Dynamics of the Pentagram Map

Supervised by Dr. Xingping Sun

H. Dinkins,
E. Pavlechko,
K. Williams

Missouri State University

July 28th, 2016

Midpoint Iteration

- Problem of midpoint iterations

FIGURE - Basic midpoint iteration on a heptagon

Midpoint Iteration

- Problem of midpoint iterations
- Finite Fourier Transforms

FIGURE - Basic midpoint iteration on a heptagon

Midpoint Iteration

- Problem of midpoint iterations
- Finite Fourier Transforms
- Coefficients of ergodicity

FIGURE - Basic midpoint iteration on a heptagon

Midpoint Iteration

- Problem of midpoint iterations
- Finite Fourier Transforms
- Coefficients of ergodicity

■ Elementary geometry

FIGURE - Basic midpoint iteration on a heptagon

Variation

First proposed in 1800's

FIGURE - Pentagram mapping on a pentagon

Variation

- First proposed in 1800's
- Solved using Brouwer's fixed point theorem

Figure - Pentagram mapping on a pentagon

Variation

First proposed in 1800's

- Solved using Brouwer's fixed point theorem
- Projective geometry

FIGURE - Pentagram mapping on a pentagon

Our Work

- Looked into the generalizations to any n-gon

FIGURE - Pentagram mapping on a pentagon

Our Work

- Looked into the generalizations to any n-gon
- Shown that the max rate of area decrease for any pentagon is $14 / 15$

FIGURE - Pentagram mapping on a pentagon

Our Work

- Looked into the generalizations to any n-gon
- Shown that the max rate of area decrease for any pentagon is $14 / 15$
- Proved convergence for any regular n-gon

FIGURE - Pentagram mapping on a pentagon

Midterm Goals

■ Generalize the pentagon's area method to n-gons

Midterm Goals

■ Generalize the pentagon's area method to n-gons

- Show the area method converges to a point

Midterm Goals

■ Generalize the pentagon's area method to n-gons
■ Show the area method converges to a point

- Use the matrices to prove convergence of vertices

Midterm Goals

■ Generalize the pentagon's area method to n-gons

- Show the area method converges to a point
- Use the matrices to prove convergence of vertices
- Explore connections to projective geometry

Contents

1 Introduction

- Review

■ Extending Previous Results
2 Ergodicity

- Coefficients of Ergodicity

3 Parametrization

- Set-up
- Linear Transformation
- Python Program

4 Unifying the Maps

- Construction
- Basic Properties of the Map
- Regular Polygon Case
- General Polygons
- The Pentagon Case

5 Conclusion

Schwartz's Proof

Richard Schwartz [4] proved that the pentagram map converges on any convex polygon.

Schwartz's Proof

Richard Schwartz [4] proved that the pentagram map converges on any convex polygon.

Definition

The cross ratio of collinear points $A, B, C, D \in \mathbb{R}^{2}$ is defined as

$$
\chi(A, B, C, D)=\frac{|A-C| \cdot|B-D|}{|A-B| \cdot|C-D|}
$$

where $|\cdot|$ denotes the Euclidean distance.

Schwartz's Proof

Richard Schwartz [4] proved that the pentagram map converges on any convex polygon.

Definition

The cross ratio of collinear points $A, B, C, D \in \mathbb{R}^{2}$ is defined as

$$
\chi(A, B, C, D)=\frac{|A-C| \cdot|B-D|}{|A-B| \cdot|C-D|}
$$

where $|\cdot|$ denotes the Euclidean distance.

If the four points are ordered A, B, C, D, then $\chi(A, B, C, D) \geq 1$.

Schwartz's Proof

Definition

Let v be a vertex of a polygon Π. The vertex invariant of v, written $\chi(v)$ is defined by

$$
\chi(v)=\chi(A, B, C, D)
$$

where A, B, C, and D are the points defined in the diagram.

Schwartz's Proof

Definition

Let v be a vertex of a polygon Π. The vertex invariant of v, written $\chi(v)$ is defined by

$$
\chi(v)=\chi(A, B, C, D)
$$

where A, B, C, and D are the points defined in the diagram.

- The pentagram map preserves the vertex invariants of a pentagon.

Schwartz's Proof

Definition

Let v be a vertex of a polygon Π. The vertex invariant of v, written $\chi(v)$ is defined by

$$
\chi(v)=\chi(A, B, C, D)
$$

where A, B, C, and D are the points defined in the diagram.

- The pentagram map preserves the vertex invariants of a pentagon.
- The pentagram map preserves the product of the vertex invariants for any nolvoon.

Schwartz's Proof

Definition

Let $A, B \in S$ where S is a convex subset of \mathbb{R}^{2}. Let x and y be the intersection points of the line through A and B with the boundary of S, where the points are ordered x, A, B, y. Then the Hilbert Distance between A and B in S is defined as

$$
\delta_{S}(A, B)=\log (\chi(x, A, B, y))
$$

Schwartz's Proof

Proof Sketch (by contradiction) :

Schwartz's Proof

Proof Sketch (by contradiction) :
1 Assume there exists a line L that intersects each Π^{k} in a nontrivial segment.

Schwartz's Proof

Proof Sketch (by contradiction) :
1 Assume there exists a line L that intersects each Π^{k} in a nontrivial segment.
2 The endpoints of $L \cap \Pi^{k}$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \rightarrow \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).

Schwartz's Proof

Proof Sketch (by contradiction) :
1 Assume there exists a line L that intersects each Π^{k} in a nontrivial segment.
2 The endpoints of $L \cap \Pi^{k}$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \rightarrow \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).
в The Hilbert Distance between the endpoints of L ด Π^{k} inside Π^{k-1} becomes infinite as $k \rightarrow \infty$.

Schwartz's Proof

Proof Sketch (by contradiction) :
1 Assume there exists a line L that intersects each Π^{k} in a nontrivial segment.
2 The endpoints of $L \cap \Pi^{k}$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \rightarrow \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).
3 The Hilbert Distance between the endpoints of $L \cap \Pi^{k}$ inside Π^{k-1} becomes infinite as $k \rightarrow \infty$.
4 By the triangle inequality, the Hilbert Perimeter of Π^{k} in Π^{k-1} becomes infinite as $k \rightarrow \infty$.

Schwartz's Proof

Proof Sketch (by contradiction) :
1 Assume there exists a line L that intersects each Π^{k} in a nontrivial segment.
2. The endpoints of $L \cap \Pi^{k}$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \rightarrow \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).
з The Hilbert Distance between the endpoints of L ด Π^{k} inside Π^{k-1} becomes infinite as $k \rightarrow \infty$.
4 By the triangle inequality, the Hilbert Perimeter of Π^{k} in Π^{k-1} becomes infinite as $k \rightarrow \infty$.
5 But we can show that the Hilbert Perimeter of Π^{k} in Π^{k-1} is the log of the product of the vertex invariants of Π^{k}, so it is invariant with respect to the pentagram map.

Schwartz's Proof

Proof Sketch (by contradiction) :
1 Assume there exists a line L that intersects each Π^{k} in a nontrivial segment.
2. The endpoints of $L \cap \Pi^{k}$ become arbitrarily close to the endpoints of $L \cap \Pi^{k-1}$ as $k \rightarrow \infty$ (Cauchy Sequence w.r.t. Hausdorff Distance).
3 The Hilbert Distance between the endpoints of L П Π^{k} inside Π^{k-1} becomes infinite as $k \rightarrow \infty$.
4 By the triangle inequality, the Hilbert Perimeter of Π^{k} in Π^{k-1} becomes infinite as $k \rightarrow \infty$.
5 But we can show that the Hilbert Perimeter of Π^{k} in Π^{k-1} is the log of the product of the vertex invariants of Π^{k}, so it is invariant with respect to the pentagram map.
6 Contradiction!

