} \ k_i = \chi(v_i) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|} \\ \implies |AC| < k_i |AB| \\ \implies |AD| - |CD| < k_i |AB| \\ \implies |AD| < (k_i - 1)|AB| + |AB| + |CD| \\ \implies |AD| < (k_i - 1)|AB| + |AD| - |BC| \\ \implies |BC| < (k_i - 1)|AB| \end{array}$

By symmetry $|BC| < (k_i - 1)|CD|$. $\implies 2|BC| < (k_i - 1)(|AB| + |CD|)$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

 $\begin{array}{l} \operatorname{Let} k_{i} = \chi(v_{i}) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|} \\ \Longrightarrow |AC| < k_{i}|AB| \\ \Longrightarrow |AD| - |CD| < k_{i}|AB| \\ \Longrightarrow |AD| < (k_{i} - 1)|AB| + |AB| + |CD| \\ \Longrightarrow |AD| < (k_{i} - 1)|AB| + |AD| - |BC| \\ \Longrightarrow |BC| < (k_{i} - 1)|AB| \end{aligned}$

By symmetry $|BC| < (k_i - 1)|CD|$. $\implies 2|BC| < (k_i - 1)(|AB| + |CD|)$ $\implies 2|BC| < (k_i - 1)(|AD| - |BC|)$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

 $\begin{array}{l} \operatorname{Let} k_{i} = \chi(v_{i}) = \frac{|AC||BD|}{|AB||CD|} > \frac{|AC|}{|AB|} \\ \Longrightarrow |AC| < k_{i}|AB| \\ \Longrightarrow |AD| - |CD| < k_{i}|AB| \\ \Longrightarrow |AD| < (k_{i} - 1)|AB| + |AB| + |CD| \\ \Longrightarrow |AD| < (k_{i} - 1)|AB| + |AD| - |BC| \\ \Longrightarrow |BC| < (k_{i} - 1)|AB| \end{aligned}$

 $\begin{array}{l} \text{By symmetry } |BC| < (k_i - 1)|CD|. \\ \implies 2|BC| < (k_i - 1)(|AB| + |CD|) \\ \implies 2|BC| < (k_i - 1)(|AD| - |BC|) \\ \implies |BC| < \left(\frac{k_i - 1}{k_i + 1}\right)|AD| \end{array}$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				

This applies for any side of Π^1 .

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				

This applies for any side of Π^1 . $P(\Pi^1) < \sum_{i=0}^4 \left(\frac{k_i-1}{k_i+1}\right) d_i$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

This applies for any side of Π^1 . $P(\Pi^1) < \sum_{i=0}^4 \left(\frac{k_i-1}{k_i+1}\right) d_i$ $< 2\left(\frac{k_{max}-1}{k_{max}+1}\right) P(\Pi^0)$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

This applies for any side of Π^1 . $P(\Pi^1) < \sum_{i=0}^{4} \left(\frac{k_i-1}{k_i+1}\right) d_i$ $< 2\left(\frac{k_{max}-1}{k_{max}+1}\right) P(\Pi^0)$ $\implies \frac{P(\Pi^1)}{P(\Pi^0)} < 2\left(\frac{k_{max}-1}{k_{max}+1}\right)$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

This applies for any side of Π^1 . $P(\Pi^1) < \sum_{i=0}^{4} \left(\frac{k_i - 1}{k_i + 1}\right) d_i$ $< 2\left(\frac{k_{max} - 1}{k_{max} + 1}\right) P(\Pi^0)$ $\implies \frac{P(\Pi^1)}{P(\Pi^0)} < 2\left(\frac{k_{max} - 1}{k_{max} + 1}\right)$ The k_i values are invariant under the pentagram map.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
000000000000				
Extending Previous Results				

This applies for any side of Π^1 . $P(\Pi^1) < \sum_{i=0}^{4} \left(\frac{k_i-1}{k_i+1}\right) d_i$ $< 2\left(\frac{k_{max}-1}{k_{max}+1}\right) P(\Pi^0)$ $\implies \frac{P(\Pi^1)}{P(\Pi^0)} < 2\left(\frac{k_{max}-1}{k_{max}+1}\right)$ The k_i values are invariant under the pentagram map.

• So
$$\frac{P(\Pi^k)}{P(\Pi^0)} < \left(2\left(\frac{k_{max}-1}{k_{max}+1}\right)\right)^k$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000				
Extending Previous Results				

This applies for any side of Π^1 . $P(\Pi^1) < \sum_{i=0}^{4} \left(\frac{k_i-1}{k_i+1}\right) d_i$ $< 2\left(\frac{k_{max}-1}{k_{max}+1}\right) P(\Pi^0)$ $\implies \frac{P(\Pi^1)}{P(\Pi^0)} < 2\left(\frac{k_{max}-1}{k_{max}+1}\right)$ The k_i values are invariant under the pentagram map.

