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Dynamical Systems

• A dynamical system may be defined as

ż = f(z, λ)
z ∈ Rn, λ ∈ Rm,
f : Rn → Rn.

• A system has a equilibrium point when there exists a z0 ∈ Rn

such that f(z0, λ) = 0
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Equilibria Types and Stability Analysis

• Hyperbolic Equilibrium
• Linearization
• Stable Manifold Theorem and Hartman-Grobman Theorem

• Non-hyperbolic Equilibrium
• Center Manifold Theorem
• Liapunov Functions
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Linearization

• Study linear systems ż = Az.

• A system is linearized using the Jacobian

A = Df(z0) =


δf1
δz1

(z0) . . .
δf1
δzn

(z0)

...
. . .

...
δfn
δz1

(z0) . . .
δfn
δzn

(z0)

 .
• Local stability of an equilibrium point of a linear system is

determined by looking at the real part of the eigenvalues of
A = Df(z0).
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Local Center Manifold Theorem

Let f ∈ C r (E ) where E is an open subset of Rn containing the
origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has c
eigenvalues with zero real parts and s eigenvalues with negative
real parts, where c + s = n. The nonlinear system x ′ = f(x) can
then be written in diagonal form

ẋ = Cx + F(x, y)
ẏ = Py + G(x, y).

where (x , y) ∈ Rc × Rs , C is a square matrix with c eigenvalues
having zero real part, P is a square matrix with s eigenvalues
having negative real part, and F(0) = G(0) = 0,
DF(0) = DG(0) = 0; furthermore, there exists a δ > 0 and
function h ∈ C r (Nδ(0)) that defines the local center manifold and
satisfies
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Local Center Manifold Theorem

Dh(x)[Cx + F(x,h(x))]− Ph(x)− G(x,h(x)) = 0

for |x | < δ; and the flow on the center manifold W c is defined by
the system of differential equations x ′ = Cx + F(x , h(x)) for all
x ∈ Rc with |x | < δ.
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Basic Reproduction Number

• The reproduction number, R0, is defined biologically as the
average number of individuals infected by a single infected
individual entering the susceptible population.

• R0 is defined mathematically as the spectral radius, ρ(A), of
matrix A which is the Next Generation Matrix (FV−1).
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Ebola Background Information

• The 2014 Ebola outbreak in West Africa was one of the most
devastating disease outbreaks in recent history.

• Ebola virus disease (EVD) is spread through direct
transmission, and is often transmitted to those in close
contact with infected individuals.

• The average fatality rate of the Ebola disease is around 50%,
and case rates have varied from 25% to 90%.

• The Ebola virus has no vaccine, although multiple candidate
vaccines are undergoing clinical trial.

• From 2014-2016, the Ebola outbreak in West Africa, primarily
in the countries of Guinea, Sierra Leone, and Liberia, had
11,310 confirmed Ebola deaths.

T. Stoller Missouri State University REU 10 / 95



Background Information
Original Shen Model

Modified Shen Model
Generalized Shen Model

Missouri State University

Shen Model

Consider the following 8-dimensional model proposed by Shen et.
al. in 2015 to model the Ebola virus

S ′ = − (βI+βεJ+βDD)S
N − ξS

V ′ = ξS + (βI+βεJ+βDD)ηV
N

E ′1 = (βI+βεJ+βDD)(S+ηV )
N − k1E1

E ′2 = k1E1 − (k2 + fT )E2

I ′ = k2E2 − (α + γ)I
J ′ = fTE2 + αI + γrJ
D ′ = δγ I + δγr J − γDD
R ′ = (1− δ)γI + (1− δ)γrJ
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Shen Model

This model has a few major issues including

• Shen assumes a small time scale, so there are no enedemic
equilibrium points.

• Shen has no population growth terms, so susceptible
individuals can only exist if there is no disease.

• Shen assumes a constant population N. N is defined
mathematically as N = S + V + · · ·+ R though.
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Shen Model Modified

I have proposed the following potential modifications to this
original model

• Shen’s model could be modified to keep individuals from
leaving the system by assuming no individuals die.

• Shen’s model could be modified to substitute the summation
of variables in for N.

• Shen’s model could be generalized by adding natural
population growth and death terms, allowing N to represent a
maximum population instead of a total population

I have chosen to do stability analysis on the original Shen model,
the first proposed modified model, and the generalized Shen
model. We will examine the stability of the original and generalized
model shortly.
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Original Shen Model Local Stability

• The original Shen model has the disease free equilibrium
points DFE1 = (0, Ṽ , 0, 0, 0, 0, 0, R̃) with Ṽ ≥ 0, R̃ ≥ 0, and
Ṽ + R̃ = N.

• If we assume there is no vaccine, we may also have
equilibrium points of the form DFE2 = S̃ , 0, 0, 0, 0, 0, R̃) with
S̃ ≥ 0, and S̃ + R̃ = N.

