Polychromatic Sums and Products in Finite Fields

Karissa, Katie, Rafael - Missouri State University, Springfield

August 22, 2016

Additive combinatorics

- Additive Combinatorics is a rich and active field of research!

Additive combinatorics

- Additive Combinatorics is a rich and active field of research!
- Sums and products (Erdős, Szemerédi)

Additive combinatorics

- Additive Combinatorics is a rich and active field of research!
- Sums and products (Erdős, Szemerédi)
- Arithmetic progressions (Roth, Green-Tao)

Sum and product sets

- sumset $A+B=\{a+b: a \in A, b \in B\}$

Sum and product sets

- sumset $A+B=\{a+b: a \in A, b \in B\}$
- product set $A B=\{a b: a \in A, b \in B\}$

Sum and product sets

- sumset $A+B=\{a+b: a \in A, b \in B\}$
- product set $A B=\{a b: a \in A, b \in B\}$
- e.g. $A=\{1,2,3\}, B=\{3,10\}$

Sum and product sets

- sumset $A+B=\{a+b: a \in A, b \in B\}$
- product set $A B=\{a b: a \in A, b \in B\}$
- e.g. $A=\{1,2,3\}, B=\{3,10\}$
- $A+B=\{4,5,6,11,12,13\}$

Sum and product sets

- sumset $A+B=\{a+b: a \in A, b \in B\}$
- product set $A B=\{a b: a \in A, b \in B\}$
- e.g. $A=\{1,2,3\}, B=\{3,10\}$
- $A+B=\{4,5,6,11,12,13\}$
- $A B=\{3,6,9,10,20,30\}$

Sums and products conjecture

- Erdős and Szemerédi conjectured that either $A+A$ or the $A A$ should be large compared to the size of A.

Sums and products conjecture

- Erdős and Szemerédi conjectured that either $A+A$ or the $A A$ should be large compared to the size of A.
- $\max \{|A+A|,|A A|\} \geq|A|^{x}$, for some exponent, $x \geq 1$.

Sums and products conjecture

- Erdős and Szemerédi conjectured that either $A+A$ or the $A A$ should be large compared to the size of A.
- $\max \{|A+A|,|A A|\} \geq|A|^{x}$, for some exponent, $x \geq 1$.
- The conjecture is that x should be close to 2 .

Sums and products conjecture

- Erdős and Szemerédi conjectured that either $A+A$ or the $A A$ should be large compared to the size of A.
- $\max \{|A+A|,|A A|\} \geq|A|^{x}$, for some exponent, $x \geq 1$.
- The conjecture is that x should be close to 2 .
- Elekes $-\frac{5}{4}$, Solymosi $-\frac{4}{3}$, Konyagin-Shkredov have the record with $\frac{4}{3}+c$ for some $c>0$

Arithmetic progressions

- Let [a..b] denote the set of integers, x, such that $a \leq x \leq b$.

Arithmetic progressions

- Let [a..b] denote the set of integers, x, such that $a \leq x \leq b$.
- A set of the form $\left\{a_{0}+d t: t \in[0 . .(n-1)]\right\}$ is called an arithmetic progression of length n and step size $d \neq 0$.

Arithmetic progressions

- Let [a..b] denote the set of integers, x, such that $a \leq x \leq b$.
- A set of the form $\left\{a_{0}+d t: t \in[0 . .(n-1)]\right\}$ is called an arithmetic progression of length n and step size $d \neq 0$.
- e.g. $\{4,6,8,10,12,14\}=\{4+2 t: t \in[0 . .5]\}$

Arithmetic progressions

- Let [a..b] denote the set of integers, x, such that $a \leq x \leq b$.
- A set of the form $\left\{a_{0}+d t: t \in[0 . .(n-1)]\right\}$ is called an arithmetic progression of length n and step size $d \neq 0$.
- e.g. $\{4,6,8,10,12,14\}=\{4+2 t: t \in[0 . .5]\}$
- Szemerédi's Theorem says that if we have a dense enough subset of the integers, then it has arbitrarily long arithmetic progressions.

Arithmetic progressions

- Let [a..b] denote the set of integers, x, such that $a \leq x \leq b$.
- A set of the form $\left\{a_{0}+d t: t \in[0 . .(n-1)]\right\}$ is called an arithmetic progression of length n and step size $d \neq 0$.
- e.g. $\{4,6,8,10,12,14\}=\{4+2 t: t \in[0 . .5]\}$
- Szemerédi's Theorem says that if we have a dense enough subset of the integers, then it has arbitrarily long arithmetic progressions.
- Green-Tao proved that there are aribtrarily long arithmetic progressions of primes. Their theorem says, for every natural number, k, there exists arithmetic progressions of primes with k terms.

Ramsey theory

- Ramsey theory looks for patterns in partitions (colorings)

Ramsey theory

- Ramsey theory looks for patterns in partitions (colorings)
- Schur's Theorem - For any partition of the positive integers into a finite number of parts, one of the parts contains $x, y, x+y$.

Ramsey theory

- Ramsey theory looks for patterns in partitions (colorings)
- Schur's Theorem - For any partition of the positive integers into a finite number of parts, one of the parts contains $x, y, x+y$.
- e.g. $[1 . .10]=\{1,3,5,7,9\} \cup\{2,4,6,8,10\}, 2+6=8$.

Ramsey theory

- Ramsey theory looks for patterns in partitions (colorings)
- Schur's Theorem - For any partition of the positive integers into a finite number of parts, one of the parts contains $x, y, x+y$.
- e.g. [1..10] $=\{1,3,5,7,9\} \cup\{2,4,6,8,10\}, 2+6=8$.
- Open Problems In Partition Regularity (Hindman, Leader, Strauss), monochromatic $(x, y, x+y, x y)$ in \mathbb{N}.

Ramsey theory

- Ramsey theory looks for patterns in partitions (colorings)
- Schur's Theorem - For any partition of the positive integers into a finite number of parts, one of the parts contains $x, y, x+y$.
- e.g. $[1 . .10]=\{1,3,5,7,9\} \cup\{2,4,6,8,10\}, 2+6=8$.
- Open Problems In Partition Regularity (Hindman, Leader, Strauss), monochromatic ($x, y, x+y, x y$) in \mathbb{N}.
- Monochromatic Sums and Products (Green, Sanders), monochromatic ($x, y, x+y, x y$) in finite fields.

Polychromatic triples

- Partition \mathbb{Z}_{q} into k sets (called color classes), $A_{1}, A_{2}, \ldots, A_{k}$, of (roughly) equal size. Such a partition is called a coloring.

Polychromatic triples

- Partition \mathbb{Z}_{q} into k sets (called color classes), $A_{1}, A_{2}, \ldots, A_{k}$, of (roughly) equal size. Such a partition is called a coloring.
- A polychromatic triple is a triple, $(x, y, x+y)$ where $x \in A_{i}, y \in A_{j}$, and $x+y \in A_{h}$, for i, j, and h distinct.

Polychromatic triples

- Partition \mathbb{Z}_{q} into k sets (called color classes), $A_{1}, A_{2}, \ldots, A_{k}$, of (roughly) equal size. Such a partition is called a coloring.
- A polychromatic triple is a triple, $(x, y, x+y)$ where $x \in A_{i}, y \in A_{j}$, and $x+y \in A_{h}$, for i, j, and h distinct.
- This is different from the monochromatic triples and quadruples before, where all of the elements would all come from the same set, A_{i}.