• So
$$\frac{P(\Pi^k)}{P(\Pi^0)} < \left(2\left(\frac{k_{max}-1}{k_{max}+1}\right)\right)^k$$

If k_{max} < 3, then the pentagram iteration converges to a point and we have a bound for the rate.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
0000000000				
Extending Previous Results				
A Conjecture				

Explorations in geogebra indicate that $\frac{P(\Pi^1)}{P(\Pi^0)} < \frac{k_{max}-1}{k_{max}+1}$ holds in general for any polygon, regardless of the number of sides, but we have not been able to prove this.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	000000			
Coefficients of Ergodicity				

Representation by matrices

The Pentagram map can be represented by an $n \times n$ circulant-patterned matrix.

$$M = \begin{bmatrix} \alpha_0 & 0 & 1 - \alpha_0 & 0 & \dots & 0 \\ 0 & \alpha_1 & 0 & 1 - \alpha_1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 1 - \alpha_{n-1} & 0 & 0 & \dots & \alpha_{n-1} \end{bmatrix}$$

where α_i is a proportion along the *i*th diagonal, or $\alpha = \frac{c}{d}$

Note : In a regular *n*-gon $\alpha_0 = \alpha_1 = \dots = \alpha_{n-1} = \left(\frac{\sin(\pi/n)}{\sin(2\pi/n)}\right)^2$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	000000			
Coefficients of Ergodicity				
Matrices conti	nued			

Multiplying M by a vector of vertices will result in a column vector of the next polygon's vertices

vertices of $\Pi^{k+1} = M_k$ (vertices of Π^k) $\begin{bmatrix} v_{0+1}^{k+1} \\ v_{1}^{k+1} \\ \vdots \\ v_{n-1}^{k+1} \end{bmatrix} = \begin{bmatrix} \alpha_0 & 0 & 1 - \alpha_0 & 0 & \dots & 0 \\ 0 & \alpha_1 & 0 & 1 - \alpha_1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 1 - \alpha_{n-1} & 0 & 0 & \dots & \alpha_{n-1} \end{bmatrix} \begin{bmatrix} v_0^k \\ v_1^k \\ \vdots \\ v_{n-1}^k \end{bmatrix}$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	000000			
Coefficients of Ergodicity				
Matrices conti	nued			

Multiplying M by a vector of vertices will result in a column vector of the next polygon's vertices

vertices of
$$\Pi^{k+1} = M_k$$
 (vertices of Π^k)

$$\begin{bmatrix} v_0^{k+1} \\ v_1^{k+1} \\ \vdots \\ v_{n-1}^{k+1} \end{bmatrix} = \begin{bmatrix} \alpha_0 & 0 & 1 - \alpha_0 & 0 & \dots & 0 \\ 0 & \alpha_1 & 0 & 1 - \alpha_1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 1 - \alpha_{n-1} & 0 & 0 & \dots & \alpha_{n-1} \end{bmatrix} \begin{bmatrix} v_0^k \\ v_1^k \\ \vdots \\ v_{n-1}^k \end{bmatrix}$$

We can then express the vertices of Π^k as

$$\Pi^{k} = M_{k}M_{k-1}\ldots M_{0}\Pi^{0}$$

Our project's main goal is to show that the vertices of Π^k converge as $k \to \infty$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	000000			
Coefficients of Ergodicity				
Past Lises				

- Eric Hintikka [1] used coefficients of ergodicity to prove that any polygon derived from a series of stochastic circulant-patterned matrices will converge.
- **Stochastic :** All entries in each row will add to one and be non-negative.
- Circulant- patterned : Each matrix has the same zero pattern, which repeats through each row while shifting one column each time.

$$M = \begin{bmatrix} \alpha_0 & 0 & 1 - \alpha_0 & 0 & \dots & 0 \\ 0 & \alpha_1 & 0 & 1 - \alpha_1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 1 - \alpha_{n-1} & 0 & 0 & \dots & \alpha_{n-1} \end{bmatrix}$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	0000000			
Coefficients of Ergodicity				

Coefficients of Ergodicity

Generally, ergodicity coefficients estimate the rate of convergence for stochastic matrices [2].

We'll use some key properties of one coefficient, τ_1 :

1
$$0 \le \tau_1(M) \le 1$$
, and $0 = \tau_1(M) \Leftrightarrow M$ is a rank one matrix

2
$$\tau_1(M) = 1 - \sum_{k=1}^n \min\{m_{ik}, m_{jk}\}$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	0000000			
Coefficients of Ergodicity				
Proving Conve	ergence			

Scheme :

For a sequence of k stochastic matrices, divide them into groups of n. Call one such group M_q.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	0000000			
Coefficients of Ergodicity				

Scheme :

- For a sequence of k stochastic matrices, divide them into groups of n. Call one such group Mg.
- Each group will multiply to create a positive, stochastic matrix, with $\tau_1(M) = 1 \sum_{k=1}^n \min\{m_{ik}, m_{ik}\}$. Then we know that $\tau_1 < 1$ for each group
 - specifically, we have $\tau_1(M_g) \le 1 n\epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	0000000			
Coefficients of Ergodicity				

Scheme :

- For a sequence of *k* stochastic matrices, divide them into groups of *n*. Call one such group *M*_g.
- Each group will multiply to create a positive, stochastic matrix, with $\tau_1(M) = 1 \sum_{k=1}^n \min\{m_{ik}, m_{jk}\}$. Then we know that $\tau_1 < 1$ for each group
 - specifically, we have $\tau_1(M_g) \le 1 n\epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.
- When we multiply each of the groups together, we have

$$\lim_{k\to\infty}\tau_1(M^k)\leq \lim_{k\to\infty}(1-n\epsilon^{(n-1)})^k$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	0000000			
Coefficients of Ergodicity				

Scheme :