Convergence for a Restricted Class of Pentagons

Let $k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{|A B||C D|}>\frac{|A C|}{|A B|}$

Convergence for a Restricted Class of Pentagons

Let $k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{|A B||C D|}>\frac{|A C|}{|A B|}$
$\Longrightarrow|A C|<k_{i}|A B|$

Convergence for a Restricted Class of Pentagons

$$
\begin{aligned}
& \text { Let } k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{|A B| C D \mid}>\frac{|A C|}{|A B|} \\
& \Longrightarrow|A C|<k_{i}|A B| \\
& \Longrightarrow|A D|-|C D|<k_{i}|A B|
\end{aligned}
$$

Convergence for a Restricted Class of Pentagons

Let $k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{|A B||C D|}>\frac{|A C|}{|A B|}$
$\Longrightarrow|A C|<k_{i}|A B|$
$\Longrightarrow|A D|-|C D|<k_{i}|A B|$
$\Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A B|+|C D|$

Convergence for a Restricted Class of Pentagons

$$
\begin{aligned}
& \text { Let } k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{|A B||C D|}>\frac{|A C|}{|A B|} \\
& \Longrightarrow|A C|<k_{i}|A B| \\
& \Longrightarrow|A D|-|C D|<k_{i}|A B| \\
& \Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A B|+|C D| \\
& \Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A D|-|B C|
\end{aligned}
$$

Convergence for a Restricted Class of Pentagons

$$
\begin{aligned}
& \text { Let } k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{|A B||C D|}>\frac{|A C|}{|A B|} \\
& \Longrightarrow|A C|<k_{i}|A B| \\
& \Longrightarrow|A D|-|C D|<k_{i}|A B| \\
& \Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A B|+|C D| \\
& \Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A D|-|B C| \\
& \Longrightarrow|B C|<\left(k_{i}-1\right)|A B|
\end{aligned}
$$

Convergence for a Restricted Class of Pentagons

$$
\begin{aligned}
& \text { Let } k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{|A B| C D \mid}>\frac{|A C|}{|A B|} \\
& \Longrightarrow|A C|<k_{i}|A B| \\
& \Longrightarrow|A D|-|C D|<k_{i}|A B| \\
& \Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A B|+|C D| \\
& \Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A D|-|B C| \\
& \Longrightarrow|B C|<\left(k_{i}-1\right)|A B|
\end{aligned}
$$

Convergence for a Restricted Class of Pentagons

$$
\begin{array}{ll}
\text { Let } k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{|A B||C D|}>\frac{|A C|}{|A B|} & \text { By symmetry }|B C|<\left(k_{i}-1\right)|C D| . \\
\Longrightarrow|A C|<k_{i}|A B| & \Longrightarrow 2|B C|<\left(k_{i}-1\right)(|A B|+|C D|) \\
\Longrightarrow|A D|-|C D|<k_{i}|A B| & \\
\Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A B|+|C D| & \\
\Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A D|-|B C| & \\
\Longrightarrow|B C|<\left(k_{i}-1\right)|A B| &
\end{array}
$$

Convergence for a Restricted Class of Pentagons

Let $k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{A B|C D|}>\frac{|A C|}{|A B|}$
$\Longrightarrow|A C|<k_{i}|A B|$
$\Longrightarrow|A D|-|C D|<k_{i}|A B|$
$\Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A B|+|C D|$
By symmetry $|B C|<\left(k_{i}-1\right)|C D|$.
$\Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A D|-|B C|$
$\Longrightarrow|B C|<\left(k_{i}-1\right)|A B|$

Convergence for a Restricted Class of Pentagons

$$
\begin{array}{ll}
\text { Let } k_{i}=\chi\left(v_{i}\right)=\frac{|A C||B D|}{|A B B||C D|}>\frac{|A C|}{|A B|} & \text { By symmetry }|B C|<\left(k_{i}-1\right)|C D| . \\
\Longrightarrow|A C|<k_{i}|A B| & \Longrightarrow 2|B C|<\left(k_{i}-1\right)(|A B|+|C D|) \\
\Longrightarrow|A D|-|C D|<k_{i}|A B| & \Longrightarrow 2|B C|<\left(k_{i}-1\right)(|A D|-|B C|) \\
\Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A B|+|C D| & \Longrightarrow|B C|<\left(\frac{k_{i}-1}{k_{i}+1}\right)|A D| \\
\Longrightarrow|A D|<\left(k_{i}-1\right)|A B|+|A D|-|B C| &
\end{array}
$$

Convergence for a Restricted Class of Pentagons

This applies for any side of Π^{1}.

Convergence for a Restricted Class of Pentagons

This applies for any side of Π^{1}.
$P\left(\Pi^{1}\right)<\sum_{i=0}^{4}\left(\frac{k_{i}-1}{k_{i}+1}\right) d_{i}$

Convergence for a Restricted Class of Pentagons

This applies for any side of Π^{1}.

$$
\begin{aligned}
P\left(\Pi^{1}\right) & <\sum_{i=0}^{4}\left(\frac{k_{i}-1}{k_{i}+1}\right) d_{i} \\
& <2\left(\frac{k_{\max }-1}{k_{\max }+1}\right) P\left(\Pi^{0}\right)
\end{aligned}
$$

Convergence for a Restricted Class of Pentagons

This applies for any side of Π^{1}.

$$
\begin{aligned}
P\left(\Pi^{1}\right) & <\sum_{i=0}^{4}\left(\frac{k_{i}-1}{k_{i}+1}\right) d_{i} \\
& <2\left(\frac{k_{\max }-1}{k_{\max }+1}\right) P\left(\Pi^{0}\right) \\
\Longrightarrow & \frac{P\left(\Pi^{1}\right)}{P\left(\Pi^{0}\right)}<2\left(\frac{k_{\max }-1}{k_{\max }+1}\right)
\end{aligned}
$$

Convergence for a Restricted Class of Pentagons

This applies for any side of Π^{1}.

$$
\begin{aligned}
P\left(\Pi^{1}\right) & <\sum_{i=0}^{4}\left(\frac{k_{i}-1}{k_{i}+1}\right) d_{i} \\
& <2\left(\frac{k_{\max }-1}{k_{\max }+1}\right) P\left(\Pi^{0}\right) \\
\Longrightarrow & \frac{P\left(\Pi^{1}\right)}{P\left(\Pi^{0}\right)}<2\left(\frac{k_{\max }-1}{k_{\max }+1}\right)
\end{aligned}
$$

Convergence for a Restricted Class of Pentagons

This applies for any side of Π^{1}.

$$
\begin{aligned}
P\left(\Pi^{1}\right) & <\sum_{i=0}^{4}\left(\frac{k_{i}-1}{k_{i}+1}\right) d_{i} \\
& <2\left(\frac{k_{\max }-1}{k_{\max }+1}\right) P\left(\Pi^{0}\right) \\
\Longrightarrow & \frac{P\left(\Pi^{1}\right)}{P\left(\Pi^{0}\right)}<2\left(\frac{k_{\max }-1}{k_{\max }+1}\right)
\end{aligned}
$$