Polychromatic triples

- Partition \mathbb{Z}_{q} into k sets (called color classes), $A_{1}, A_{2}, \ldots, A_{k}$, of (roughly) equal size. Such a partition is called a coloring.
- A polychromatic triple is a triple, $(x, y, x+y)$ where $x \in A_{i}, y \in A_{j}$, and $x+y \in A_{h}$, for i, j, and h distinct.
- This is different from the monochromatic triples and quadruples before, where all of the elements would all come from the same set, A_{i}.
- Note that this doesn't always happen. No polychromatic quadruples can exist in $\mathbb{Z}_{(4 n)}$, where the color classes are $A_{j}=\left\{x \in \mathbb{Z}_{(4 n)}: x \equiv j(\bmod 4)\right\}$.

Additive triples

- Theorem 1: If $k \geq 3$, for a large prime, p, then any k-coloring of \mathbb{Z}_{p}, where each color class has roughly the same size (either $\left\lceil\frac{p}{k}\right\rceil$ or $\left\lfloor\frac{p}{k}\right\rfloor$ elements), must admit a polychromatic triple of the form $(x, y, x+y)$.

Additive triples

- Theorem 1: If $k \geq 3$, for a large prime, p, then any k-coloring of \mathbb{Z}_{p}, where each color class has roughly the same size (either $\left\lceil\frac{p}{k}\right\rceil$ or $\left\lfloor\frac{p}{k}\right\rfloor$ elements), must admit a polychromatic triple of the form $(x, y, x+y)$.
- When working in \mathbb{Z}_{q}, for q not necessarily prime, our results weaken.

Additive triples

- Theorem 1: If $k \geq 3$, for a large prime, p, then any k-coloring of \mathbb{Z}_{p}, where each color class has roughly the same size (either $\left\lceil\frac{p}{k}\right\rceil$ or $\left\lfloor\frac{p}{k}\right\rfloor$ elements), must admit a polychromatic triple of the form $(x, y, x+y)$.
- When working in \mathbb{Z}_{q}, for q not necessarily prime, our results weaken.
- Theorem 2: There exists an additive polychromatic triple of the form $(x, y, x+y)$ in \mathbb{Z}_{q} for k-coloring whenever we have $k>q^{\frac{1}{2}+\varepsilon}$, for every $\varepsilon>0$.

Multiplicative triples

- As a corollary to Theorem 2, we also have the existence of multiplicative polychromatic triples in \mathbb{Z}_{p}.

Multiplicative triples

- As a corollary to Theorem 2, we also have the existence of multiplicative polychromatic triples in \mathbb{Z}_{p}.
- Corollary 1: There exists a multiplicative polychromatic triple of the form ($x, y, x y$) in \mathbb{Z}_{p} for k-coloring whenever we have $k>q^{\frac{1}{2}+\varepsilon}$, for every $\varepsilon>0$.

Multiplicative triples

- A group is called cyclic if there exists an element, $g \in \mathbb{Z}_{p}^{*}$, called a generator, such that every element in the group can be written as g^{j}, for some $j \in \mathbb{N}$.

Multiplicative triples

- A group is called cyclic if there exists an element, $g \in \mathbb{Z}_{p}^{*}$, called a generator, such that every element in the group can be written as g^{j}, for some $j \in \mathbb{N}$.
- To prove that we have multiplicative polychromatic triples, recall that \mathbb{Z}_{p} is a field, so its multiplicative group, $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$, must be cyclic.

Multiplicative triples

- A group is called cyclic if there exists an element, $g \in \mathbb{Z}_{p}^{*}$, called a generator, such that every element in the group can be written as g^{j}, for some $j \in \mathbb{N}$.
- To prove that we have multiplicative polychromatic triples, recall that \mathbb{Z}_{p} is a field, so its multiplicative group, $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$, must be cyclic.
- Every pair of elements, $x, y \in \mathbb{Z}_{p}^{*}$ can be written in terms of a generator, g, as $x=g^{j}$ and $y=g^{k}$.

Multiplicative triples

- A group is called cyclic if there exists an element, $g \in \mathbb{Z}_{p}^{*}$, called a generator, such that every element in the group can be written as g^{j}, for some $j \in \mathbb{N}$.
- To prove that we have multiplicative polychromatic triples, recall that \mathbb{Z}_{p} is a field, so its multiplicative group, $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$, must be cyclic.
- Every pair of elements, $x, y \in \mathbb{Z}_{p}^{*}$ can be written in terms of a generator, g, as $x=g^{j}$ and $y=g^{k}$.
- So products look like $x y=g^{j} g^{k}=g^{j+k}$.

Multiplicative triples

- A group is called cyclic if there exists an element, $g \in \mathbb{Z}_{p}^{*}$, called a generator, such that every element in the group can be written as g^{j}, for some $j \in \mathbb{N}$.
- To prove that we have multiplicative polychromatic triples, recall that \mathbb{Z}_{p} is a field, so its multiplicative group, $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$, must be cyclic.
- Every pair of elements, $x, y \in \mathbb{Z}_{p}^{*}$ can be written in terms of a generator, g, as $x=g^{j}$ and $y=g^{k}$.
- So products look like $x y=g^{j} g^{k}=g^{j+k}$.
- Therefore, the behavior of nonzero products in \mathbb{Z}_{p} is isomorphic to the behavior of sums in \mathbb{Z}_{q}, where $q=(p-1)$.

Multiplicative triples

- A group is called cyclic if there exists an element, $g \in \mathbb{Z}_{p}^{*}$, called a generator, such that every element in the group can be written as g^{j}, for some $j \in \mathbb{N}$.
- To prove that we have multiplicative polychromatic triples, recall that \mathbb{Z}_{p} is a field, so its multiplicative group, $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$, must be cyclic.
- Every pair of elements, $x, y \in \mathbb{Z}_{p}^{*}$ can be written in terms of a generator, g, as $x=g^{j}$ and $y=g^{k}$.
- So products look like $x y=g^{j} g^{k}=g^{j+k}$.
- Therefore, the behavior of nonzero products in \mathbb{Z}_{p} is isomorphic to the behavior of sums in \mathbb{Z}_{q}, where $q=(p-1)$.
- So we apply Theorem 2 to the sets of exponents of g that correspond to each color class.

Notation

- We introduce the notation $A \widehat{\subseteq}_{e} B$, to mean that A is a subset of B, except for possibly a small exceptional set. That is to say, that A is essentially a subset of B. More precisely, for some small, specified constant,

$$
A \widehat{\subseteq}_{e} B \Longleftrightarrow|A \backslash B| \leq e
$$

Notation

- We introduce the notation $A \widehat{\subseteq}_{e} B$, to mean that A is a subset of B, except for possibly a small exceptional set. That is to say, that A is essentially a subset of B. More precisely, for some small, specified constant,

$$
A \widehat{\subseteq}_{e} B \Longleftrightarrow|A \backslash B| \leq e
$$

- e.g. $\{1,2,3,4,5\} \widehat{\subseteq}_{1}\{1,2,3,4\}$.