- For a sequence of *k* stochastic matrices, divide them into groups of *n*. Call one such group *M*_g.
- Each group will multiply to create a positive, stochastic matrix, with $\tau_1(M) = 1 \sum_{k=1}^n \min\{m_{ik}, m_{jk}\}$. Then we know that $\tau_1 < 1$ for each group
 - specifically, we have $\tau_1(M_g) \le 1 n\epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.
- When we multiply each of the groups together, we have

$$\lim_{k\to\infty}\tau_1(M^k)\leq \lim_{k\to\infty}(1-n\epsilon^{(n-1)})^k$$

• Which will equal zero when we have a bound on ϵ , the smallest possible α value.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	0000000			
Coefficients of Ergodicity				

Scheme :

- For a sequence of *k* stochastic matrices, divide them into groups of *n*. Call one such group *M*_g.
- Each group will multiply to create a positive, stochastic matrix, with $\tau_1(M) = 1 \sum_{k=1}^n \min\{m_{ik}, m_{jk}\}$. Then we know that $\tau_1 < 1$ for each group
 - specifically, we have $\tau_1(M_g) \le 1 n\epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.
- When we multiply each of the groups together, we have

$$\lim_{k\to\infty}\tau_1(M^k)\leq \lim_{k\to\infty}(1-n\epsilon^{(n-1)})^k$$

- Which will equal zero when we have a bound on ϵ , the smallest possible α value.
- Which implies M^k is a rank one matrix, say *L*.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	0000000			
Coefficients of Ergodicity				

Scheme :

- For a sequence of k stochastic matrices, divide them into groups of n. Call one such group Mg.
- Each group will multiply to create a positive, stochastic matrix, with $\tau_1(M) = 1 \sum_{k=1}^n \min\{m_{ik}, m_{jk}\}$. Then we know that $\tau_1 < 1$ for each group
 - specifically, we have $\tau_1(M_g) \le 1 n\epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.
- When we multiply each of the groups together, we have

$$\lim_{k\to\infty}\tau_1(M^k)\leq \lim_{k\to\infty}(1-n\epsilon^{(n-1)})^k$$

- Which will equal zero when we have a bound on ϵ , the smallest possible α value.
- Which implies M^k is a rank one matrix, say L.
- Thus, the polygon converges, as

$$\lim_{k\to\infty}\Pi^k=L\Pi^0$$

Which is simply a point.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	0000000			
Coefficients of Ergodicity				
Limitations				

The matrices to represent the pentagram mapping are made up α values that we have no control over. Eric bounded his matrices with entries $(0 < \delta < \frac{1}{2})$ and $(1 - \delta)$ so there was control over the entries in his matrix.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	0000000			
Coefficients of Ergodicity				
Limitations				

The matrices to represent the pentagram mapping are made up α values that we have no control over. Eric bounded his matrices with entries $(0 < \delta < \frac{1}{2})$ and $(1 - \delta)$ so there was control over the entries in his matrix.

Method only works for polygons with odd number of sides :

$$M = \begin{bmatrix} \alpha_0 & 0 & 1 - \alpha_0 & 0 & 0 & 0 \\ 0 & \alpha_1 & 0 & 1 - \alpha_1 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 & 1 - \alpha_2 & 0 \\ 0 & 0 & 0 & \alpha_3 & 0 & 1 - \alpha_3 \\ 1 - \alpha_4 & 0 & 0 & 0 & \alpha_4 & 0 \\ 0 & 1 - \alpha_5 & 0 & 0 & 0 & \alpha_5 \end{bmatrix}$$

$$M^{k} = \begin{bmatrix} \gamma_{0} & 0 & \gamma_{1} & 0 & \gamma_{2} & 2\\ 0 & \beta_{0} & 0 & \beta_{1} & 0 & \beta_{2}\\ \phi_{2} & 0 & \phi_{0} & 0 & \phi_{1} & 0\\ 0 & \psi_{2} & 0 & \psi_{0} & 0 & \psi_{1}\\ \rho_{1} & 0 & \rho_{2} & 0 & \rho_{0} & 0\\ 0 & \zeta_{1} & 0 & \zeta_{2} & 0 & \zeta_{0} \end{bmatrix}$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
	000000			
Coefficients of Ergodicity				
Possibilities				

If we consider α in terms of the cross-ratio, we would have

$$\alpha = \frac{CD}{AD}$$

If a bound exists on this α in terms of k, even a restricted case of k, then we are able to use the coefficients of ergodicity

Introduction Ergod	icity Parametrization	Unifying the Maps	Conclusion
	00000 00000		
Set-up			
a .			
Set-un			

The five points of pentagon Π^0 are represented as (a_i, b_i) where i = 0, ..., 4.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
0000000000000	0000000	000000	000000000000000000000000000000000000000	000
Set-up				
A .				
Set-up				

- The five points of pentagon Π^0 are represented as (a_i, b_i) where i = 0, ..., 4.
- Define a loop $f : [0, 1] \to \mathbb{R}^2$ which maps parameter $t \mapsto (x(t), y(t))$.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion
Set-up				
Set-up				

