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Additive combinatorics

I Additive Combinatorics is a rich and active field of research!

I Sums and products (Erdős, Szemerédi)
I Arithmetic progressions (Roth, Green-Tao)
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Sum and product sets

I sumset A + B = {a + b : a ∈ A, b ∈ B}

I product set AB = {ab : a ∈ A, b ∈ B}
I e.g. A = {1, 2, 3},B = {3, 10}
I A + B = {4, 5, 6, 11, 12, 13}
I AB = {3, 6, 9, 10, 20, 30}
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Sums and products conjecture

I Erdős and Szemerédi conjectured that either A + A or the AA
should be large compared to the size of A.

I max{|A + A|, |AA|} ≥ |A|x , for some exponent, x ≥ 1.

I The conjecture is that x should be close to 2.

I Elekes - 5
4 , Solymosi - 4

3 , Konyagin-Shkredov have the record
with 4

3 + c for some c > 0
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Arithmetic progressions

I Let [a..b] denote the set of integers, x , such that a ≤ x ≤ b.

I A set of the form {a0 + dt : t ∈ [0..(n − 1)]} is called an
arithmetic progression of length n and step size d 6= 0.

I e.g. {4, 6, 8, 10, 12, 14} = {4 + 2t : t ∈ [0..5]}
I Szemerédi’s Theorem says that if we have a dense enough

subset of the integers, then it has arbitrarily long arithmetic
progressions.

I Green-Tao proved that there are aribtrarily long arithmetic
progressions of primes. Their theorem says, for every natural
number, k, there exists arithmetic progressions of primes with
k terms.
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Ramsey theory

I Ramsey theory looks for patterns in partitions (colorings)

I Schur’s Theorem - For any partition of the positive integers
into a finite number of parts, one of the parts contains
x , y , x + y .

I e.g. [1..10] = {1, 3, 5, 7, 9} ∪ {2, 4, 6, 8, 10}, 2 + 6 = 8.

I Open Problems In Partition Regularity (Hindman, Leader,
Strauss), monochromatic (x , y , x + y , xy) in N.

I Monochromatic Sums and Products (Green, Sanders),
monochromatic (x , y , x + y , xy) in finite fields.
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Polychromatic triples

I Partition Zq into k sets (called color classes), A1,A2, . . . ,Ak ,
of (roughly) equal size. Such a partition is called a coloring.

I A polychromatic triple is a triple, (x , y , x + y) where
x ∈ Ai , y ∈ Aj , and x + y ∈ Ah, for i , j , and h distinct.

I This is different from the monochromatic triples and
quadruples before, where all of the elements would all come
from the same set, Ai .

I Note that this doesn’t always happen. No polychromatic
quadruples can exist in Z(4n), where the color classes are
Aj = {x ∈ Z(4n) : x ≡ j (mod 4)}.
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Additive triples

I Theorem 1: If k ≥ 3, for a large prime, p, then any
k-coloring of Zp, where each color class has roughly the same
size (either

⌈p
k

⌉
or
⌊p
k

⌋
elements), must admit a

polychromatic triple of the form (x , y , x + y).

I When working in Zq, for q not necessarily prime, our results
weaken.

I Theorem 2: There exists an additive polychromatic triple of
the form (x , y , x + y) in Zq for k-coloring whenever we have

k > q
1
2
+ε, for every ε > 0.
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Multiplicative triples

I As a corollary to Theorem 2, we also have the existence of
multiplicative polychromatic triples in Zp.

I Corollary 1: There exists a multiplicative polychromatic triple
of the form (x , y , xy) in Zp for k-coloring whenever we have

k > q
1
2
+ε, for every ε > 0.
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Multiplicative triples

I A group is called cyclic if there exists an element, g ∈ Z∗
p,

called a generator, such that every element in the group can
be written as g j , for some j ∈ N.

I To prove that we have multiplicative polychromatic triples,
recall that Zp is a field, so its multiplicative group, (Z∗

p, ·),
must be cyclic.

I Every pair of elements, x , y ∈ Z∗
p can be written in terms of a

generator, g , as x = g j and y = gk .

I So products look like xy = g jgk = g j+k .