Notation

- We introduce the notation $A \widehat{\subseteq}_{e} B$, to mean that A is a subset of B, except for possibly a small exceptional set. That is to say, that A is essentially a subset of B. More precisely, for some small, specified constant,

$$
A \widehat{\subseteq}_{e} B \Longleftrightarrow|A \backslash B| \leq e
$$

- e.g. $\{1,2,3,4,5\} \widehat{\subseteq}_{1}\{1,2,3,4\}$.
- e.g. $\{1,2,3,4\} \widehat{\subseteq}_{1}\{1,2,3,4\}$.

Notation

- We introduce the notation $A \widehat{\subseteq}_{e} B$, to mean that A is a subset of B, except for possibly a small exceptional set. That is to say, that A is essentially a subset of B. More precisely, for some small, specified constant,

$$
A \widehat{\subseteq}_{e} B \Longleftrightarrow|A \backslash B| \leq e
$$

- e.g. $\{1,2,3,4,5\} \widehat{\subseteq}_{1}\{1,2,3,4\}$.
- e.g. $\{1,2,3,4\} \widehat{\subseteq}_{1}\{1,2,3,4\}$.
- e.g. $\{1,2,3,4\} \widehat{\subseteq}_{1}\{1,2,3,4,5,6,7,8\}$.

Notation

- Similarly, we will also use the following (asymmetric!) symbol, to say that A is essentially equal to B.

$$
A \widehat{\widehat{=}_{e} B,}
$$

which means that $A \subseteq B$, and $|B \backslash A| \leq e$.

Notation

- Similarly, we will also use the following (asymmetric!) symbol, to say that A is essentially equal to B.

$$
A \widehat{\widehat{=}_{e} B,}
$$

which means that $A \subseteq B$, and $|B \backslash A| \leq e$.

- e.g. $\{1,2,3,4\} \widehat{=}_{1}\{1,2,3,4,5\}$.

Notation

- Similarly, we will also use the following (asymmetric!) symbol, to say that A is essentially equal to B.

$$
A \widehat{\widehat{=}_{e} B,}
$$

which means that $A \subseteq B$, and $|B \backslash A| \leq e$.

- e.g. $\{1,2,3,4\} \widehat{=}_{1}\{1,2,3,4,5\}$.
- e.g. $\{1,2,3,4,5\} \widehat{\neq}_{1}\{1,2,3,4\}$.

Notation

- Similarly, we will also use the following (asymmetric!) symbol, to say that A is essentially equal to B.

$$
A \widehat{\widehat{=}_{e} B,}
$$

which means that $A \subseteq B$, and $|B \backslash A| \leq e$.

- e.g. $\{1,2,3,4\} \widehat{=}_{1}\{1,2,3,4,5\}$.
- e.g. $\{1,2,3,4,5\} \widehat{\neq}_{1}\{1,2,3,4\}$.
- e.g. $\{1,2,3\} \widehat{=}_{1}\{1,2,3,4,5\}$.

Proof of Theorem 1 (part 1)

Proof of Theorem 1

- Theorem 1 is a corollary of the following technical result, and an inclusion-exclusion argument that we postpone until later.

Proof of Theorem 1

- Theorem 1 is a corollary of the following technical result, and an inclusion-exclusion argument that we postpone until later.
- Lemma: If p is a large prime, and A, B, and C are disjoint subsets of \mathbb{Z}_{p}, each of size n or $n+1$, with $\frac{p}{3}+1>n>10$, and possibly have the same size, then there exists a triple, $(x, y, x+y)$, where no two of the elements come from the same set.

Proof of Theorem 1

- Theorem 1 is a corollary of the following technical result, and an inclusion-exclusion argument that we postpone until later.
- Lemma: If p is a large prime, and A, B, and C are disjoint subsets of \mathbb{Z}_{p}, each of size n or $n+1$, with $\frac{p}{3}+1>n>10$, and possibly have the same size, then there exists a triple, $(x, y, x+y)$, where no two of the elements come from the same set.
- We will prove the lemma by showing that we cannot have $A+B \subseteq A \cup B$ and $A+C \subseteq A \cup C$ simultaneously, which will mean that we have a polychromatic triple.

Proof of Theorem 1 (part 1)

- Without loss of generality, we will assume that $|A|=n$. Let $|B|=m$, which is either n or $n+1$, and let $|C|=I$, which is also either n or $n+1$.

Proof of Theorem 1 (part 1)

- Without loss of generality, we will assume that $|A|=n$. Let $|B|=m$, which is either n or $n+1$, and let $|C|=I$, which is also either n or $n+1$.
- Cauchy-Davenport Theorem: For additive subsets of \mathbb{Z}_{p}, A and $B:|A+B| \geq \min \{|A|+|B|-1, p\}$.

Proof of Theorem 1 (part 1)

- In our case, we will have that $|A+B| \geq|A|+|B|-1$, by Cauchy-Davenport.

Proof of Theorem 1 (part 1)

- In our case, we will have that $|A+B| \geq|A|+|B|-1$, by Cauchy-Davenport.
- If $|A+B|>|A|+|B|$, then $A+B \nsubseteq A \cup B$, and we have a polychromatic triple. So we can assume that one of the following two theorems hold, giving us information on the structure of A and B :

Proof of Theorem 1 (part 1)

- In our case, we will have that $|A+B| \geq|A|+|B|-1$, by Cauchy-Davenport.
- If $|A+B|>|A|+|B|$, then $A+B \nsubseteq A \cup B$, and we have a polychromatic triple. So we can assume that one of the following two theorems hold, giving us information on the structure of A and B :
- Vosper's Theorem: If $|A+B|=|A|+|B|-1$ then A and B are arithmetic progressions with the same step size.

Proof of Theorem 1 (part 1)

- In our case, we will have that $|A+B| \geq|A|+|B|-1$, by Cauchy-Davenport.
- If $|A+B|>|A|+|B|$, then $A+B \nsubseteq A \cup B$, and we have a polychromatic triple. So we can assume that one of the following two theorems hold, giving us information on the structure of A and B :
- Vosper's Theorem: If $|A+B|=|A|+|B|-1$ then A and B are arithmetic progressions with the same step size.
- Hamidoune-Rødseth Theorem: If $|A+B|=|A|+|B|$ then A and B are $\widehat{=}_{1}$ arithmetic progressions with the same step size.

Proof of Theorem 1 (part 1)

- Cauchy-Davenport guarantees that each sum set must be at least a minimum size, which puts us into two cases:

Proof of Theorem 1 (part 1)

- Cauchy-Davenport guarantees that each sum set must be at least a minimum size, which puts us into two cases:
- $|A+B|=|A|+|B|-1$ (Vosper)
$|A+B|=|A|+|B|$ (Hamidoune-Rødseth)

Proof of Theorem 1 (part 1)

- Cauchy-Davenport guarantees that each sum set must be at least a minimum size, which puts us into two cases:
- $|A+B|=|A|+|B|-1$ (Vosper)
$|A+B|=|A|+|B|$ (Hamidoune-Rødseth)
- In either the case of Vosper's Theorem or the Hamidoune-Rødseth Theorem, we will have that our color classes must essentially be arithmetic progressions.

Proof of Theorem 1 (part 1)

- In the case that $|A+B|=|A|+|B|-1$, we write down what the elements of each arithmetic progression must look like and make some reductions.