- The k_{i} values are invariant under the
pentagram map.
So $\frac{P\left(\Pi^{k}\right)}{P\left(\Pi^{0}\right)}<\left(2\left(\frac{k_{\max }-1}{k_{\max }+1}\right)\right)^{k}$
pentagram map.
So $\frac{P\left(\Pi^{k}\right)}{P\left(\Pi^{0}\right)}<\left(2\left(\frac{k_{\max }-1}{k_{\max }+1}\right)\right)^{k}$

Convergence for a Restricted Class of Pentagons

This applies for any side of Π^{1}.

$$
\begin{aligned}
P\left(\Pi^{1}\right) & <\sum_{i=0}^{4}\left(\frac{k_{i}-1}{k_{i}+1}\right) d_{i} \\
& <2\left(\frac{k_{\max }-1}{k_{\max }+1}\right) P\left(\Pi^{0}\right) \\
\Longrightarrow & \frac{P\left(\Pi^{1}\right)}{P\left(\Pi^{0}\right)}<2\left(\frac{k_{\max }-1}{k_{\max }+1}\right)
\end{aligned}
$$

- The k_{i} values are invariant under the pentagram map.
- So $\frac{P\left(\Pi^{k}\right)}{P\left(\Pi^{0}\right)}<\left(2\left(\frac{k_{\max }-1}{k_{\max }+1}\right)\right)^{k}$
- If $k_{\text {max }}<3$, then the pentagram iteration converges to a point and we have a bound for the rate.

A Conjecture

Explorations in geogebra indicate that $\frac{P\left(\Pi^{1}\right)}{P\left(\Pi^{0}\right)}<\frac{k_{\max }-1}{k_{\max }+1}$ holds in general for any polygon, regardless of the number of sides, but we have not been able to prove this.

Representation by matrices

The Pentagram map can be represented by an $n \times n$ circulant-patterned matrix.

$$
M=\left[\begin{array}{cccccc}
\alpha_{0} & 0 & 1-\alpha_{0} & 0 & \cdots & 0 \\
0 & \alpha_{1} & 0 & 1-\alpha_{1} & \cdots & 0 \\
\vdots & & & & \ddots & \vdots \\
0 & 1-\alpha_{n-1} & 0 & 0 & \cdots & \alpha_{n-1}
\end{array}\right]
$$

where α_{i} is a proportion along the $i^{i t h}$ diagonal, or $\alpha=\frac{c}{d}$
Note: In a regular n-gon

$$
\begin{aligned}
& \alpha_{0}=\alpha_{1}=\ldots=\alpha_{n-1}= \\
& \left(\frac{\sin (\pi / n)}{\sin (2 \pi / n)}\right)^{2}
\end{aligned}
$$

Matrices continued

Multiplying M by a vector of vertices will result in a column vector of the next polygon's vertices

$$
\text { vertices of } \Pi^{k+1}=M_{k}\left(\text { vertices of } \Pi^{k}\right)
$$

$$
\left[\begin{array}{c}
v_{0}^{k+1} \\
v_{1}^{k+1} \\
\vdots \\
v_{n-1}^{k+1}
\end{array}\right]=\left[\begin{array}{cccccc}
\alpha_{0} & 0 & 1-\alpha_{0} & 0 & \ldots & 0 \\
0 & \alpha_{1} & 0 & 1-\alpha_{1} & \cdots & 0 \\
\vdots & & & & \ddots & \vdots \\
0 & 1-\alpha_{n-1} & 0 & 0 & \cdots & \alpha_{n-1}
\end{array}\right]\left[\begin{array}{c}
v_{0}^{k} \\
v_{1}^{k} \\
\vdots \\
v_{n-1}^{k}
\end{array}\right]
$$

Matrices continued

Multiplying M by a vector of vertices will result in a column vector of the next polygon's vertices

$$
\begin{aligned}
\text { vertices of } \Pi^{k+1} & =M_{k}\left(\text { vertices of } \Pi^{k}\right) \\
{\left[\begin{array}{c}
v_{0}^{k+1} \\
v_{1}^{k+1} \\
\vdots \\
v_{n-1}^{k+1}
\end{array}\right] } & =\left[\begin{array}{cccccc}
\alpha_{0} & 0 & 1-\alpha_{0} & 0 & \ldots & 0 \\
0 & \alpha_{1} & 0 & 1-\alpha_{1} & \ldots & 0 \\
\vdots & & & & \ddots & \vdots \\
0 & 1-\alpha_{n-1} & 0 & 0 & \cdots & \alpha_{n-1}
\end{array}\right]\left[\begin{array}{c}
v_{0}^{k} \\
v_{1}^{k} \\
\vdots \\
v_{n-1}^{k}
\end{array}\right]
\end{aligned}
$$

We can then express the vertices of Π^{k} as

$$
\Pi^{k}=M_{k} M_{k-1} \ldots M_{0} \Pi^{0}
$$

Our project's main goal is to show that the vertices of Π^{k} converge as $k \rightarrow \infty$

Past Uses

■ Eric Hintikka [1] used coefficients of ergodicity to prove that any polygon derived from a series of stochastic circulant-patterned matrices will converge.
■ Stochastic : All entries in each row will add to one and be non-negative.

- Circulant- patterned : Each matrix has the same zero pattern, which repeats through each row while shifting one column each time.

$$
M=\left[\begin{array}{cccccc}
\alpha_{0} & 0 & 1-\alpha_{0} & 0 & \cdots & 0 \\
0 & \alpha_{1} & 0 & 1-\alpha_{1} & \cdots & 0 \\
\vdots & & & & \ddots & \vdots \\
0 & 1-\alpha_{n-1} & 0 & 0 & \cdots & \alpha_{n-1}
\end{array}\right]
$$

Coefficients of Ergodicity

Generally, ergodicity coefficients estimate the rate of convergence for stochastic matrices [2].
We'll use some key properties of one coefficient, τ_{1} :
$10 \leq \tau_{1}(M) \leq 1$, and $0=\tau_{1}(M) \Leftrightarrow M$ is a rank one matrix
(2) $\tau_{1}(M)=1-\sum_{k=1}^{n} \min \left\{m_{i k}, m_{j k}\right\}$

3 $\tau_{1}\left(M_{1} M_{2}\right) \leq \tau_{1}\left(M_{1}\right) \tau_{1}\left(M_{2}\right)$

Proving Convergence

Scheme :

- For a sequence of k stochastic matrices, divide them into groups of n. Call one such group M_{g}.

Proving Convergence

Scheme :

■ For a sequence of k stochastic matrices, divide them into groups of n. Call one such group M_{g}.
■ Each group will multiply to create a positive, stochastic matrix, with $\tau_{1}(M)=1-\sum_{k=1}^{n} \min \left\{m_{i k}, m_{j k}\right\}$. Then we know that $\tau_{1}<1$ for each group

■ specifically, we have $\tau_{1}\left(M_{g}\right) \leq 1-n \epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.