I Therefore, the behavior of nonzero products in Zp is
isomorphic to the behavior of sums in Zq, where q = (p − 1).

I So we apply Theorem 2 to the sets of exponents of g that
correspond to each color class.
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Notation

I We introduce the notation A⊆̂eB, to mean that A is a subset
of B, except for possibly a small exceptional set. That is to
say, that A is essentially a subset of B. More precisely, for
some small, specified constant,

A⊆̂eB ⇐⇒ |A \ B| ≤ e.

I e.g. {1, 2, 3, 4, 5}⊆̂1{1, 2, 3, 4}.
I e.g. {1, 2, 3, 4}⊆̂1{1, 2, 3, 4}.
I e.g. {1, 2, 3, 4}⊆̂1{1, 2, 3, 4, 5, 6, 7, 8}.
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Notation

I Similarly, we will also use the following (asymmetric!) symbol,
to say that A is essentially equal to B.

A=̂eB,

which means that A ⊆ B, and |B \ A| ≤ e.

I e.g. {1, 2, 3, 4}=̂1{1, 2, 3, 4, 5}.
I e.g. {1, 2, 3, 4, 5}̂6=1{1, 2, 3, 4}.
I e.g. {1, 2, 3}=̂1{1, 2, 3, 4, 5}.
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Proof of Theorem 1 (part 1)
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Proof of Theorem 1

I Theorem 1 is a corollary of the following technical result, and
an inclusion-exclusion argument that we postpone until later.

I Lemma: If p is a large prime, and A,B, and C are disjoint
subsets of Zp, each of size n or n + 1, with p

3 + 1 > n > 10,
and possibly have the same size, then there exists a triple,
(x , y , x + y), where no two of the elements come from the
same set.

I We will prove the lemma by showing that we cannot have
A + B ⊆ A ∪ B and A + C ⊆ A ∪ C simultaneously, which will
mean that we have a polychromatic triple.
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Proof of Theorem 1 (part 1)

I Without loss of generality, we will assume that |A| = n. Let
|B| = m, which is either n or n + 1, and let |C | = l , which is
also either n or n + 1.

I Cauchy-Davenport Theorem: For additive subsets of Zp, A
and B: |A + B| ≥ min{|A|+ |B| − 1, p}.
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Proof of Theorem 1 (part 1)

I In our case, we will have that |A + B| ≥ |A|+ |B| − 1, by
Cauchy-Davenport.

I If |A + B| > |A|+ |B|, then A + B * A ∪ B, and we have a
polychromatic triple. So we can assume that one of the
following two theorems hold, giving us information on the
structure of A and B:

I Vosper’s Theorem: If |A + B| = |A|+ |B| − 1 then A and B
are arithmetic progressions with the same step size.

I Hamidoune-Rødseth Theorem: If |A + B| = |A|+ |B| then
A and B are =̂1 arithmetic progressions with the same step
size.
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Proof of Theorem 1 (part 1)

I Cauchy-Davenport guarantees that each sum set must be at
least a minimum size, which puts us into two cases:

I |A + B| = |A|+ |B| − 1 (Vosper)
|A + B| = |A|+ |B| (Hamidoune-Rødseth)

I In either the case of Vosper’s Theorem or the
Hamidoune-Rødseth Theorem, we will have that our color
classes must essentially be arithmetic progressions.
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Proof of Theorem 1 (part 1)

I In the case that |A + B| = |A|+ |B| − 1, we write down what
the elements of each arithmetic progression must look like and
make some reductions.

I A = {a0+su : s ∈ [0..(n−1)]},B = {b0+su : s ∈ [0..(m−1)]}.
I A + B = {a0 + b0 + su : s ∈ [0..(n + m − 2)]}
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Proof of Theorem 1 (part 1)

I If we have |A + B| = |A|+ |B|, then A and B are arithmetic
progressions, but missing one element.

I In either case, we will have
A=̂1{a0 + su : s ∈ [0..n]} and B=̂1{b0 + su : s ∈ [0..m]}.

I The sumset will be of the form
A + B=̂1{a0 + b0 + su : s ∈ [0..(n + m − 1)]}.