Proof of Theorem 1 (part 1)

- In the case that $|A+B|=|A|+|B|-1$, we write down what the elements of each arithmetic progression must look like and make some reductions.
- $A=\left\{a_{0}+s u: s \in[0 . .(n-1)]\right\}, B=\left\{b_{0}+s u: s \in[0 . .(m-1)]\right\}$.

Proof of Theorem 1 (part 1)

- In the case that $|A+B|=|A|+|B|-1$, we write down what the elements of each arithmetic progression must look like and make some reductions.
- $A=\left\{a_{0}+s u: s \in[0 . .(n-1)]\right\}, B=\left\{b_{0}+s u: s \in[0 . .(m-1)]\right\}$.
- $A+B=\left\{a_{0}+b_{0}+s u: s \in[0 . .(n+m-2)]\right\}$

Proof of Theorem 1 (part 1)

- If we have $|A+B|=|A|+|B|$, then A and B are arithmetic progressions, but missing one element.

Proof of Theorem 1 (part 1)

- If we have $|A+B|=|A|+|B|$, then A and B are arithmetic progressions, but missing one element.
- In either case, we will have

$$
A \widehat{=}_{1}\left\{a_{0}+s u: s \in[0 . . n]\right\} \text { and } B \widehat{=}_{1}\left\{b_{0}+s u: s \in[0 . . m]\right\} .
$$

Proof of Theorem 1 (part 1)

- If we have $|A+B|=|A|+|B|$, then A and B are arithmetic progressions, but missing one element.
- In either case, we will have

$$
A \widehat{=}_{1}\left\{a_{0}+s u: s \in[0 . . n]\right\} \text { and } B \widehat{=}_{1}\left\{b_{0}+s u: s \in[0 . . m]\right\} .
$$

- The sumset will be of the form

$$
A+B \widehat{=}_{1}\left\{a_{0}+b_{0}+s u: s \in[0 . .(n+m-1)]\right\} .
$$

Proof of Theorem 1 (part 1)

- If we have $|A+B|=|A|+|B|$, then A and B are arithmetic progressions, but missing one element.
- In either case, we will have $A \widehat{=}_{1}\left\{a_{0}+s u: s \in[0 . . n]\right\}$ and $B \widehat{=}_{1}\left\{b_{0}+s u: s \in[0 . . m]\right\}$.
- The sumset will be of the form

$$
A+B \widehat{=}_{1}\left\{a_{0}+b_{0}+s u: s \in[0 . .(n+m-1)]\right\} .
$$

- The subscript of 1 follows from the fact that we are guaranteed that $A+B$ can be missing no more than one element from the set $\left\{a_{0}+b_{0}+s u: s \in[0 . .(n+m-1)]\right\}$, by Cauchy-Davenport.

Proof of Theorem 1 (part 1)

- We can repeat the same process for A and C.

Proof of Theorem 1 (part 1)

- We can repeat the same process for A and C.
- So, $A \widehat{=}_{1}\left\{a_{0}+s u: s \in[0 . . n]\right\}$ and $C \widehat{=}_{1}\left\{c_{0}+s u: s \in[0 . . I]\right\}$.

Proof of Theorem 1 (part 1)

- We can repeat the same process for A and C.
- So, $A \widehat{=}_{1}\left\{a_{0}+s u: s \in[0 . . n]\right\}$ and $C \widehat{=}_{1}\left\{c_{0}+s u: s \in[0 . . l]\right\}$.
- The sumset is of the form

$$
A+C \widehat{=}_{1}\left\{a_{0}+c_{0}+s u: s \in[0 . .(n+l-1)]\right\} .
$$

Proof of Theorem 1 (part 1)

- Without loss of generality, we can assume that $u=1$. If $u \neq 1$, divide everything by u, and we preserve all of the same arithmetic data. We know $u \neq 0$, as it is the step size of an arithmetic progression.

Proof of Theorem 1 (part 1)

- Without loss of generality, we can assume that $u=1$. If $u \neq 1$, divide everything by u, and we preserve all of the same arithmetic data. We know $u \neq 0$, as it is the step size of an arithmetic progression.
- Now, we have sets of the following forms:

Proof of Theorem 1 (part 1)

- Without loss of generality, we can assume that $u=1$. If $u \neq 1$, divide everything by u, and we preserve all of the same arithmetic data. We know $u \neq 0$, as it is the step size of an arithmetic progression.
- Now, we have sets of the following forms:
- $A \widehat{=}_{1}\left[a_{0} . .\left(a_{0}+n\right)\right]$

Proof of Theorem 1 (part 1)

- Without loss of generality, we can assume that $u=1$. If $u \neq 1$, divide everything by u, and we preserve all of the same arithmetic data. We know $u \neq 0$, as it is the step size of an arithmetic progression.
- Now, we have sets of the following forms:
- $A \widehat{=}_{1}\left[a_{0} . .\left(a_{0}+n\right)\right]$
- $B \widehat{=}_{1}\left[b_{0} . .\left(b_{0}+m\right)\right]$

Proof of Theorem 1 (part 1)

- Without loss of generality, we can assume that $u=1$. If $u \neq 1$, divide everything by u, and we preserve all of the same arithmetic data. We know $u \neq 0$, as it is the step size of an arithmetic progression.
- Now, we have sets of the following forms:
- $A \widehat{=}_{1}\left[a_{0} . .\left(a_{0}+n\right)\right]$
- $B \widehat{=}_{1}\left[b_{0} . .\left(b_{0}+m\right)\right]$
- $C \widehat{=}_{1}\left[c_{0} \ldots\left(c_{0}+I\right)\right]$

Proof of Theorem 1 (part 1)

- Without loss of generality, we can assume that $u=1$. If $u \neq 1$, divide everything by u, and we preserve all of the same arithmetic data. We know $u \neq 0$, as it is the step size of an arithmetic progression.
- Now, we have sets of the following forms:
- $A \widehat{=}_{1}\left[a_{0} . .\left(a_{0}+n\right)\right]$
- $B \widehat{=}_{1}\left[b_{0} . .\left(b_{0}+m\right)\right]$
- $C \widehat{=}_{1}\left[c_{0} . .\left(c_{0}+l\right)\right]$
- Our sumsets are now of the following form

$$
\begin{aligned}
& A+B \widehat{=}_{1}\left\{a_{0}+b_{0}+s: s \in[0 . .(n+m-1)]\right\} \text { and } \\
& A+C \widehat{=}_{1}\left\{a_{0}+c_{0}+s: s \in[0 . .(n+I-1)]\right\} .
\end{aligned}
$$

Proof of Theorem 1 (part 1)

- By way of contradiction, we will assume that we do not have a polychromatic triple of the form $(x, y, x+y)$.

Proof of Theorem 1 (part 1)

- By way of contradiction, we will assume that we do not have a polychromatic triple of the form $(x, y, x+y)$.
- This implies that every sum of elements in A and B ends up back in either A or B.

Proof of Theorem 1 (part 1)

- By way of contradiction, we will assume that we do not have a polychromatic triple of the form $(x, y, x+y)$.
- This implies that every sum of elements in A and B ends up back in either A or B.
- The same must then be true for A and C.

Proof of Theorem 1 (part 1)

- By way of contradiction, we will assume that we do not have a polychromatic triple of the form $(x, y, x+y)$.
- This implies that every sum of elements in A and B ends up back in either A or B.
- The same must then be true for A and C.
- So we have that $(A+B) \subseteq(A \cup B)$ and $(A+C) \subseteq(A \cup C)$.