Proving Convergence

Scheme:

- For a sequence of k stochastic matrices, divide them into groups of n. Call one such group M_{g}.
■ Each group will multiply to create a positive, stochastic matrix, with $\tau_{1}(M)=1-\sum_{k=1}^{n} \min \left\{m_{i k}, m_{j k}\right\}$. Then we know that $\tau_{1}<1$ for each group

■ specifically, we have $\tau_{1}\left(M_{g}\right) \leq 1-n \epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.
■ When we multiply each of the groups together, we have

$$
\lim _{k \rightarrow \infty} \tau_{1}\left(M^{k}\right) \leq \lim _{k \rightarrow \infty}\left(1-n \epsilon^{(n-1)}\right)^{k}
$$

Proving Convergence

Scheme:

- For a sequence of k stochastic matrices, divide them into groups of n. Call one such group M_{g}.
■ Each group will multiply to create a positive, stochastic matrix, with $\tau_{1}(M)=1-\sum_{k=1}^{n} \min \left\{m_{i k}, m_{j k}\right\}$. Then we know that $\tau_{1}<1$ for each group
- specifically, we have $\tau_{1}\left(M_{g}\right) \leq 1-n \epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.
■ When we multiply each of the groups together, we have

$$
\lim _{k \rightarrow \infty} \tau_{1}\left(M^{k}\right) \leq \lim _{k \rightarrow \infty}\left(1-n \epsilon^{(n-1)}\right)^{k}
$$

- Which will equal zero when we have a bound on ϵ, the smallest possible α value.

Proving Convergence

Scheme:

- For a sequence of k stochastic matrices, divide them into groups of n. Call one such group M_{g}.
■ Each group will multiply to create a positive, stochastic matrix, with $\tau_{1}(M)=1-\sum_{k=1}^{n} \min \left\{m_{i k}, m_{j k}\right\}$. Then we know that $\tau_{1}<1$ for each group
- specifically, we have $\tau_{1}\left(M_{g}\right) \leq 1-n \epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.
■ When we multiply each of the groups together, we have

$$
\lim _{k \rightarrow \infty} \tau_{1}\left(M^{k}\right) \leq \lim _{k \rightarrow \infty}\left(1-n \epsilon^{(n-1)}\right)^{k}
$$

- Which will equal zero when we have a bound on ϵ, the smallest possible α value.
- Which implies M^{k} is a rank one matrix, say L.

Proving Convergence

Scheme:

■ For a sequence of k stochastic matrices, divide them into groups of n. Call one such group M_{g}.
■ Each group will multiply to create a positive, stochastic matrix, with $\tau_{1}(M)=1-\sum_{k=1}^{n} \min \left\{m_{i k}, m_{j k}\right\}$. Then we know that $\tau_{1}<1$ for each group

- specifically, we have $\tau_{1}\left(M_{g}\right) \leq 1-n \epsilon^{(n-1)}$ where ϵ is the smallest entry in any M matrix that is greater than zero.
■ When we multiply each of the groups together, we have

$$
\lim _{k \rightarrow \infty} \tau_{1}\left(M^{k}\right) \leq \lim _{k \rightarrow \infty}\left(1-n \epsilon^{(n-1)}\right)^{k}
$$

- Which will equal zero when we have a bound on ϵ, the smallest possible α value.
- Which implies M^{k} is a rank one matrix, say L.

■ Thus, the polygon converges, as

$$
\lim _{k \rightarrow \infty} \Pi^{k}=L \Pi^{0}
$$

■ Which is simply a point.

Limitations

- The matrices to represent the pentagram mapping are made up α values that we have no control over. Eric bounded his matrices with entries $\left(0<\delta<\frac{1}{2}\right)$ and $(1-\delta)$ so there was control over the entries in his matrix.

Limitations

- The matrices to represent the pentagram mapping are made up α values that we have no control over. Eric bounded his matrices with entries $\left(0<\delta<\frac{1}{2}\right)$ and $(1-\delta)$ so there was control over the entries in his matrix.
- Method only works for polygons with odd number of sides :

$$
\begin{gathered}
M=\left[\begin{array}{cccccc}
\alpha_{0} & 0 & 1-\alpha_{0} & 0 & 0 & 0 \\
0 & \alpha_{1} & 0 & 1-\alpha_{1} & 0 & 0 \\
0 & 0 & \alpha_{2} & 0 & 1-\alpha_{2} & 0 \\
0 & 0 & 0 & \alpha_{3} & 0 & 1-\alpha_{3} \\
1-\alpha_{4} & 0 & 0 & 0 & \alpha_{4} & 0 \\
0 & 1-\alpha_{5} & 0 & 0 & 0 & \alpha_{5}
\end{array}\right] \\
M^{k}=\left[\begin{array}{cccccc}
\gamma_{0} & 0 & \gamma_{1} & 0 & \gamma_{2} & 2 \\
0 & \beta_{0} & 0 & \beta_{1} & 0 & \beta_{2} \\
\phi_{2} & 0 & \phi_{0} & 0 & \phi_{1} & 0 \\
0 & \psi_{2} & 0 & \psi_{0} & 0 & \psi_{1} \\
\rho_{1} & 0 & \rho_{2} & 0 & \rho_{0} & 0 \\
0 & \zeta_{1} & 0 & \zeta_{2} & 0 & \zeta_{0}
\end{array}\right]
\end{gathered}
$$

Possibilities

- If we consider α in terms of the cross-ratio, we would have

$$
\alpha=\frac{C D}{A D}
$$

■ If a bound exists on this α in terms of k, even a restricted case of k, then we are able to use the coefficients of ergodicity

Set-up

Represent the pentagon as a loop :

- The five points of pentagon Π^{0} are represented as $\left(a_{i}, b_{i}\right)$ where $i=0, \ldots, 4$.

Set-up

Represent the pentagon as a loop :

- The five points of pentagon Π^{0} are represented as $\left(a_{i}, b_{i}\right)$ where $i=0, \ldots, 4$.
$■$ Define a loop $f:[0,1] \rightarrow \mathbb{R}^{2}$ which maps parameter $t \mapsto(x(t), y(t))$.

Set-up

Represent the pentagon as a loop :

- The five points of pentagon Π^{0} are represented as $\left(a_{i}, b_{i}\right)$ where $i=0, \ldots, 4$.
\square Define a loop $f:[0,1] \rightarrow \mathbb{R}^{2}$ which maps parameter $t \mapsto(x(t), y(t))$.
- The x -coordinates in the loop representing the pentagon

$$
x(t)= \begin{cases}(1-5 t) a_{0}+5 t a_{1} & 0 \leq t \leq 1 / 5 \\ (2-5 t) a_{1}+(5 t-1) a_{2} & 1 / 5 \leq t \leq 2 / 5 \\ (3-5 t) a_{2}+(5 t-2) a_{3} & 2 / 5 \leq t \leq 3 / 5 \\ (4-5 t) a_{3}+(5 t-3) a_{4} & 3 / 5 \leq t \leq 4 / 5 \\ (5-5 t) a_{4}+(5 t-4) a_{0} & 4 / 5 \leq t \leq 1\end{cases}
$$

Set-up

Represent the pentagon as a loop :

- The five points of pentagon Π^{0} are represented as $\left(a_{i}, b_{i}\right)$ where $i=0, \ldots, 4$.
\square Define a loop $f:[0,1] \rightarrow \mathbb{R}^{2}$ which maps parameter $t \mapsto(x(t), y(t))$.
- The x -coordinates in the loop representing the pentagon

$$
x(t)= \begin{cases}(1-5 t) a_{0}+5 t a_{1} & 0 \leq t \leq 1 / 5 \\ (2-5 t) a_{1}+(5 t-1) a_{2} & 1 / 5 \leq t \leq 2 / 5 \\ (3-5 t) a_{2}+(5 t-2) a_{3} & 2 / 5 \leq t \leq 3 / 5 \\ (4-5 t) a_{3}+(5 t-3) a_{4} & 3 / 5 \leq t \leq 4 / 5 \\ (5-5 t) a_{4}+(5 t-4) a_{0} & 4 / 5 \leq t \leq 1\end{cases}
$$

- The y-coordinate parametrization has the same form, except all a's are replaced with b.