- The five points of pentagon Π^0 are represented as (a_i, b_i) where i = 0, ..., 4.
- Define a loop $f : [0, 1] \to \mathbb{R}^2$ which maps parameter $t \mapsto (x(t), y(t))$.
- The x-coordinates in the loop representing the pentagon

$$x(t) = \begin{cases} (1-5t)a_0 + 5ta_1 & 0 \le t \le 1/5\\ (2-5t)a_1 + (5t-1)a_2 & 1/5 \le t \le 2/5\\ (3-5t)a_2 + (5t-2)a_3 & 2/5 \le t \le 3/5\\ (4-5t)a_3 + (5t-3)a_4 & 3/5 \le t \le 4/5\\ (5-5t)a_4 + (5t-4)a_0 & 4/5 \le t \le 1 \end{cases}$$

Introduction	Ergodicity 0000000	Parametrization ••••••	Unifying the Maps	Conclusion
Set-up				
Set-up				

- The five points of pentagon Π^0 are represented as (a_i, b_i) where i = 0, ..., 4.
- Define a loop $f : [0, 1] \to \mathbb{R}^2$ which maps parameter $t \mapsto (x(t), y(t))$.
- The x-coordinates in the loop representing the pentagon

$$x(t) = \begin{cases} (1-5t)a_0 + 5ta_1 & 0 \le t \le 1/5\\ (2-5t)a_1 + (5t-1)a_2 & 1/5 \le t \le 2/5\\ (3-5t)a_2 + (5t-2)a_3 & 2/5 \le t \le 3/5\\ (4-5t)a_3 + (5t-3)a_4 & 3/5 \le t \le 4/5\\ (5-5t)a_4 + (5t-4)a_0 & 4/5 \le t \le 1 \end{cases}$$

The y-coordinate parametrization has the same form, except all a's are replaced with b.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion 000
Set-up				

Loop

FIGURE - The parametrization of the pentagon

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Linear Transformation				

Moving Segments

Paramterization of the first pentagon allows for a simple linear translation of segments when defining the second pentagon.

Requires all segments to be defined by a unique linear transformation.

	Ergodicity	Parametrization	Unifying the Maps	Conclusion
Linear Transformation				
Matrix Multiplic	ation			

$$\begin{bmatrix} x_1(t) \\ y_1(t) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \qquad \frac{i}{5} \le t \le \frac{(i+1)}{5}$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Linear Transformation				
	iantina			
	Ication			

$$\begin{bmatrix} x_1(t) \\ y_1(t) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \qquad \frac{i}{5} \le t \le \frac{(i+1)}{5}$$

Once we know the position of all five points in the original pentagon, we can determine the intersections of the diagonals using analytic techniques.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Linear Transformation				
Matrix Multipl	cation			

$$\begin{bmatrix} x_1(t) \\ y_1(t) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \qquad \frac{i}{5} \le t \le \frac{(i+1)}{5}$$

- Once we know the position of all five points in the original pentagon, we can determine the intersections of the diagonals using analytic techniques.
- So assuming we know (x(t), y(t)) and can find (x₁(t), y₁(t)), we can solve a system of equations to determine the matrix :

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \frac{a'_i b_{i+1} - a'_{i+1} b_i}{a_i b_{i+1} - a_{i+1} b_i} & \frac{a_i a'_{i+1} - a_{i+1} a'_i}{a_i b_{i+1} - a_{i+1} b_i} \\ \frac{b'_i b_{i+1} - b'_{i+1} b_i}{a_i b_{i+1} - a_{i+1} b_i} & \frac{a_i b'_{i+1} - a_{i+1} b'_i}{a_i b_{i+1} - a_{i+1} b_i} \end{bmatrix}$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Linear Transformation				
NA - Autor NA - Istor I	41			
Matrix Multipl	cation			

$$\begin{bmatrix} x_1(t) \\ y_1(t) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \qquad \frac{i}{5} \le t \le \frac{(i+1)}{5}$$

- Once we know the position of all five points in the original pentagon, we can determine the intersections of the diagonals using analytic techniques.
- So assuming we know (x(t), y(t)) and can find (x₁(t), y₁(t)), we can solve a system of equations to determine the matrix :

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \frac{a'_i b_{i+1} - a'_{i+1} b_i}{a_i b_{i+1} - a_{i+1} b_i} & \frac{a_i a'_{i+1} - a_{i+1} a'_i}{a_i b_{i+1} - a_{i+1} b_i} \\ \frac{b'_i b_{i+1} - b'_{i+1} b_i}{a_i b_{i+1} - a_{i+1} b_i} & \frac{a_i b'_{i+1} - a_{i+1} b'_i}{a_i b_{i+1} - a_{i+1} b_i} \end{bmatrix}$$

One downside is that a matrix needs to be found for each segment's transformation.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Linear Transformation				

Our goal :

Find the matrix
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 for each segment's transformation

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Linear Transformation				

Our goal :

- **I** Find the matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ for each segment's transformation
- **Z** Show the Perimeter of the new pentagon is smaller due to this transformation.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Linear Transformation				

Our goal :

- **I** Find the matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ for each segment's transformation
- **Z** Show the Perimeter of the new pentagon is smaller due to this transformation.
- B Repeat the process over and over until we get a point.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Linear Transformation				

Our goal :

- **I** Find the matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ for each segment's transformation
- **Z** Show the Perimeter of the new pentagon is smaller due to this transformation.
- B Repeat the process over and over until we get a point.

However, this is a lot of calculation to do by hand.

BRING IN THE PYTHON !

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Python Program				

Give it 5 points, going in counter-clockwise order. It finds :

The intersection of the diagonals.

The Game

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Python Program				

Give it 5 points, going in counter-clockwise order. It finds :

The intersection of the diagonals.