Proof of Theorem 1 (part 1)

- Claim: $(A \cup B) \widehat{\subseteq}_{10}[(-m) . . m]$.

Proof of Theorem 1 (part 1)

- Claim: $(A \cup B) \widehat{\subseteq}_{10}[(-m) . . m]$.
- Recall that our sets are of the forms $A \widehat{=}_{1}\left\{a_{0}+s: s \in[0 . . n]\right\}$, and $B \widehat{=}_{1}\left\{b_{0}+s: s \in[0 . . m]\right\}$.

Proof of Theorem 1 (part 1)

- Claim: $(A \cup B) \widehat{\subseteq}_{10}[(-m) . . m]$.
- Recall that our sets are of the forms $A \widehat{=}_{1}\left\{a_{0}+s: s \in[0 . . n]\right\}$, and $B \widehat{=}_{1}\left\{b_{0}+s: s \in[0 . . m]\right\}$.
- As A is missing one element and $(A+B)$ is missing no more than one element, then their intersection is missing no more than two elements.

Proof of Theorem 1 (part 1)

- Claim: $(A \cup B) \widehat{\subseteq}_{10}[(-m) . . m]$.
- Recall that our sets are of the forms $A \widehat{=}_{1}\left\{a_{0}+s: s \in[0 . . n]\right\}$, and $B \widehat{=}_{1}\left\{b_{0}+s: s \in[0 . . m]\right\}$.
- As A is missing one element and $(A+B)$ is missing no more than one element, then their intersection is missing no more than two elements.
- So, $A \cap(A+B) \widehat{=}{ }_{2}$

$$
\left\{a_{0}+s: s \in[0 . . n]\right\} \cap\left\{a_{0}+b_{0}+s: s \in[0 . .(n+m)]\right\} .
$$

Proof of Theorem 1 (part 1)

- Claim: $(A \cup B) \widehat{\subseteq}_{10}[(-m) . . m]$.
- Recall that our sets are of the forms $A \widehat{=}_{1}\left\{a_{0}+s: s \in[0 . . n]\right\}$, and $B \widehat{=}_{1}\left\{b_{0}+s: s \in[0 . . m]\right\}$.
- As A is missing one element and $(A+B)$ is missing no more than one element, then their intersection is missing no more than two elements.
- So, $A \cap(A+B) \widehat{=}_{2}$

$$
\left\{a_{0}+s: s \in[0 . . n]\right\} \cap\left\{a_{0}+b_{0}+s: s \in[0 . .(n+m)]\right\} .
$$

- If we subtract a_{0} from both sets, we get

$$
\begin{aligned}
& \left(A-a_{0}\right) \cap\left(A+B-a_{0}\right) \widehat{=}_{2} \\
& \quad\{s: s \in[0 . . n]\} \cap\left\{b_{0}+s: s \in[0 . .(n+m)]\right\} .
\end{aligned}
$$

Proof of Theorem 1 (part 1)

- Since $(A+B) \subseteq(A \cup B)$, and $|A \cup B|=n+m$, and $|A+B| \geq n+m-1$, we know that $|A \cap(A+B)| \geq n-1$.

Proof of Theorem 1 (part 1)

- Since $(A+B) \subseteq(A \cup B)$, and $|A \cup B|=n+m$, and $|A+B| \geq n+m-1$, we know that $|A \cap(A+B)| \geq n-1$.
- Combining this with $\left(A-a_{0}\right) \cap\left(A+B-a_{0}\right) \widehat{=}_{2}\{s: s \in$ $[0 . . n]\} \cap\left\{b_{0}+s: s \in[0 . .(n+m)]\right\}$ and the fact that $\left|\left(A-a_{0}\right)\right|=n$ tells us that $[0 . . n] \widehat{\widehat{S}}_{2}\left[b_{0} . .\left(b_{0}+n+m\right)\right]$.

Proof of Theorem 1 (part 1)

- Since $(A+B) \subseteq(A \cup B)$, and $|A \cup B|=n+m$, and $|A+B| \geq n+m-1$, we know that $|A \cap(A+B)| \geq n-1$.
- Combining this with $\left(A-a_{0}\right) \cap\left(A+B-a_{0}\right) \widehat{=}_{2}\{s: s \in$ $[0 . . n]\} \cap\left\{b_{0}+s: s \in[0 . .(n+m)]\right\}$ and the fact that $\left|\left(A-a_{0}\right)\right|=n$ tells us that $[0 . . n] \widehat{\widehat{C}}_{2}\left[b_{0} . .\left(b_{0}+n+m\right)\right]$.
- Note that $[0 . . n]$ cannot be somewhere in the middle of $\left[b . .\left(b_{0}+n+m\right)\right]$.

Proof of Theorem 1 (part 1)

- Since $(A+B) \subseteq(A \cup B)$, and $|A \cup B|=n+m$, and $|A+B| \geq n+m-1$, we know that $|A \cap(A+B)| \geq n-1$.
- Combining this with $\left(A-a_{0}\right) \cap\left(A+B-a_{0}\right) \widehat{=}_{2}\{s: s \in$ $[0 . . n]\} \cap\left\{b_{0}+s: s \in[0 . .(n+m)]\right\}$ and the fact that $\left|\left(A-a_{0}\right)\right|=n$ tells us that $[0 . . n] \widehat{ভ}_{2}\left[b_{0} . .\left(b_{0}+n+m\right)\right]$.
- Note that $[0 . . n]$ cannot be somewhere in the middle of $\left[b . .\left(b_{0}+n+m\right)\right]$.
- So $\left(A-a_{0}\right)$ is either the first or second half of $\left[b_{0} . .\left(b_{0}+n+m\right)\right]$ and $\left(B-a_{0}\right)$ is the rest.

Proof of Theorem 1 (part 1)

As each subset of \mathbb{Z}_{p} is of size less than $p / 3$, neither set can wrap all the way around to border both sides of the other. This figure ignores the possible exceptional elements.

Proof of Theorem 1 (part 1)

- Since $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$, we have that either

$$
\text { (i) }\left(B-a_{0}\right) \widehat{=}_{4}\left[b_{0} . .\left(b_{0}+m\right)\right] \text { (left half), }
$$

or
(ii) $\left(B-a_{0}\right) \widehat{=}_{4}\left[\left(b_{0}+n\right) . .\left(b_{0}+n+m\right)\right]$ (right half).

Proof of Theorem 1 (part 1)

- Since $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$, we have that either

$$
\text { (i) }\left(B-a_{0}\right) \widehat{=}_{4}\left[b_{0} . .\left(b_{0}+m\right)\right] \text { (left half), }
$$

or
(ii) $\left(B-a_{0}\right) \widehat{=}_{4}\left[\left(b_{0}+n\right) . .\left(b_{0}+n+m\right)\right]$ (right half).

- In case $(i),\left(A-a_{0}\right) \widehat{=}_{4}\left[\left(b_{0}+m+1\right) . .\left(b_{0}+n+m\right)\right]$.