I The subscript of 1 follows from the fact that we are
guaranteed that A + B can be missing no more than one
element from the set {a0 + b0 + su : s ∈ [0..(n + m − 1)]}, by
Cauchy-Davenport.
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Proof of Theorem 1 (part 1)

I We can repeat the same process for A and C .

I So, A=̂1{a0 + su : s ∈ [0..n]} and C =̂1{c0 + su : s ∈ [0..l ]}.
I The sumset is of the form

A + C =̂1{a0 + c0 + su : s ∈ [0..(n + l − 1)]}.
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Proof of Theorem 1 (part 1)

I Without loss of generality, we can assume that u = 1. If
u 6= 1, divide everything by u, and we preserve all of the same
arithmetic data. We know u 6= 0, as it is the step size of an
arithmetic progression.

I Now, we have sets of the following forms:

I A=̂1[a0..(a0 + n)]

I B=̂1[b0..(b0 + m)]

I C =̂1[c0..(c0 + l)]

I Our sumsets are now of the following form
A + B=̂1{a0 + b0 + s : s ∈ [0..(n + m − 1)]} and
A + C =̂1{a0 + c0 + s : s ∈ [0..(n + l − 1)]}.
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Proof of Theorem 1 (part 1)

I By way of contradiction, we will assume that we do not have
a polychromatic triple of the form (x , y , x + y).

I This implies that every sum of elements in A and B ends up
back in either A or B.

I The same must then be true for A and C .

I So we have that (A + B) ⊆ (A ∪ B) and (A + C ) ⊆ (A ∪ C ).

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 1)

I By way of contradiction, we will assume that we do not have
a polychromatic triple of the form (x , y , x + y).

I This implies that every sum of elements in A and B ends up
back in either A or B.

I The same must then be true for A and C .

I So we have that (A + B) ⊆ (A ∪ B) and (A + C ) ⊆ (A ∪ C ).

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 1)

I By way of contradiction, we will assume that we do not have
a polychromatic triple of the form (x , y , x + y).

I This implies that every sum of elements in A and B ends up
back in either A or B.

I The same must then be true for A and C .

I So we have that (A + B) ⊆ (A ∪ B) and (A + C ) ⊆ (A ∪ C ).

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 1)

I By way of contradiction, we will assume that we do not have
a polychromatic triple of the form (x , y , x + y).

I This implies that every sum of elements in A and B ends up
back in either A or B.

I The same must then be true for A and C .

I So we have that (A + B) ⊆ (A ∪ B) and (A + C ) ⊆ (A ∪ C ).

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 1)

I Claim: (A ∪ B)⊆̂10[(−m)..m].

I Recall that our sets are of the forms
A=̂1{a0 + s : s ∈ [0..n]}, and B=̂1{b0 + s : s ∈ [0..m]}.

I As A is missing one element and (A + B) is missing no more
than one element, then their intersection is missing no more
than two elements.

I So, A ∩ (A + B)=̂2

{a0 + s : s ∈ [0..n]} ∩ {a0 + b0 + s : s ∈ [0..(n + m)]}.

I If we subtract a0 from both sets, we get
(A− a0) ∩ (A + B − a0)=̂2

{s : s ∈ [0..n]} ∩ {b0 + s : s ∈ [0..(n + m)]}.
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Proof of Theorem 1 (part 1)

I Since (A + B) ⊆ (A ∪ B), and |A ∪ B| = n + m, and
|A + B| ≥ n + m − 1, we know that |A ∩ (A + B)| ≥ n − 1.

I Combining this with (A− a0) ∩ (A + B − a0)=̂2{s : s ∈
[0..n]} ∩ {b0 + s : s ∈ [0..(n + m)]} and the fact that
|(A− a0)| = n tells us that [0..n]⊆̂2[b0..(b0 + n + m)].

I Note that [0..n] cannot be somewhere in the middle of
[b..(b0 + n + m)].

I So (A− a0) is either the first or second half of
[b0..(b0 + n + m)] and (B − a0) is the rest.
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|(A− a0)| = n tells us that [0..n]⊆̂2[b0..(b0 + n + m)].