Loop

FIGURE - The parametrization of the pentagon

Moving Segments

Paramterization of the

 first pentagon allows for a simple linear translation of segments when defining the second pentagon.Requires all segments to be defined by a unique linear transformation.

Matrix Multiplication

- Because the transformation is a linear one, we can represent the points through matrix multiplication.

$$
\left[\begin{array}{l}
x_{1}(t) \\
y_{1}(t)
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] \quad \frac{i}{5} \leq t \leq \frac{(i+1)}{5}
$$

Matrix Multiplication

- Because the transformation is a linear one, we can represent the points through matrix multiplication.

$$
\left[\begin{array}{l}
x_{1}(t) \\
y_{1}(t)
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] \quad \frac{i}{5} \leq t \leq \frac{(i+1)}{5}
$$

- Once we know the position of all five points in the original pentagon, we can determine the intersections of the diagonals using analytic techniques.

Matrix Multiplication

- Because the transformation is a linear one, we can represent the points through matrix multiplication.

$$
\left[\begin{array}{l}
x_{1}(t) \\
y_{1}(t)
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] \quad \frac{i}{5} \leq t \leq \frac{(i+1)}{5}
$$

- Once we know the position of all five points in the original pentagon, we can determine the intersections of the diagonals using analytic techniques.
■ So assuming we know $(x(t), y(t))$ and can find $\left(x_{1}(t), y_{1}(t)\right)$, we can solve a system of equations to determine the matrix :

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
\frac{a_{i}^{\prime} b_{i+1}-a_{i+1}^{\prime} b_{i}}{a_{i} b_{i+1}-a_{i+1} b_{i}} & \frac{a_{i} a_{i+1}^{\prime}-a_{i+1} a_{i}^{\prime}}{a_{i} b_{i+1}-a_{i+1} b_{i}} \\
\frac{b_{i}^{\prime} b_{i+1}-b_{i+1}^{\prime} b_{i}}{a_{i} b_{i+1}-a_{i+1} b_{i}} & \frac{a_{i} b_{i+1}^{\prime}-a_{i+1} b_{i}^{\prime}}{a_{i} b_{i+1}-a_{i+1} b_{i}}
\end{array}\right]
$$

Matrix Multiplication

- Because the transformation is a linear one, we can represent the points through matrix multiplication.

$$
\left[\begin{array}{l}
x_{1}(t) \\
y_{1}(t)
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] \quad \frac{i}{5} \leq t \leq \frac{(i+1)}{5}
$$

- Once we know the position of all five points in the original pentagon, we can determine the intersections of the diagonals using analytic techniques.
■ So assuming we know $(x(t), y(t))$ and can find $\left(x_{1}(t), y_{1}(t)\right)$, we can solve a system of equations to determine the matrix :

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
\frac{a_{i}^{\prime} b_{i+1}-a_{i+1}^{\prime} b_{i}}{a_{i} b_{i+1}-a_{i+1} b_{i}} & \frac{a_{i} a_{i+1}^{\prime}-a_{i+1} a_{i}^{\prime}}{a_{i} b_{i+1}-a_{i+1} b_{i}} \\
\frac{b_{i}^{\prime} b_{i+1}-b_{i+1}^{\prime} b_{i}}{a_{i} b_{i+1}-a_{i+1} b_{i}} & \frac{a_{i} b_{i+1}^{\prime}-a_{i+1} b_{i}^{\prime}}{a_{i} b_{i+1}-a_{i+1} b_{i}}
\end{array}\right]
$$

- One downside is that a matrix needs to be found for each segment's transformation.

Finding Convergence

Our goal :
1 Find the matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ for each segment's transformation

Finding Convergence

Our goal :
1 Find the matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ for each segment's transformation
2 Show the Perimeter of the new pentagon is smaller due to this transformation.

Finding Convergence

Our goal :
1 Find the matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ for each segment's transformation
2 Show the Perimeter of the new pentagon is smaller due to this transformation.
${ }_{3}$ Repeat the process over and over until we get a point.

Finding Convergence

Our goal :
1 Find the matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ for each segment's transformation
2 Show the Perimeter of the new pentagon is smaller due to this transformation.
${ }_{3}$ Repeat the process over and over until we get a point.
However, this is a lot of calculation to do by hand.

BRING IN THE PYTHON!

The Game

```
def pent(file_name, n): # 'n'= number of iterations to be done
    count = 0
    for itevar in range(0, n):
        p = perimeter(file_name)
        d = diagonal (file_name)
        i = intersection(file_name)
        c1 = count + 1
        write_file(file_name , count)
        new_file_name = str(file_name.replace('_' + str(count) + '.txt', '_' + str(cl) + '.txt'))
        p1 = perimeter(new_file_name)
        rat = p1 / p
        print('Perim Poly', cl, '/ Perim Poly' , count , '=' , rat)
        file_name = new_file_name
        coun\overline{t}=c1
    print('All done! Iteration number', n , 'gives intersection points' , i)
```

Give it 5 points, going in counter-clockwise order. It finds :
The intersection of the diagonals.

The Game

```
def pent(file_name, n): # 'n'= number of iterations to be done
count = 0
for itevar in range(0, n):
        p = perimeter(file_name)
        d = diagonal (file_name)
        i = intersection(file_name)
        c1 = count + 1
        write_file(file_name , count)
        new_file_name = str(file_name.replace('_' + str(count) + '.txt', '_' + str(cl) + '.txt'))
        p1 \ perimeter(new_file_name)
        rat = p1 / p
        print('Perim Poly', cl, '/ Perim Poly' , count , '=' , rat)
        file_name = new_file_name
        count = cl
    print('All done! Iteration number', n , 'gives intersection points' , i)
```

Give it 5 points, going in counter-clockwise order. It finds :

- The intersection of the diagonals.
- The ratio of $\frac{P\left(\Pi^{k}\right)}{P\left(\Pi^{k-1}\right)}$, which allows for the easy calculation of $\frac{P\left(\Pi^{k}\right)}{P\left(\Pi^{0}\right)}$

The Game

```
def pent(file_name, n): # 'n'= number of iterations to be done
count = 0
for itevar in range(0, n):
        p = perimeter(file_name)
        d = diagonal (file_name)
        i = intersection(file_name)
        c1 = count + 1
        write_file(file_name , count)
        new_file name = str(file_name.replace(' ' + str(count) + '.txt', ' _' + str(cl) + '.txt'))
        p1 \ perimeter(new_file_name)
        rat = p1 / p
        print('Perim Poly', cl, '/ Perim Poly' , count , '=' , rat)
        file_name = new_file_name
        count = c1
    print('All done! Iteration number', n , 'gives intersection points' , i)
```

Give it 5 points, going in counter-clockwise order. It finds :
The intersection of the diagonals.