Proof of Theorem 1 (part 1)

- Since $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$, we have that either

$$
\text { (i) }\left(B-a_{0}\right) \widehat{=}_{4}\left[b_{0} . .\left(b_{0}+m\right)\right] \text { (left half), }
$$

or

$$
\text { (ii) }\left(B-a_{0}\right) \widehat{=}_{4}\left[\left(b_{0}+n\right) . .\left(b_{0}+n+m\right)\right] \text { (right half). }
$$

- In case $(i),\left(A-a_{0}\right) \widehat{=}_{4}\left[\left(b_{0}+m+1\right) . .\left(b_{0}+n+m\right)\right]$.
- But $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$

Proof of Theorem 1 (part 1)

- Since $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$, we have that either

$$
\text { (i) }\left(B-a_{0}\right) \widehat{=}_{4}\left[b_{0} . .\left(b_{0}+m\right)\right] \text { (left half), }
$$

or

$$
\text { (ii) }\left(B-a_{0}\right) \widehat{=}_{4}\left[\left(b_{0}+n\right) . .\left(b_{0}+n+m\right)\right] \text { (right half). }
$$

- In case $(i),\left(A-a_{0}\right) \widehat{=}_{4}\left[\left(b_{0}+m+1\right) . .\left(b_{0}+n+m\right)\right]$.
- But $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$
- So, $b_{0} \in[(-m-5) . .(-m+5)]$ and $b_{0} \in[(-5) . .5]$.

Proof of Theorem 1 (part 1)

- In case $(i i),\left(A-a_{0}\right) \widehat{=}_{4}\left[b_{0} . .\left(b_{0}+n\right)\right]$.

Proof of Theorem 1 (part 1)

- In case $(i i),\left(A-a_{0}\right) \widehat{=}_{4}\left[b_{0} . .\left(b_{0}+n\right)\right]$.
- But again, $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$

Proof of Theorem 1 (part 1)

- In case $(i i),\left(A-a_{0}\right) \widehat{=}_{4}\left[b_{0} . .\left(b_{0}+n\right)\right]$.
- But again, $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$
- So, $b_{0} \in[(-5) . .5]$, and $b_{0} \in[(m-5) . .(m+5)]$.

Proof of Theorem 1 (part 1)

- In case $(i i),\left(A-a_{0}\right) \widehat{=}_{4}\left[b_{0} . .\left(b_{0}+n\right)\right]$.
- But again, $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$
- So, $b_{0} \in[(-5) . .5]$, and $b_{0} \in[(m-5) . .(m+5)]$.
- In either case, we can see that the union of A and B must then be, essentially, $[(-m) . . m]$, with at most five exceptions from each of A and B, giving us the desired claim, that $A \cup B \widehat{=}{ }_{10}[(-m) . . m]$.

Proof of Theorem 1 (part 1)

- In case $(i i),\left(A-a_{0}\right) \widehat{=}_{4}\left[b_{0} . .\left(b_{0}+n\right)\right]$.
- But again, $\left(A-a_{0}\right) \widehat{=}_{1}[0 . . n]$
- So, $b_{0} \in[(-5) . .5]$, and $b_{0} \in[(m-5) . .(m+5)]$.
- In either case, we can see that the union of A and B must then be, essentially, $[(-m) . . m]$, with at most five exceptions from each of A and B, giving us the desired claim, that $A \cup B \widehat{=}_{10}[(-m) . . m]$.
- But this reasoning also applies with A and C, meaning that three disjoint sets of size n have to be contained in an interval of about $2 n$ integers, with no more than 4 exceptional elements per set. This is a contradiction for $n>12$.

Proof of Theorem 2

Proof of Theorem 2

- Theorem 2: There exists an additive polychromatic triple of the form $(x, y, x+y)$ in \mathbb{Z}_{q} (q may be composite!) for k-coloring whenever we have $k>q^{\frac{1}{2}+\varepsilon}$, for any $\varepsilon>0$.

Proof of Theorem 2

- Theorem 2: There exists an additive polychromatic triple of the form $(x, y, x+y)$ in \mathbb{Z}_{q} (q may be composite!) for k-coloring whenever we have $k>q^{\frac{1}{2}+\varepsilon}$, for any $\varepsilon>0$.
- To see this, suppose that we have a color class, A, such that $A=\left\{a_{1}, \ldots, a_{n}\right\}$, where each element in A can be written as $a_{i}=x+a_{j}$

Proof of Theorem 2

- Theorem 2: There exists an additive polychromatic triple of the form $(x, y, x+y)$ in \mathbb{Z}_{q} (q may be composite!) for k-coloring whenever we have $k>q^{\frac{1}{2}+\varepsilon}$, for any $\varepsilon>0$.
- To see this, suppose that we have a color class, A, such that $A=\left\{a_{1}, \ldots, a_{n}\right\}$, where each element in A can be written as $a_{i}=x+a_{j}$
- Now, for any fixed a_{i}, there are n choices of j such that $x+a_{j}=a_{i}$.

Proof of Theorem 2

- Theorem 2: There exists an additive polychromatic triple of the form $(x, y, x+y)$ in \mathbb{Z}_{q} (q may be composite!) for k-coloring whenever we have $k>q^{\frac{1}{2}+\varepsilon}$, for any $\varepsilon>0$.
- To see this, suppose that we have a color class, A, such that $A=\left\{a_{1}, \ldots, a_{n}\right\}$, where each element in A can be written as $a_{i}=x+a_{j}$
- Now, for any fixed a_{i}, there are n choices of j such that $x+a_{j}=a_{i}$.
- Rearranging, we get that there exist n values of $\left(a_{i}-a_{j}\right)$, for a fixed i due to the n choices of j.

Proof of Theorem 2

- Theorem 2: There exists an additive polychromatic triple of the form $(x, y, x+y)$ in \mathbb{Z}_{q} (q may be composite!) for k-coloring whenever we have $k>q^{\frac{1}{2}+\varepsilon}$, for any $\varepsilon>0$.
- To see this, suppose that we have a color class, A, such that $A=\left\{a_{1}, \ldots, a_{n}\right\}$, where each element in A can be written as $a_{i}=x+a_{j}$
- Now, for any fixed a_{i}, there are n choices of j such that $x+a_{j}=a_{i}$.
- Rearranging, we get that there exist n values of $\left(a_{i}-a_{j}\right)$, for a fixed i due to the n choices of j.
- Since there are n choices for a_{i}, the total number of elements that could be added to A to get A is $\leq n^{2}$.

Proof of Theorem 2

- Set $\left|\mathbb{Z}_{q} \backslash A\right| \leq n^{2}$, where $\left|\mathbb{Z}_{q} \backslash A\right|=q-n$.

Proof of Theorem 2

- Set $\left|\mathbb{Z}_{q} \backslash A\right| \leq n^{2}$, where $\left|\mathbb{Z}_{q} \backslash A\right|=q-n$.
- Note that $\mathbb{Z}_{q} \backslash A$ is the union of all of the other color classes.