The ratio of
$$\frac{P(\Pi^k)}{P(\Pi^{k-1})}$$
, which allows for the easy calculation of $\frac{P(\Pi^k)}{P(\Pi^0)}$

The Game

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Python Program				

Give it 5 points, going in counter-clockwise order. It finds :

- The intersection of the diagonals.
- The ratio of $\frac{P(\Pi^k)}{P(\Pi^{k-1})}$, which allows for the easy calculation of $\frac{P(\Pi^k)}{P(\Pi^0)}$
- Draws a picture of the n iterations

The Game

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
		000000		
Python Program				

The Game

Give it 5 points, going in counter-clockwise order. It finds :

- The intersection of the diagonals.
- The ratio of $\frac{P(\Pi^k)}{P(\Pi^{k-1})}$, which allows for the easy calculation of $\frac{P(\Pi^k)}{P(\Pi^0)}$
- Draws a picture of the *n* iterations
- Gives the vertices of Π^k

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			• 00 000000000000	
Construction				

Two Types of Maps

Can we unify these two maps?

The midpoint map

The pentagram map

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Construction				

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Construction				

Let Π be an *n*-gon with vertices $v_0^0, v_1^0, \dots, v_{n-1}^0$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Construction				

- Let Π be an *n*-gon with vertices $v_0^0, v_1^0, \dots, v_{n-1}^0$.
- Choose $a_i, b_i \in [0, 1]$ with $a_i \le b_i$ for i = 0, 1, ..., n 1.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Construction				

- Let Π be an *n*-gon with vertices $v_0^0, v_1^0, \dots, v_{n-1}^0$.
- Choose $a_i, b_i \in [0, 1]$ with $a_i \le b_i$ for i = 0, 1, ..., n 1.
- Construct points A_i, B_i such that

$$a_i = rac{v_i^0 A_i}{v_i^0 v_{i+1}^0}$$
 and $b_i = rac{v_i^0 B_i}{v_i^0 v_{i+1}^0}$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Construction				

- Let Π be an *n*-gon with vertices $v_0^0, v_1^0, \dots, v_{n-1}^0$.
- Choose $a_i, b_i \in [0, 1]$ with $a_i \le b_i$ for i = 0, 1, ..., n 1.
- Construct points A_i , B_i such that $a_i = \frac{v_i^0 A_i}{v_i^0 v_{i+1}^0}$ and $b_i = \frac{v_i^0 B_i}{v_i^0 v_{i+1}^0}$.
- Connect v_{i-1}^0 to B_i and v_{i+2}^0 to A_i .

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Construction				

- Let Π be an *n*-gon with vertices $v_0^0, v_1^0, \dots, v_{n-1}^0$.
- Choose $a_i, b_i \in [0, 1]$ with $a_i \le b_i$ for i = 0, 1, ..., n 1.
- Construct points A_i , B_i such that $a_i = \frac{v_i^0 A_i}{v_i^0 v_{i+1}^0}$ and $b_i = \frac{v_i^0 B_i}{v_i^0 v_{i+1}^0}$.
- Connect v_{i-1}^0 to B_i and v_{i+2}^0 to A_i .

• Call the intersection v_i^1 .

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Construction				

- Let Π be an *n*-gon with vertices $v_0^0, v_1^0, \dots, v_{n-1}^0$.
- Choose $a_i, b_i \in [0, 1]$ with $a_i \le b_i$ for i = 0, 1, ..., n 1.
- Construct points A_i , B_i such that $a_i = \frac{v_i^0 A_i}{v_i^0 v_{i+1}^0}$ and $b_i = \frac{v_i^0 B_i}{v_i^0 v_{i+1}^0}$.
- Connect v_{i-1}^0 to B_i and v_{i+2}^0 to A_i .

- Call the intersection v_i^1 .
- Apply this process to each edge to form the vertices of an *n*-gon T(Π).

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Construction				

- Let Π be an *n*-gon with vertices $v_0^0, v_1^0, \dots, v_{n-1}^0$.
- Choose $a_i, b_i \in [0, 1]$ with $a_i \le b_i$ for i = 0, 1, ..., n 1.
- Construct points A_i , B_i such that $a_i = \frac{v_i^0 A_i}{v_i^0 v_{i+1}^0}$ and $b_i = \frac{v_i^0 B_i}{v_i^0 v_{i+1}^0}$.
- Connect v_{i-1}^0 to B_i and v_{i+2}^0 to A_i .

- Call the intersection v_i^1 .
- Apply this process to each edge to form the vertices of an *n*-gon T(Π).
- Applying this process k times gives us $T^k(\Pi)$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Construction				

Representing the Map

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000	
Construction				
Representing	the Map			

• A GPM T is uniquely determined by the a_i and b_j values.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000	
Construction				
Representing	the Map			

• A GPM T is uniquely determined by the a_i and b_i values.