- The ratio of $\frac{P\left(\Pi^{k}\right)}{P\left(\Pi^{k-1}\right)}$, which allows for the easy calculation of $\frac{P\left(\Pi^{k}\right)}{P\left(\Pi^{0}\right)}$

■ Draws a picture of the n iterations

The Game

```
def pent(file_name, n): # 'n'= number of iterations to be done
count = 0
for itevar in range(0, n):
    p = perimeter(file_name)
    d = diagonal (file_name)
    i = intersection(file_name)
    c1 = count + 1
    write_file(file_name , count)
    new_file_name = str(file_name.replace('_' + str(count) + '.txt', '_' + str(cl) + '.txt'))
    p1 = perimeter(new_file_name)
    rat = p1 / p
    print('Perim Poly', c1, '/ Perim Poly' , count , '=' , rat)
    file_name = new_file_name
    count = cl
    print('All done! Iteration number', n , 'gives intersection points' , i)
```

Give it 5 points, going in counter-clockwise order. It finds :

- The intersection of the diagonals.
- The ratio of $\frac{P\left(\Pi^{k}\right)}{P\left(\Pi^{k-1}\right)}$, which allows for the easy calculation of $\frac{P\left(\Pi^{k}\right)}{P\left(\Pi^{0}\right)}$
- Draws a picture of the n iterations

■ Gives the vertices of Π^{k}

Two Types of Maps

Can we unify these two maps?

The midpoint map

The pentagram map

The Generalized Pentagram Map (GPM)

The Generalized Pentagram Map (GPM)

- Let Π be an n-gon with vertices
$v_{0}^{0}, v_{1}^{0}, \ldots, v_{n-1}^{0}$.

The Generalized Pentagram Map (GPM)

- Let Π be an n-gon with vertices
$v_{0}^{0}, v_{1}^{0}, \ldots, v_{n-1}^{0}$.
■ Choose $a_{i}, b_{i} \in[0,1]$ with $a_{i} \leq b_{i}$ for $i=0,1, \ldots, n-1$.

The Generalized Pentagram Map (GPM)

- Let Π be an n-gon with vertices
$v_{0}^{0}, v_{1}^{0}, \ldots, v_{n-1}^{0}$.
■ Choose $a_{i}, b_{i} \in[0,1]$ with $a_{i} \leq b_{i}$ for
$i=0,1, \ldots, n-1$.
- Construct points A_{i}, B_{i} such that
$a_{i}=\frac{v_{i}^{0} A_{i}}{v_{i}^{0} v_{i+1}^{0}}$ and $b_{i}=\frac{v_{i}^{0} B_{i}}{v_{i}^{0} v_{i+1}^{0}}$.

The Generalized Pentagram Map (GPM)

- Let Π be an n-gon with vertices
$v_{0}^{0}, v_{1}^{0}, \ldots, v_{n-1}^{0}$.
■ Choose $a_{i}, b_{i} \in[0,1]$ with $a_{i} \leq b_{i}$ for

$$
i=0,1, \ldots, n-1
$$

- Construct points A_{i}, B_{i} such that
$a_{i}=\frac{v_{i}^{0} A_{i}}{v_{i}^{0} v_{i+1}^{0}}$ and $b_{i}=\frac{v_{i}^{0} B_{i}}{v_{i}^{0} v_{i+1}^{0}}$.
\square Connect v_{i-1}^{0} to B_{i} and v_{i+2}^{0} to A_{i}.

The Generalized Pentagram Map (GPM)

- Let Π be an n-gon with vertices

$$
v_{0}^{0}, v_{1}^{0}, \ldots, v_{n-1}^{0}
$$

- Choose $a_{i}, b_{i} \in[0,1]$ with $a_{i} \leq b_{i}$ for
- Call the intersection v_{i}^{1}.

$$
i=0,1, \ldots, n-1
$$

\square Construct points A_{i}, B_{i} such that
$a_{i}=\frac{v_{i}^{0} A_{i}}{v_{i}^{0} v_{i+1}^{0}}$ and $b_{i}=\frac{v_{i}^{0} B_{i}}{v_{i}^{0} v_{i+1}^{0}}$.
\square Connect v_{i-1}^{0} to B_{i} and v_{i+2}^{0} to A_{i}.

The Generalized Pentagram Map (GPM)

- Let Π be an n-gon with vertices

$$
v_{0}^{0}, v_{1}^{0}, \ldots, v_{n-1}^{0}
$$

- Choose $a_{i}, b_{i} \in[0,1]$ with $a_{i} \leq b_{i}$ for $i=0,1, \ldots, n-1$.
- Construct points A_{i}, B_{i} such that
- Call the intersection v_{i}^{1}.
- Apply this process to each edge to form the vertices of an n-gon $T(\Pi)$.
$a_{i}=\frac{v_{i}^{0} A_{i}}{v_{i}^{0} v_{i+1}^{0}}$ and $b_{i}=\frac{v_{i}^{0} B_{i}}{v_{i}^{0} v_{i+1}^{0}}$.
\square Connect v_{i-1}^{0} to B_{i} and v_{i+2}^{0} to A_{i}.

The Generalized Pentagram Map (GPM)

- Let Π be an n-gon with vertices

$$
v_{0}^{0}, v_{1}^{0}, \ldots, v_{n-1}^{0}
$$

- Choose $a_{i}, b_{i} \in[0,1]$ with $a_{i} \leq b_{i}$ for $i=0,1, \ldots, n-1$.
- Construct points A_{i}, B_{i} such that
$a_{i}=\frac{v_{i}^{0} A_{i}}{v_{i}^{0} v_{i+1}^{0}}$ and $b_{i}=\frac{v_{i}^{0} B_{i}}{v_{i}^{0} v_{i+1}^{0}}$.
- Call the intersection v_{i}^{1}.
- Apply this process to each edge to form the vertices of an n-gon $T(\Pi)$.
- Applying this process k times gives us $T^{k}(\Pi)$.
\square Connect v_{i-1}^{0} to B_{i} and v_{i+2}^{0} to A_{i}.

Representing the Map

Representing the Map

\square A GPM T is uniquely determined by the a_{i} and b_{i} values.

Representing the Map

\square A GPM T is uniquely determined by the a_{i} and b_{i} values.
\square Let $f(T)=\left(a_{0}, b_{0}, a_{1}, b_{1}, \ldots, a_{n-1}, b_{n-1}\right)$.

Some Examples

$$
f(T)=(0,0, \ldots, 0) \Longrightarrow
$$

Some Examples

$f(T)=(0,0, \ldots, 0) \Longrightarrow T$ is the identity map.

Some Examples

$f(T)=(0,0, \ldots, 0) \Longrightarrow T$ is the identity map.

Some Examples

$f(T)=(0,0, \ldots, 0) \Longrightarrow T$ is the identity map.
$f(T)=(1,1, \ldots, 1) \Longrightarrow T$ is a relabeling of the vertices.

Some Examples

$$
f(T)=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \Longrightarrow
$$

Some Examples

$$
\begin{aligned}
& f(T)=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \Longrightarrow T \text { is the } \\
& \text { midpoint map. }
\end{aligned}
$$

Some Examples

$f(T)=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \Longrightarrow T$ is the midpoint map.

$$
f(T)=(0,1,0,1, \ldots, 0,1) \Longrightarrow
$$

Some Examples

$f(T)=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \Longrightarrow T$ is the midpoint map.
$f(T)=(0,1,0,1, \ldots, 0,1) \Longrightarrow T$ is the pentagram map.