Proof of Theorem 2

- Set $\left|\mathbb{Z}_{q} \backslash A\right| \leq n^{2}$, where $\left|\mathbb{Z}_{q} \backslash A\right|=q-n$.
- Note that $\mathbb{Z}_{q} \backslash A$ is the union of all of the other color classes.
- Bounding the number of possible solutions for x in $a_{i}=x+a_{j}$, we get

Proof of Theorem 2

- Set $\left|\mathbb{Z}_{q} \backslash A\right| \leq n^{2}$, where $\left|\mathbb{Z}_{q} \backslash A\right|=q-n$.
- Note that $\mathbb{Z}_{q} \backslash A$ is the union of all of the other color classes.
- Bounding the number of possible solutions for x in $a_{i}=x+a_{j}$, we get
- $q-n \leq n^{2}$

Proof of Theorem 2

- Set $\left|\mathbb{Z}_{q} \backslash A\right| \leq n^{2}$, where $\left|\mathbb{Z}_{q} \backslash A\right|=q-n$.
- Note that $\mathbb{Z}_{q} \backslash A$ is the union of all of the other color classes.
- Bounding the number of possible solutions for x in $a_{i}=x+a_{j}$, we get
- $q-n \leq n^{2}$
- $q+\frac{1}{4} \leq n^{2}+n+\frac{1}{4}$

Proof of Theorem 2

- Set $\left|\mathbb{Z}_{q} \backslash A\right| \leq n^{2}$, where $\left|\mathbb{Z}_{q} \backslash A\right|=q-n$.
- Note that $\mathbb{Z}_{q} \backslash A$ is the union of all of the other color classes.
- Bounding the number of possible solutions for x in $a_{i}=x+a_{j}$, we get
- $q-n \leq n^{2}$
- $q+\frac{1}{4} \leq n^{2}+n+\frac{1}{4}$
- $q+\frac{1}{4} \leq\left(n+\frac{1}{2}\right)^{2}$

Proof of Theorem 2

- Set $\left|\mathbb{Z}_{q} \backslash A\right| \leq n^{2}$, where $\left|\mathbb{Z}_{q} \backslash A\right|=q-n$.
- Note that $\mathbb{Z}_{q} \backslash A$ is the union of all of the other color classes.
- Bounding the number of possible solutions for x in $a_{i}=x+a_{j}$, we get
- $q-n \leq n^{2}$
- $q+\frac{1}{4} \leq n^{2}+n+\frac{1}{4}$
- $q+\frac{1}{4} \leq\left(n+\frac{1}{2}\right)^{2}$
- $\sqrt{q+\frac{1}{4}}-\frac{1}{2} \leq n$.

Proof of Theorem 2

- Set $\left|\mathbb{Z}_{q} \backslash A\right| \leq n^{2}$, where $\left|\mathbb{Z}_{q} \backslash A\right|=q-n$.
- Note that $\mathbb{Z}_{q} \backslash A$ is the union of all of the other color classes.
- Bounding the number of possible solutions for x in $a_{i}=x+a_{j}$, we get
- $q-n \leq n^{2}$
- $q+\frac{1}{4} \leq n^{2}+n+\frac{1}{4}$
- $q+\frac{1}{4} \leq\left(n+\frac{1}{2}\right)^{2}$
- $\sqrt{q+\frac{1}{4}}-\frac{1}{2} \leq n$.
- So, if we violate this, then there must be a polychromatic triple for $k>q^{\frac{1}{2}+\varepsilon}$, for any $\varepsilon>0$.

Proof of Theorem 2

- Recall that $k \approx \frac{q}{n}$.

Proof of Theorem 2

- Recall that $k \approx \frac{q}{n}$.
- We just showed that:

$$
\sqrt{q+\frac{1}{4}}-\frac{1}{2} \leq n .
$$

Proof of Theorem 2

- Recall that $k \approx \frac{q}{n}$.
- We just showed that:

$$
\sqrt{q+\frac{1}{4}}-\frac{1}{2} \leq n .
$$

- So, if we violate this inequality, then there must be a polychromatic triple for $k>q^{\frac{1}{2}+\varepsilon}$, for any $\varepsilon>0$.

Proof of Theorem 1 (part 2)

- Inclusion-exclusion principle

Proof of Theorem 1 (part 2)

- Inclusion-exclusion principle
- $|A \cup B \cup C \cup D|=|A|+|B|+|C|+|D|$ $-|A \cap B|-|A \cap C|-|A \cap D|-|B \cap C| \ldots$ plus the triple intersections, minus the quadruple intersection.

Proof of Theorem 1 (part 2)

- Inclusion-exclusion principle
- $|A \cup B \cup C \cup D|=|A|+|B|+|C|+|D|$ $-|A \cap B|-|A \cap C|-|A \cap D|-|B \cap C| \ldots$ plus the triple intersections, minus the quadruple intersection.
- We can always find a polychromatic triple with more than four color classes

Proof of Theorem 1 (part 2)

- Inclusion-exclusion principle
- $|A \cup B \cup C \cup D|=|A|+|B|+|C|+|D|$ $-|A \cap B|-|A \cap C|-|A \cap D|-|B \cap C| \ldots$ plus the triple intersections, minus the quadruple intersection.
- We can always find a polychromatic triple with more than four color classes
- We set the following restrictions on our sets and graph the corresponding equations:

Proof of Theorem 1 (part 2)

- These restrictions guarantee that any triple of the form $(x, y, x+y)$ comes from three different sets.

Proof of Theorem 1 (part 2)

- These restrictions guarantee that any triple of the form $(x, y, x+y)$ comes from three different sets.
- $x \neq y$

Proof of Theorem 1 (part 2)

- These restrictions guarantee that any triple of the form $(x, y, x+y)$ comes from three different sets.
- $x \neq y$
- $x \neq x+y$

Proof of Theorem 1 (part 2)

- These restrictions guarantee that any triple of the form $(x, y, x+y)$ comes from three different sets.
- $x \neq y$
- $x \neq x+y$
- $y \neq x+y$

Proof of Theorem 1 (part 2)

- These restrictions guarantee that any triple of the form $(x, y, x+y)$ comes from three different sets.
- $x \neq y$
- $x \neq x+y$
- $y \neq x+y$
- $x+y \neq a_{i}, b_{i}$ for every $a_{i} \in A, b_{i} \in B$ and where i ranges from 0 to $(n-1)$

Proof of Theorem 1 (part 2)

- We now count the number of choices of x and y that will not give a polychromatic triple. Using an inclusion-exclusion argument (illustrated on the next slide)with m as the number of elements in $A \cup B$ that x and y cannot be, we have $3 p(m+1)-\left(2(m+1)^{2}+m\right)+(1+3 m+T)-\left(S_{4}\right)<p^{2}$

Proof of Theorem 1 (part 2)

- We now count the number of choices of x and y that will not give a polychromatic triple. Using an inclusion-exclusion argument (illustrated on the next slide)with m as the number of elements in $A \cup B$ that x and y cannot be, we have $3 p(m+1)-\left(2(m+1)^{2}+m\right)+(1+3 m+T)-\left(S_{4}\right)<p^{2}$
- $T=\#\left\{e_{1}+e_{2}=e_{3}: e_{1}, e_{2}, e_{3} \in(A \backslash\{x\}) \cup(B \backslash\{y\})\right\} \leq m^{2}$

Proof of Theorem 1 (part 2)

- We now count the number of choices of x and y that will not give a polychromatic triple. Using an inclusion-exclusion argument (illustrated on the next slide)with m as the number of elements in $A \cup B$ that x and y cannot be, we have $3 p(m+1)-\left(2(m+1)^{2}+m\right)+(1+3 m+T)-\left(S_{4}\right)<p^{2}$
- $T=\#\left\{e_{1}+e_{2}=e_{3}: e_{1}, e_{2}, e_{3} \in(A \backslash\{x\}) \cup(B \backslash\{y\})\right\} \leq m^{2}$
- $S_{4}=\#\left\{e_{1}+e_{1}=e_{2}: e_{1}, e_{2} \in(A \backslash\{x\}) \cup(B \backslash\{y\})\right\} \leq$ $\max \{m, T\}$