• Let $f(T) = (a_0, b_0, a_1, b_1, \dots, a_{n-1}, b_{n-1}).$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000 000 000000000	
Basic Properties of the Map				
Some Examp	es			

 $f(T) = (0, 0, \ldots, 0) \implies$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000 000 000000000	
Basic Properties of the Map				
Some Examp	les			

 $f(T) = (0, 0, \dots, 0) \implies T$ is the identity map.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion
Basic Properties of the Map				
Some Exampl	es			

 $f(T) = (0, 0, \dots, 0) \implies T$ is the identity $f(T) = (1, 1, \dots, 1) \implies$ map.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Basic Properties of the Map				
Some Examp	es			

$$f(T) = (\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}) \implies$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Basic Properties of the Map				
Some Examp	les			

 $f(T) = (\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}) \implies T$ is the midpoint map.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Basic Properties of the Map				
Some Examp	les			

$$f(T) = (0, 1, 0, 1, \ldots, 0, 1) \implies$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Basic Properties of the Map				
<u> </u>				
Some Exampl	es			

 $f(T) = (0, 1, 0, 1, \dots, 0, 1) \implies T$ is the pentagram map.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000 0000 000000000	
Basic Properties of the Map				

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000 0000 000000000	
Basic Properties of the Map				

Gray regions are the overlap of two consecutive vertex triangles.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
Basic Properties of the Map				

- Gray regions are the overlap of two consecutive vertex triangles.
- The vertices of $T(\Pi)$ lie inside separate gray regions.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000 0000 000000000	
Basic Properties of the Map				

- Gray regions are the overlap of two consecutive vertex triangles.
- The vertices of $T(\Pi)$ lie inside separate gray regions.
- Each vertex of T(Π) can lie anywhere in its corresponding region without affecting the configuration of the other vertices.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion
Basic Properties of the Map				
Convexity and	the GPM			

All the maps we've looked at previously preserve convexity.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000 00 00000000000	
Basic Properties of the Map				
Convexity and	the GPM			

- All the maps we've looked at previously preserve convexity.
- Do all GPMs preserve convexity?

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
Basic Properties of the Map				
Convexity and	the GPM			

- All the maps we've looked at previously preserve convexity.
- Do all GPMs preserve convexity?
 - Unfortunately, no.

Introduction	Ergodicity	Parametrization	Unifying the Maps ○○○○○○●○○○○○○○	Conclusion
Regular Polygon Case				
A Special Typ	e of GPM			

Let Π be a regular *n*-gon and let *T* be a GPM such that $f(T) = (m, 1 - m, m, 1 - m, \dots, m, 1 - m)$ for some $m \in [0, \frac{1}{2}]$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion		
000000000000	0000000	000000	000000000000000000000000000000000000000	000		
Regular Polygon Case						
A Special Type of GPM						

Let Π be a regular *n*-gon and let *T* be a GPM such that $f(T) = (m, 1 - m, m, 1 - m, \dots, m, 1 - m)$ for some $m \in [0, \frac{1}{2}]$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion		
000000000000	0000000	000000	000000000000000000000000000000000000000	000		
Regular Polygon Case						
A Special Type of GPM						

Let Π be a regular *n*-gon and let *T* be a GPM such that $f(T) = (m, 1 - m, m, 1 - m, \dots, m, 1 - m)$ for some $m \in [0, \frac{1}{2}]$.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion
Regular Polygon Case				
A Special Typ	e of GPM			

Found using :

- Multiple Law of Sines applications
- Similar triangles
- Symmetry of the regular polygon

$$\frac{P(T^{k+1}(\Pi))}{P(T^{k}(\Pi))} = \cos\left(\frac{\pi}{n}\right) - (1 - 2m)\sin\left(\frac{\pi}{n}\right)\tan(z)$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
00000000000	0000000	000000	0000000000000000	000
Regular Polygon Case				
A Special Typ				
A Special Typ				

Found using :

- Multiple Law of Sines applications
- Similar triangles
- Symmetry of the regular polygon

$$\frac{P(T^{k+1}(\Pi))}{P(T^{k}(\Pi))} = \cos\left(\frac{\pi}{n}\right) - (1 - 2m)\sin\left(\frac{\pi}{n}\right)\tan(z)$$

Plugging in m = 0 reduces this equation to $\frac{P(T^{k+1}(\Pi))}{P(T^{k}(\Pi))} = \frac{\cos(\frac{2\pi}{n})}{\cos(\frac{\pi}{n})}$ which is what we obtained previously.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion
Regular Polygon Case				
A Special Typ	e of GPM			

Found using :

- Multiple Law of Sines applications
- Similar triangles
- Symmetry of the regular polygon

$$\frac{P(T^{k+1}(\Pi))}{P(T^{k}(\Pi))} = \cos\left(\frac{\pi}{n}\right) - (1 - 2m)\sin\left(\frac{\pi}{n}\right)\tan(z)$$

- Plugging in m = 0 reduces this equation to $\frac{P(T^{k+1}(\Pi))}{P(T^{k}(\Pi))} = \frac{\cos(\frac{2\pi}{n})}{\cos(\frac{\pi}{n})}$ which is what we obtained previously.
- So T is a convexity preserving GPM on regular polygons and T^k(Π) converges to a point.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			0000000000000000	
Regular Polygon Case				
A Special Type	e of GPM			

What makes this map important?