Intuition for the Map on Convex Polygons

Intuition for the Map on Convex Polygons

■ Gray regions are the overlap of two consecutive vertex triangles.

Intuition for the Map on Convex Polygons

- Gray regions are the overlap of two consecutive vertex triangles.

■ The vertices of $T(\Pi)$ lie inside separate gray regions.

Intuition for the Map on Convex Polygons

■ Gray regions are the overlap of two consecutive vertex triangles.
■ The vertices of $T(\Pi)$ lie inside separate gray regions.

- Each vertex of $T(\Pi)$ can lie anywhere in its corresponding region without affecting the configuration of the other vertices.

Convexity and the GPM

- All the maps we've looked at previously preserve convexity.

Convexity and the GPM

- All the maps we've looked at previously preserve convexity.
- Do all GPMs preserve convexity?

Convexity and the GPM

■ All the maps we've looked at previously preserve convexity.

- Do all GPMs preserve convexity?

■ Unfortunately, no.

A Special Type of GPM

Let Π be a regular n-gon and let T be a GPM such that $f(T)=(m, 1-m, m, 1-m, \ldots, m, 1-m)$ for some $m \in\left[0, \frac{1}{2}\right]$.

A Special Type of GPM

Let Π be a regular n-gon and let T be a GPM such that $f(T)=(m, 1-m, m, 1-m, \ldots, m, 1-m)$ for some $m \in\left[0, \frac{1}{2}\right]$.

A Special Type of GPM

Let Π be a regular n-gon and let T be a GPM such that $f(T)=(m, 1-m, m, 1-m, \ldots, m, 1-m)$ for some $m \in\left[0, \frac{1}{2}\right]$.

A Special Type of GPM

Found using :

- Multiple Law of Sines applications
- Similar triangles

■ Symmetry of the regular polygon

$$
\frac{P\left(T^{k+1}(\Pi)\right)}{P\left(T^{k}(\Pi)\right)}=\cos \left(\frac{\pi}{n}\right)-(1-2 m) \sin \left(\frac{\pi}{n}\right) \tan (z)
$$

A Special Type of GPM

Found using :

- Multiple Law of Sines applications
- Similar triangles
- Symmetry of the regular polygon

$$
\frac{P\left(T^{k+1}(\Pi)\right)}{P\left(T^{k}(\Pi)\right)}=\cos \left(\frac{\pi}{n}\right)-(1-2 m) \sin \left(\frac{\pi}{n}\right) \tan (z)
$$

■ Plugging in $m=0$ reduces this equation to $\frac{P\left(T^{k+1}(\Pi)\right)}{P\left(T^{k}(\Pi)\right)}=\frac{\cos \left(\frac{2 \pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)}$ which is what we obtained previously.

A Special Type of GPM

Found using :

- Multiple Law of Sines applications
- Similar triangles
- Symmetry of the regular polygon

$$
\frac{P\left(T^{k+1}(\Pi)\right)}{P\left(T^{k}(\Pi)\right)}=\cos \left(\frac{\pi}{n}\right)-(1-2 m) \sin \left(\frac{\pi}{n}\right) \tan (z)
$$

■ Plugging in $m=0$ reduces this equation to $\frac{P\left(T^{k+1}(\Pi)\right)}{P\left(T^{k}(\Pi)\right)}=\frac{\cos \left(\frac{2 \pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)}$ which is what we obtained previously.

- So T is a convexity preserving GPM on regular polygons and $T^{k}(\Pi)$ converges to a point.

A Special Type of GPM

■ What makes this map important?

A Special Type of GPM

- What makes this map important?
- It is a nontrivial convexity-preserving GPM on regular polygons.

A Special Type of GPM

- What makes this map important?

■ It is a nontrivial convexity-preserving GPM on regular polygons.

- This very "normal" type of GPM preserves regularity and decreases side length in a predictable way.

GPM Properties

Proposition

Let T_{1} and T_{2} be GPMs on a convex n-gon Π such that
$f\left(T_{1}\right)=\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ and $f\left(T_{2}\right)=\left(x, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ where $a_{0} \leq x$. Then $A\left(T_{1}(\Pi)\right) \leq A\left(T_{2}(\Pi)\right)$.

GPM Properties

Proposition

Let T_{1} and T_{2} be GPMs on a convex n-gon Π such that
$f\left(T_{1}\right)=\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ and $f\left(T_{2}\right)=\left(x, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ where $a_{0} \leq x$. Then $A\left(T_{1}(\Pi)\right) \leq A\left(T_{2}(\Pi)\right)$.
$T_{2}(\Pi)$ is convex at vertex 0 .

GPM Properties

Proposition

Let T_{1} and T_{2} be GPMs on a convex n-gon Π such that
$f\left(T_{1}\right)=\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ and $f\left(T_{2}\right)=\left(x, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ where $a_{0} \leq x$. Then $A\left(T_{1}(\Pi)\right) \leq A\left(T_{2}(\Pi)\right)$.
$T_{2}(\Pi)$ is convex at vertex 0 .
$T_{2}(\Pi)$ is not convex at vertex 0

GPM Properties

Corollary
Let T_{P} be the pentagram map and T be any other GPM on a convex polygon Π. Then $A\left(T_{P}(\Pi)\right)<A(T(\Pi))$.

GPM Properties

Corollary
Let T_{P} be the pentagram map and T be any other GPM on a convex polygon Π. Then $A\left(T_{P}(\Pi)\right)<A(T(\Pi))$.

- The process seen in the previous proposition terminates with the pentagram map.

GPM Properties

Corollary

Let T_{P} be the pentagram map and T be any other GPM on a convex polygon Π. Then $A\left(T_{P}(\Pi)\right)<A(T(\Pi))$.

- The process seen in the previous proposition terminates with the pentagram map.

■ Recall that last time we proved $\frac{A\left(T_{P}^{k+1}(\Pi)\right)}{A\left(T_{P}^{k}(\Pi)\right)}<\frac{14}{15}$ where Π is a pentagon.

GPM Properties

Corollary

Let T_{P} be the pentagram map and T be any other GPM on a convex polygon Π. Then $A\left(T_{P}(\Pi)\right)<A(T(\Pi))$.

- The process seen in the previous proposition terminates with the pentagram map.
\square Recall that last time we proved $\frac{A\left(T_{P}^{k+1}(\Pi)\right)}{A\left(T_{P}^{k}(\Pi)\right)}<\frac{14}{15}$ where Π is a pentagon.
■ We can use this corollary to obtain a better bound on the rate of area reduction for the pentagram map on pentagons.

A Better Bound

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let T_{m} be a GPM on a convex pentagon Π such that $f\left(T_{m}\right)=(m, m, \ldots, m)$. Then $\frac{A\left(T_{m}^{k+1}(\Pi)\right)}{A\left(T_{m}^{k}(\Pi)\right)}<1-m(1-m)$.

A Better Bound

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let T_{m} be a GPM on a convex pentagon Π such that $f\left(T_{m}\right)=(m, m, \ldots, m)$. Then $\frac{A\left(T_{m}^{k+1}(\Pi)\right)}{A\left(T_{m}^{k}(\Pi)\right)}<1-m(1-m)$.