I Note that [0..n] cannot be somewhere in the middle of
[b..(b0 + n + m)].

I So (A− a0) is either the first or second half of
[b0..(b0 + n + m)] and (B − a0) is the rest.
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Proof of Theorem 1 (part 1)

<p/3<p/3<p/3

. . . . . . 

As each subset of Zp is of size less than p/3, neither set can wrap all the
way around to border both sides of the other. This figure ignores the

possible exceptional elements.
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Proof of Theorem 1 (part 1)

I Since (A− a0)=̂1[0..n], we have that either

(i) (B − a0)=̂4[b0..(b0 + m)] (left half),

or

(ii) (B − a0)=̂4[(b0 + n)..(b0 + n + m)] (right half).

I In case (i), (A− a0)=̂4[(b0 + m + 1)..(b0 + n + m)].

I But (A− a0)=̂1[0..n]

I So, b0 ∈ [(−m − 5)..(−m + 5)] and b0 ∈ [(−5)..5].
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Proof of Theorem 1 (part 1)

I In case (ii), (A− a0)=̂4[b0..(b0 + n)].

I But again, (A− a0)=̂1[0..n]

I So, b0 ∈ [(−5)..5], and b0 ∈ [(m − 5)..(m + 5)].

I In either case, we can see that the union of A and B must
then be, essentially, [(−m)..m], with at most five exceptions
from each of A and B, giving us the desired claim, that
A ∪ B=̂10[(−m)..m].

I But this reasoning also applies with A and C , meaning that
three disjoint sets of size n have to be contained in an interval
of about 2n integers, with no more than 4 exceptional
elements per set. This is a contradiction for n > 12.
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Proof of Theorem 2
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Proof of Theorem 2

I Theorem 2: There exists an additive polychromatic triple of
the form (x , y , x + y) in Zq (q may be composite!) for

k-coloring whenever we have k > q
1
2
+ε, for any ε > 0.

I To see this, suppose that we have a color class, A, such that
A = {a1, . . . , an}, where each element in A can be written as
ai = x + aj

I Now, for any fixed ai , there are n choices of j such that
x + aj = ai .

I Rearranging, we get that there exist n values of (ai − aj), for
a fixed i due to the n choices of j .

I Since there are n choices for ai , the total number of elements
that could be added to A to get A is ≤ n2.
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Proof of Theorem 2

I Set |Zq \ A| ≤ n2, where |Zq \ A| = q − n.

I Note that Zq \ A is the union of all of the other color classes.

I Bounding the number of possible solutions for x in
ai = x + aj , we get

I q − n ≤ n2

I q + 1
4 ≤ n2 + n + 1

4

I q + 1
4 ≤ (n + 1

2)2

I

√
q + 1

4 −
1
2 ≤ n.

I So, if we violate this, then there must be a polychromatic

triple for k > q
1
2
+ε, for any ε > 0.
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Proof of Theorem 2

I Recall that k ≈ q
n .

I We just showed that: √
q +

1

4
− 1

2
≤ n.

I So, if we violate this inequality, then there must be a

polychromatic triple for k > q
1
2
+ε, for any ε > 0.
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Proof of Theorem 1 (part 2)

I Inclusion-exclusion principle

I |A ∪ B ∪ C ∪ D| = |A|+ |B|+ |C |+ |D|
−|A ∩ B| − |A ∩ C | − |A ∩ D| − |B ∩ C | . . . plus the triple
intersections, minus the quadruple intersection.

I We can always find a polychromatic triple with more than
four color classes

I We set the following restrictions on our sets and graph the
corresponding equations:
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Proof of Theorem 1 (part 2)

I These restrictions guarantee that any triple of the form
(x , y , x + y) comes from three different sets.