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			0000000000000000	
Regular Polygon Case				
A Special Typ	e of GPM			

- What makes this map important?
- It is a nontrivial convexity-preserving GPM on regular polygons.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			0000000000000000	
Regular Polygon Case				
A Special Typ	e of GPM			

- What makes this map important?
- It is a nontrivial convexity-preserving GPM on regular polygons.
- This very "normal" type of GPM preserves regularity and decreases side length in a predictable way.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
General Polygons				

Proposition

Let T_1 and T_2 be GPMs on a convex *n*-gon Π such that $f(T_1) = (a_0, b_0, \dots, a_{n-1}, b_{n-1})$ and $f(T_2) = (x, b_0, \dots, a_{n-1}, b_{n-1})$ where $a_0 \le x$. Then $A(T_1(\Pi)) \le A(T_2(\Pi))$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
General Polygons				

Proposition

Let T_1 and T_2 be GPMs on a convex *n*-gon Π such that $f(T_1) = (a_0, b_0, \dots, a_{n-1}, b_{n-1})$ and $f(T_2) = (x, b_0, \dots, a_{n-1}, b_{n-1})$ where $a_0 \le x$. Then $A(T_1(\Pi)) \le A(T_2(\Pi))$.

 $T_2(\Pi)$ is convex at vertex 0.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			0000000000000000	
General Polygons				

Proposition

Let T_1 and T_2 be GPMs on a convex *n*-gon Π such that $f(T_1) = (a_0, b_0, \dots, a_{n-1}, b_{n-1})$ and $f(T_2) = (x, b_0, \dots, a_{n-1}, b_{n-1})$ where $a_0 \le x$. Then $A(T_1(\Pi)) \le A(T_2(\Pi))$.

 $T_2(\Pi)$ is convex at vertex 0.

 $T_2(\Pi)$ is not convex at vertex 0

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
General Polygons				
GPM Properti	es			

Corollary

Let T_P be the pentagram map and T be any other GPM on a convex polygon Π . Then $A(T_P(\Pi)) < A(T(\Pi))$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
General Polygons				
GPM Properti	es			

Corollary

Let T_P be the pentagram map and T be any other GPM on a convex polygon Π . Then $A(T_P(\Pi)) < A(T(\Pi))$.

The process seen in the previous proposition terminates with the pentagram map.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
General Polygons				
GPM Propert	ies			

Corollary

Let T_P be the pentagram map and T be any other GPM on a convex polygon Π . Then $A(T_P(\Pi)) < A(T(\Pi))$.

- The process seen in the previous proposition terminates with the pentagram map.
- Recall that last time we proved $\frac{A(T_P^{k+1}(\Pi))}{A(T_P^k(\Pi))} < \frac{14}{15}$ where Π is a pentagon.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
General Polygons				

Corollary

Let T_P be the pentagram map and T be any other GPM on a convex polygon Π . Then $A(T_P(\Pi)) < A(T(\Pi))$.

- The process seen in the previous proposition terminates with the pentagram map.
- Recall that last time we proved $\frac{A(T_P^{k+1}(\Pi))}{A(T_P^k(\Pi))} < \frac{14}{15}$ where Π is a pentagon.
- We can use this corollary to obtain a better bound on the rate of area reduction for the pentagram map on pentagons.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let T_m be a GPM on a convex pentagon Π such that $f(T_m) = (m, m, \dots, m)$. Then $\frac{A(T_m^{k+1}(\Pi))}{A(T_m^k(\Pi))} < 1 - m(1 - m)$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let T_m be a GPM on a convex pentagon Π such that $f(T_m) = (m, m, \dots, m)$. Then $\frac{A(T_m^{k+1}(\Pi))}{A(T_m^k(\Pi))} < 1 - m(1 - m)$.

By the proposition on the previous slide, $\frac{A(T_P^{k+1}(\Pi))}{A(T_P^{k}(\Pi))} < \frac{A(T_m(T_P^{k}(\Pi)))}{A(T_P^{k}(\Pi))} < 1 - m(1 - m).$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let T_m be a GPM on a convex pentagon Π such that $f(T_m) = (m, m, \dots, m)$. Then $\frac{A(T_m^{k+1}(\Pi))}{A(T_m^k(\Pi))} < 1 - m(1 - m)$.

- By the proposition on the previous slide, $\frac{A(T_P^{k+1}(\Pi))}{A(T_P^{k}(\Pi))} < \frac{A(T_m(T_P^{k}(\Pi)))}{A(T_P^{k}(\Pi))} < 1 - m(1 - m).$
- On the interval [0, 1], the function g(x) = 1 x(1 x) is attains a minimum of $\frac{3}{4}$ at $x = \frac{1}{2}$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let T_m be a GPM on a convex pentagon Π such that $f(T_m) = (m, m, \dots, m)$. Then $\frac{A(T_m^{k+1}(\Pi))}{A(T_m^k(\Pi))} < 1 - m(1 - m)$.

By the proposition on the previous slide, $\frac{A(T_P^{k+1}(\Pi))}{A(T_P^{k}(\Pi))} < \frac{A(T_m(T_P^{k}(\Pi)))}{A(T_P^{k}(\Pi))} < 1 - m(1 - m).$

On the interval [0, 1], the function g(x) = 1 − x(1 − x) is attains a minimum of ³/₄ at x = ¹/₂.
So ^{A(T_{P}^{k+1}(\Pi))}/_{A(T_{P}^{k}(\Pi))} < ³/₄ ⇒ ^{A(T_{P}^{k}(\Pi))}/_{A(\Pi)} < (³/₄)^k.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				
A More Gene	ral Result			

What else can we say about different types of GPMs on convex pentagons ?

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				

A More General Result

What else can we say about different types of GPMs on convex pentagons?