Proof of Theorem 1 (part 2)

- We now count the number of choices of x and y that will not give a polychromatic triple. Using an inclusion-exclusion argument (illustrated on the next slide)with m as the number of elements in $A \cup B$ that x and y cannot be, we have $3 p(m+1)-\left(2(m+1)^{2}+m\right)+(1+3 m+T)-\left(S_{4}\right)<p^{2}$
- $T=\#\left\{e_{1}+e_{2}=e_{3}: e_{1}, e_{2}, e_{3} \in(A \backslash\{x\}) \cup(B \backslash\{y\})\right\} \leq m^{2}$
- $S_{4}=\#\left\{e_{1}+e_{1}=e_{2}: e_{1}, e_{2} \in(A \backslash\{x\}) \cup(B \backslash\{y\})\right\} \leq$ $\max \{m, T\}$
- So, $3 p+3 p m-2 m^{2}-4 m-2+T-S_{4}<p^{2}$

Inclusion-exclusion figure

This is a graph of all of the points, (x, y), that will not yield a polychromatic triple. The full lines are $x=0, y=0$, and $y=x$. The vertical dashed lines are the cases of $x \in M$, where the horizontal dashed lines are the cases where $y \in M$. Finally, the dotted lines indicate points, (x, y), such that $(x+y) \in M$.

Proof of Theorem 1 (part 2)

- If T is at its worst possible case, m^{2}, then $S_{4} \leq T$

Proof of Theorem 1 (part 2)

- If T is at its worst possible case, m^{2}, then $S_{4} \leq T$
- So, $p^{2}-3 p-3 p m+2 m^{2}+4 m+2>0$, where $m=2(n-1)=2\left(\frac{p}{k}-1\right)=\frac{2 p-2 k}{k}$

Proof of Theorem 1 (part 2)

- If T is at its worst possible case, m^{2}, then $S_{4} \leq T$
- So, $p^{2}-3 p-3 p m+2 m^{2}+4 m+2>0$, where $m=2(n-1)=2\left(\frac{p}{k}-1\right)=\frac{2 p-2 k}{k}$
- So, $p^{2}-3 p-3 p\left(\frac{2 p-2 k}{k}\right)+2\left(\frac{2 p-2 k}{k}\right)^{2}+4\left(\frac{2 p-2 k}{k}\right)+2>0$

Proof of Theorem 1 (part 2)

- If T is at its worst possible case, m^{2}, then $S_{4} \leq T$
- So, $p^{2}-3 p-3 p m+2 m^{2}+4 m+2>0$, where $m=2(n-1)=2\left(\frac{p}{k}-1\right)=\frac{2 p-2 k}{k}$
- So, $p^{2}-3 p-3 p\left(\frac{2 p-2 k}{k}\right)+2\left(\frac{2 p-2 k}{k}\right)^{2}+4\left(\frac{2 p-2 k}{k}\right)+2>0$
- From this, we can compute $k \geq 4$ and $p>-\frac{k}{k-2}$.

Computational Examples

- Triples of the form $(x, y, x y)$

Computational Examples

- Triples of the form ($x, y, x y$)
- Examples of color classes when no polychromatic multiplicative triples occur in \mathbb{Z}_{p} when $k=3$

Computational Examples

- Triples of the form ($x, y, x y$)
- Examples of color classes when no polychromatic multiplicative triples occur in \mathbb{Z}_{p} when $k=3$

Computational Examples

- Triples of the form ($x, y, x y$)
- Examples of color classes when no polychromatic multiplicative triples occur in \mathbb{Z}_{p} when $k=3$

- As of yet, no further examples have been found when p is greater than 7.

Computational Examples

- Examples of color classes when no polychromatic multiplicative triples occur in \mathbb{Z}_{q} when $k=3$, where q is some non-prime number.

Computational Examples

- Examples of color classes when no polychromatic multiplicative triples occur in \mathbb{Z}_{q} when $k=3$, where q is some non-prime number.

q	Color Class 1	Color Class 2	Color Class 3
6	1,4	2,5	0,3
8	$2,3,7$	$0,4,6$	1,5
9	$1,4,8$	$0,3,6$	$2,5,7$
10	$3,7,8,9$	$2,4,6$	$0,1,5$
12	$1,4,5,7$	$2,8,10,11$	$0,3,6,9$

Computational Examples

- Examples of color classes when no polychromatic multiplicative triples occur in \mathbb{Z}_{q} when $k=3$, where q is some non-prime number.

q	Color Class 1	Color Class 2	Color Class 3
6	1,4	2,5	0,3
8	$2,3,7$	$0,4,6$	1,5
9	$1,4,8$	$0,3,6$	$2,5,7$
10	$3,7,8,9$	$2,4,6$	$0,1,5$
12	$1,4,5,7$	$2,8,10,11$	$0,3,6,9$

- No examples have been found for color classes in which no additive polychromatic triples occur in \mathbb{Z}_{q} when $k=3$.

Future work

- Generalize Theorem 2 for fewer sets. We currently have guaranteed the existence of a polychromatic triple in \mathbb{Z}_{q} for k-colorings with $k>q^{\frac{1}{2}+\epsilon}$, for any $\epsilon>0$. Can we also guarantee the existence of a polychromatic triple in \mathbb{Z}_{q} for k-colorings with smaller k ?

Future work

- Generalize Theorem 2 for fewer sets. We currently have guaranteed the existence of a polychromatic triple in \mathbb{Z}_{q} for k-colorings with $k>q^{\frac{1}{2}+\epsilon}$, for any $\epsilon>0$. Can we also guarantee the existence of a polychromatic triple in \mathbb{Z}_{q} for k-colorings with smaller k ?
- Computationally, polychromatic quadruples seem to exist rather often. How can we guarantee their existence?

Selected references

- Green, Ben, and Terence Tao. "Szemerédi's Theorem." Scholarpedia. Eugene M. Izhikevich, 9 July 2007. Web. 30 June 2016.
- Green, Ben, and Tom Sanders. "Monochromatic Sums and Products." Discrete Analysis (2016): n. pag. Arxiv.org. Web. 30 June 2016.
- Gy. Elekes, "On the number of sums and products," Acta Arith., 81 (1997), pp. 365-367.

Selected references

- Hamidoune, Yahya Ould, Oriol Serra, and Gilles Zémor. "On the Critical Pair Theory in Z/pZ." Acta Arith. Acta Arithmetica 121.2 (2006): 99-115. Web. 30 June 2016.
- Hindman, Neil, Imre Leader, and Dona Strauss. "Open Problems in Partition Regularity." Combinator. Probab. Comp. Combinatorics, Probability and Computing 12 (2003): 571-83. Web. 30 June 2016.
- Kra, Bryna. "The Green-Tao Theorem on Arithmetic Progressions in the Primes: An Ergodic Point of View." Bull. Amer. Math. Soc. Bulletin of the American Mathematical Society 43.01 (2005): 3-24. Web. 30 June 2016.