I x 6= y

I x 6= x + y

I y 6= x + y

I x + y 6= ai , bi for every ai ∈ A, bi ∈ B and where i ranges
from 0 to (n − 1)
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Proof of Theorem 1 (part 2)

I We now count the number of choices of x and y that will not
give a polychromatic triple. Using an inclusion-exclusion
argument (illustrated on the next slide)with m as the number
of elements in A ∪ B that x and y cannot be, we have
3p(m + 1)− (2(m + 1)2 + m) + (1 + 3m + T )− (S4) < p2

I T = #{e1 + e2 = e3 : e1, e2, e3 ∈ (A \ {x})∪ (B \ {y})} ≤ m2

I S4 = #{e1 + e1 = e2 : e1, e2 ∈ (A \ {x}) ∪ (B \ {y})} ≤
max{m,T}

I So, 3p + 3pm − 2m2 − 4m − 2 + T − S4 < p2
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Inclusion-exclusion figure

This is a graph of all of the points, (x , y), that will not yield a
polychromatic triple. The full lines are x = 0, y = 0, and y = x . The

vertical dashed lines are the cases of x ∈ M, where the horizontal dashed
lines are the cases where y ∈ M. Finally, the dotted lines indicate points,

(x , y), such that (x + y) ∈ M.
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Proof of Theorem 1 (part 2)

I If T is at its worst possible case, m2, then S4 ≤ T

I So, p2 − 3p − 3pm + 2m2 + 4m + 2 > 0, where
m = 2(n − 1) = 2(pk − 1) = 2p−2k

k

I So, p2 − 3p − 3p(2p−2k
k ) + 2(2p−2k

k )2 + 4(2p−2k
k ) + 2 > 0

I From this, we can compute k ≥ 4 and p > − k
k−2 .

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 2)

I If T is at its worst possible case, m2, then S4 ≤ T

I So, p2 − 3p − 3pm + 2m2 + 4m + 2 > 0, where
m = 2(n − 1) = 2(pk − 1) = 2p−2k

k

I So, p2 − 3p − 3p(2p−2k
k ) + 2(2p−2k

k )2 + 4(2p−2k
k ) + 2 > 0

I From this, we can compute k ≥ 4 and p > − k
k−2 .

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 2)

I If T is at its worst possible case, m2, then S4 ≤ T

I So, p2 − 3p − 3pm + 2m2 + 4m + 2 > 0, where
m = 2(n − 1) = 2(pk − 1) = 2p−2k

k

I So, p2 − 3p − 3p(2p−2k
k ) + 2(2p−2k

k )2 + 4(2p−2k
k ) + 2 > 0

I From this, we can compute k ≥ 4 and p > − k
k−2 .

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 2)

I If T is at its worst possible case, m2, then S4 ≤ T

I So, p2 − 3p − 3pm + 2m2 + 4m + 2 > 0, where
m = 2(n − 1) = 2(pk − 1) = 2p−2k

k

I So, p2 − 3p − 3p(2p−2k
k ) + 2(2p−2k

k )2 + 4(2p−2k
k ) + 2 > 0

I From this, we can compute k ≥ 4 and p > − k
k−2 .

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Computational Examples

I Triples of the form (x , y , xy)

I Examples of color classes when no polychromatic
multiplicative triples occur in Zp when k = 3

I

p Color Class 1 Color Class 2 Color Class 3

5 2, 3 1, 4 0
7 3, 6, 5 2, 4 0, 1

I As of yet, no further examples have been found when p is
greater than 7.
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Computational Examples

I Examples of color classes when no polychromatic
multiplicative triples occur in Zq when k = 3, where q is some
non-prime number.

I

q Color Class 1 Color Class 2 Color Class 3

6 1, 4 2, 5 0, 3
8 2, 3, 7 0, 4, 6 1, 5
9 1, 4, 8 0, 3, 6 2, 5, 7

10 3, 7, 8, 9 2, 4, 6 0, 1, 5
12 1, 4, 5, 7 2, 8, 10, 11 0, 3, 6, 9

I No examples have been found for color classes in which no
additive polychromatic triples occur in Zq when k = 3.
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Future work

I Generalize Theorem 2 for fewer sets. We currently have
guaranteed the existence of a polychromatic triple in Zq for

k-colorings with k > q
1
2
+ε, for any ε > 0. Can we also

guarantee the existence of a polychromatic triple in Zq for
k-colorings with smaller k?

I Computationally, polychromatic quadruples seem to exist
rather often. How can we guarantee their existence?
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