Proposition

Let T_1 and T_2 be GPMs on a convex *n*-gon Π such that $f(T_1) = (a_0, b_0, \dots, a_{n-1}, b_{n-1})$ and $f(T_2) = (x, b_0, \dots, a_{n-1}, b_{n-1})$ where $a_0 \le x$. Then $A(T_2(\Pi)) \le A(T_1(\Pi))$.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				

A More General Result

What else can we say about different types of GPMs on convex pentagons?

Proposition

Let T_1 and T_2 be GPMs on a convex *n*-gon Π such that $f(T_1) = (a_0, b_0, \dots, a_{n-1}, b_{n-1})$ and $f(T_2) = (x, b_0, \dots, a_{n-1}, b_{n-1})$ where $a_0 \le x$. Then $A(T_2(\Pi)) \le A(T_1(\Pi))$.

Proposition

Let Π be a convex pentagon and let T be a convexity preserving GPM on Π such that $f(T) = (a_0, b_0, a_1, b_1, \dots, a_4, b_4)$ with $a_i \leq m \leq b_i$ for $i = 0, 1, \dots, 4$. Then $T^k(\Pi)$ shrinks to a region of zero area. In particular,

$$\frac{A(T^k(\Pi))}{A(\Pi)} \leq (1 - m(1 - m))^k$$

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				

A More General Result

What else can we say about different types of GPMs on convex pentagons?

Proposition

Let T_1 and T_2 be GPMs on a convex *n*-gon Π such that $f(T_1) = (a_0, b_0, \dots, a_{n-1}, b_{n-1})$ and $f(T_2) = (x, b_0, \dots, a_{n-1}, b_{n-1})$ where $a_0 \le x$. Then $A(T_2(\Pi)) \le A(T_1(\Pi))$.

Proposition

Let Π be a convex pentagon and let T be a convexity preserving GPM on Π such that $f(T) = (a_0, b_0, a_1, b_1, \ldots, a_4, b_4)$ with $a_i \le m \le b_i$ for $i = 0, 1, \ldots, 4$. Then $T^k(\Pi)$ shrinks to a region of zero area. In particular,

$$\frac{A(T^k(\Pi))}{A(\Pi)} \leq (1 - m(1 - m))^k$$

Proof :

Apply the top proposition to each coordinate of f(T).

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				
D 1 (0D				
Review of GP	M Results			

We proved convergence to a point for a special type of GPM applied to regular polygons.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				
Review of GP	M Results			

- We proved convergence to a point for a special type of GPM applied to regular polygons.
- We obtained a better bound of the rate of area decrease for the pentagram map.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			000000000000000000000000000000000000000	
The Pentagon Case				
Review of GP	M Results			

- - We proved convergence to a point for a special type of GPM applied to regular polygons.
 - We obtained a better bound of the rate of area decrease for the pentagram map.
 - We proved that a restricted class of GPMs applied to a convex pentagon shrinks to a region of zero area. Furthermore, we provided a bound on the rate of area decrease.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			0000000000000000	
The Pentagon Case				
Future GPM [Directions			

Given a polygon Π, find a sufficient condition for a *GPM* to be a convexity-preserving map on Π.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			0000000000000000	
The Pentagon Case				
Future GPM [Directions			

- Given a polygon Π, find a sufficient condition for a GPM to be a convexity-preserving map on Π.
- Investigate different types of GPMs.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
			0000000000000000	
The Pentagon Case				
Future GPM [Directions			

- Given a polygon Π, find a sufficient condition for a GPM to be a convexity-preserving map on Π.
- Investigate different types of GPMs.
- Study GPMs on polygons with n > 5 vertices.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion ••••

Generalized the iteration procedure.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion ●OO
Overall Results				

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion ●OO
Overall Results				

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.
- Made a program to assist in computation of the pentagram map.

Ergodicity	Parametrization	Unifying the Maps	Conclusion
	000000		

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.
- Made a program to assist in computation of the pentagram map.
- Set up methods for simpler geometric proofs for convergence.

Introductio	on 0000000	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion ••••

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.
- Made a program to assist in computation of the pentagram map.
- Set up methods for simpler geometric proofs for convergence.
- Worked with matrices to represent convergence.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion •oo

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.
- Made a program to assist in computation of the pentagram map.
- Set up methods for simpler geometric proofs for convergence.
- Worked with matrices to represent convergence.
- Built upon previously established results by Richard Schwartz.

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion ●OO

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.
- Made a program to assist in computation of the pentagram map.
- Set up methods for simpler geometric proofs for convergence.
- Worked with matrices to represent convergence.
- Built upon previously established results by Richard Schwartz.
- Proved convergence to a point for a restricted class of pentagons.

Introduction	Ergodicity	Parametrization	Unifying the Maps	Conclusion
				000

THANK YOU

Missouri State

- Dr. Sun
- Professor Vollmar for his Python expertise
- Missouri State University for hosting us
- The NSF : Grant #1559911

Introduction	Ergodicity 0000000	Parametrization	Unifying the Maps	Conclusion
References				

Erik Hintikka and Xingping Sun. Convergence of sequences of polygons. *Involve*, 2016.

Ilse Ipsen and Teresa Selee.

Ergodicity coefficients defined by vector norms. Society for Industrial and Applied Mathematics, 32(1):153 – 200, 2011.

Dan Ismailescu et al. Area problems involving kasner polygons. *ArXhiv : 0910.0452v1*, 2009.

Richard Schwartz. The pentagram map. Experimental Mathematics, 51 :71–81, 1994.