■ By the proposition on the previous slide,

$$
\frac{A\left(T_{P}^{k+1}(\Pi)\right)}{A\left(T_{P}^{k}(\Pi)\right)}<\frac{A\left(T_{m}\left(T_{P}^{k}(\Pi)\right)\right)}{A\left(T_{P}^{k}(\Pi)\right)}<1-m(1-m)
$$

A Better Bound

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let T_{m} be a GPM on a convex pentagon Π such that $f\left(T_{m}\right)=(m, m, \ldots, m)$. Then $\frac{A\left(T_{m}^{k+1}(\Pi)\right)}{A\left(T_{m}^{k}(\Pi)\right)}<1-m(1-m)$.

- By the proposition on the previous slide,

$$
\frac{A\left(T_{P}^{k+1}(\Pi)\right)}{A\left(T_{P}^{k}(\Pi)\right)}<\frac{A\left(T_{m}\left(T_{P}^{k}(\Pi)\right)\right)}{A\left(T_{P}^{k}(\Pi)\right)}<1-m(1-m)
$$

\square On the interval $[0,1]$, the function $g(x)=1-x(1-x)$ is attains a minimum of $\frac{3}{4}$ at $x=\frac{1}{2}$.

A Better Bound

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let T_{m} be a GPM on a convex pentagon Π such that $f\left(T_{m}\right)=(m, m, \ldots, m)$. Then $\frac{A\left(T_{m}^{k+1}(\Pi)\right)}{A\left(T_{m}^{k}(\Pi)\right)}<1-m(1-m)$.

- By the proposition on the previous slide,

$$
\frac{A\left(T_{P}^{k+1}(\Pi)\right)}{A\left(T_{P}^{k}(\Pi)\right)}<\frac{A\left(T_{m}\left(T_{P}^{k}(\Pi)\right)\right)}{A\left(T_{P}^{k}(\Pi)\right)}<1-m(1-m)
$$

\square On the interval $[0,1]$, the function $g(x)=1-x(1-x)$ is attains a minimum of $\frac{3}{4}$ at $x=\frac{1}{2}$.
\square So $\frac{A\left(T_{P}^{k+1}(\Pi)\right)}{A\left(T_{P}^{k}(\Pi)\right)}<\frac{3}{4} \Longrightarrow \frac{A\left(T_{P}^{k}(\Pi)\right)}{A(\Pi)}<\left(\frac{3}{4}\right)^{k}$.

A More General Result

What else can we say about different types of GPMs on convex pentagons?

A More General Result

What else can we say about different types of GPMs on convex pentagons?

Proposition

Let T_{1} and T_{2} be GPMs on a convex n-gon Π such that
$f\left(T_{1}\right)=\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ and $f\left(T_{2}\right)=\left(x, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ where $a_{0} \leq x$. Then $A\left(T_{2}(\Pi)\right) \leq A\left(T_{1}(\Pi)\right)$.

A More General Result

What else can we say about different types of GPMs on convex pentagons?

Proposition

Let T_{1} and T_{2} be GPMs on a convex n-gon Π such that
$f\left(T_{1}\right)=\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ and $f\left(T_{2}\right)=\left(x, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ where $a_{0} \leq x$.
Then $A\left(T_{2}(\Pi)\right) \leq A\left(T_{1}(\Pi)\right)$.

Proposition

Let Π be a convex pentagon and let T be a convexity preserving GPM on Π such that $f(T)=\left(a_{0}, b_{0}, a_{1}, b_{1}, \ldots, a_{4}, b_{4}\right)$ with $a_{i} \leq m \leq b_{i}$ for $i=0,1, \ldots, 4$. Then $T^{k}(\Pi)$ shrinks to a region of zero area. In particular,

$$
\frac{A\left(T^{k}(\Pi)\right)}{A(\Pi)} \leq(1-m(1-m))^{k}
$$

A More General Result

What else can we say about different types of GPMs on convex pentagons?

Proposition

Let T_{1} and T_{2} be GPMs on a convex n-gon Π such that
$f\left(T_{1}\right)=\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ and $f\left(T_{2}\right)=\left(x, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$ where $a_{0} \leq x$.
Then $A\left(T_{2}(\Pi)\right) \leq A\left(T_{1}(\Pi)\right)$.

Proposition

Let Π be a convex pentagon and let T be a convexity preserving GPM on Π such that $f(T)=\left(a_{0}, b_{0}, a_{1}, b_{1}, \ldots, a_{4}, b_{4}\right)$ with $a_{i} \leq m \leq b_{i}$ for $i=0,1, \ldots, 4$. Then $T^{k}(\Pi)$ shrinks to a region of zero area. In particular,

$$
\frac{A\left(T^{k}(\Pi)\right)}{A(\Pi)} \leq(1-m(1-m))^{k}
$$

Proof :

- Apply the top proposition to each coordinate of $f(T)$.

Review of GPM Results

- We proved convergence to a point for a special type of GPM applied to regular polygons.

Review of GPM Results

■ We proved convergence to a point for a special type of GPM applied to regular polygons.

- We obtained a better bound of the rate of area decrease for the pentagram map.

Review of GPM Results

■ We proved convergence to a point for a special type of GPM applied to regular polygons.

- We obtained a better bound of the rate of area decrease for the pentagram map.

■ We proved that a restricted class of GPMs applied to a convex pentagon shrinks to a region of zero area. Furthermore, we provided a bound on the rate of area decrease.

Future GPM Directions

■ Given a polygon Π, find a sufficient condition for a GPM to be a convexity-preserving map on Π.

Future GPM Directions

■ Given a polygon Π, find a sufficient condition for a GPM to be a convexity-preserving map on Π.

- Investigate different types of GPMs.

Future GPM Directions

■ Given a polygon Π, find a sufficient condition for a GPM to be a convexity-preserving map on Π.

- Investigate different types of GPMs.

■ Study GPMs on polygons with $n>5$ vertices.

Overall Results

■ Generalized the iteration procedure.

Overall Results

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.

Overall Results

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.

■ Made a program to assist in computation of the pentagram map.

Overall Results

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.

■ Made a program to assist in computation of the pentagram map.
■ Set up methods for simpler geometric proofs for convergence.

Overall Results

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.

■ Made a program to assist in computation of the pentagram map.
■ Set up methods for simpler geometric proofs for convergence.
■ Worked with matrices to represent convergence.

Overall Results

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.
- Made a program to assist in computation of the pentagram map.
- Set up methods for simpler geometric proofs for convergence.

■ Worked with matrices to represent convergence.

- Built upon previously established results by Richard Schwartz.

Overall Results

- Generalized the iteration procedure.
- Improved the rate of convergence for Area to $\frac{3}{4}$.
- Made a program to assist in computation of the pentagram map.

■ Set up methods for simpler geometric proofs for convergence.
■ Worked with matrices to represent convergence.

- Built upon previously established results by Richard Schwartz.
- Proved convergence to a point for a restricted class of pentagons.

THANK YOU

- Dr. Sun
- Professor Vollmar for his Python expertise
- Missouri State University for hosting us

■ The NSF : Grant \#1559911

References

\square Erik Hintikka and Xingping Sun. Convergence of sequences of polygons.
Involve, 2016.

Ilse Ipsen and Teresa Selee.
Ergodicity coefficients defined by vector norms.
Society for Industrial and Applied Mathematics, 32(1) :153-200, 2011.

Dan Ismailescu et al.
Area problems involving kasner polygons.
ArXhiv: 0910.0452v1, 2009.

Richard Schwartz.
The pentagram map.
Experimental Mathematics, 51 :71-81, 1994.