• While the origin is not biologically relevant due to the
assumption that N is a fixed parameter, it is still interesting
mathematically.
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Theorem 1

Theorem (1)

If the system has initial condition V0 = 0, then the Shen Model is
locally asymptotically stable at the origin.
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Theorem 1 Proof

Computing the Jacobian of this system and evaluating the
Jacobian at the origin gives us:

J(0, . . . , 0) =



−ξ 0 0 0 0 0 0 0
ξ 0 0 0 0 0 0 0
0 0 −k1 0 0 0 0 0
0 0 k1 −fT − k2 0 0 0 0
0 0 0 k2 −a − γ 0 0 0
0 0 0 fT α −γr 0 0
0 0 0 0 δγ δγr −γD 0
0 0 0 0 −γ(δ − 1) −γr (δ − 1) 0 0



which has eigenvalues

λ = 0, 0,−k1,−ξ,−δγ,−γr ,−fT − k2,−α− γ
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Theorem 1 Proof Continued(1)

However, since this equation has eigenvalues with zero real part,
we want to consider the Jacobian in a block diagonalized form. To
do this, we permute the equations of the system to get

R
′

= (1− δ)γI + (1− δ)γrJ

V
′

= ξS − (βI+βεJ+βDD)ηV
N

E
′
1 = (βI+βεJ+βDD)(S+ηV )

N − k1E1

E
′
2 = k1E1 − (k2 + fT )E2

I
′

= k2E2 − (α + γ)I

J
′

= fTE2 + αI − γrJ
D
′

= δγI + δγrJ − γDD
S
′

= − (βI+βεJ+βDD)S
N − ξS
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Theorem 1 Proof Continued(2)

Computing the Jacobian of this system and evaluating it at the
disease free equilibrium gives us:

J(0, . . . , 0) =



0 0 0 0 γ(1− δ) γr (1− δ) 0 0
0 0 0 0 0 0 0 ξ
0 0 −k1 0 0 0 0 0
0 0 k1 −fT − k2 0 0 0 0
0 0 0 k2 −a − γ 0 0 0
0 0 0 fT α −γr 0 0
0 0 0 0 δγ δγr −γD 0
0 0 0 0 0 0 0 −ξ
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Theorem 1 Proof Continued(3)

Finally, using a similarity transformation, we find the matrix in
block diagonalized form below.

J̃(0, . . . , 0) =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −k1 0 0 0 0 0
0 0 0 −ξ 0 0 0 0
0 0 0 0 −γD 0 0 0
0 0 0 0 0 −γr 0 0
0 0 0 0 0 0 −fT − k2 0
0 0 0 0 0 0 0 −α− γ



This matrix has eigenvalues

λ = 0, 0,−k1,−ξ,−γD ,−γr ,−fT − k2,−α− γ
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Theorem 1 Proof Continued(4)

We now consider the behavior of solutions on the center manifold.
Using the center manifold theorem, we rewrite the system as
follows.

ẋ =

[
0 0
0 0

] [
x
]

+

[
(1− δ)γI + (1− δ)γr J̃

ξS − (β Ĩ+βεJ̃+βD D̃)ηV
N

]

ẏ =


−k1 0 0 0 0 0
k1 −(k2 + fT ) 0 0 0 0
0 k2 −(α + γ) 0 0 0
0 fT α −γr 0 0
0 0 δγ δγr −γD 0
0 0 0 0 0 −ξ


[

y
]

+



(βI+βεJ+βDD)(S+ηV )
N
0
0
0
0
0

− (βI+βεJ+βDD)(S)
N
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Theorem 1 Proof Continued(5)

We now consider the approximation to the center manifold given
by:

h(x) =


ψ1R

2 + ψ2RV + ψ3V
2 + O(x3)

ψ4R
2 + ψ5RV + ψ6V 2 + O(x3)

...
ψ16R

2 + ψ17RV + ψ18V
2 + O(x3)


Substituting h(x) into the equation

Dh(x)[Cx + F(x,h(x))]− Ph(x)− G(x,h(x)) = 0
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Theorem 1 Proof Continued(6)

•
O(x3)− Ph(x) = 0

• Solving for the coefficients ψi in Matlab yields that this
equation only holds if ψi = 0 for all i . Hence, we have
h(x) = 0.

• Substituting h(x) = 0 into the approximation to the center
manifold x = Cx + F (x , h(x)) we get

•

ẋ = 0
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Theorem 1 Proof Continued(7)

R = R(0)

V = S(0)

Where R(0) and S(0) correspond to the initial conditions of
those equations. R(0) can reasonably be assumed to have
intial condition R(0) = 0, but V could start from any value.
However, using the initial assumption of the theorem,
V (0) = 0. Therefore, the origin is locally asymptotically
stable.
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Difficulties of local stability

•• Computational difficulties of local stability at other
equilibrium points

• Computational difficulties with more complex models

• Global Stability
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Example Jacobian

J =



−µ− ξ − X 0 0 0 X X X 0
ξ −µ− X 0 0 X X X 0
X X −k1 − µ 0 X X X 0
0 0 k1 −fT − k2 − µ 0 0 0 0
0 0 0 k2 −α− µ− γ 0 0 0
0 0 0 fT α −µ− γr 0 0
0 0 0 0 δγ δγr −γD 0
0 0 0 0 γ(1− δ) γr (1− δ) 0 −µ



The X’s in the Jacobian evaluated at the endemic equilibrium
point represent very large, real-valued entries that weren’t feasible
to be displayed here.
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Theorem 2.1 [Shuai and Van Den Driessche]

Goal is to construct a Liapunov function, Q.

If

• f(x , y) ≥ 0 in Γ ⊂ Rp+q
+ ,

• F ≥ 0, V−1 ≥ 0, and

• R0 ≤ 1.

Then the function
Q = ωTV−1x

where ω is the left eigenvector of FV−1 associated with R0 is a
Liapunov function for the system on Γ.
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Theorem 2.2 [Shuai and Van Den Driessche]

If

• Γ ⊂ Rp+q
+ is compact such that (0, y0) ∈ Γ,

• Γ is positively invariant with respect to the system,

• ẏ = g(0, y) has a unique equilibrium y = y0 > 0 that is GAS
in Rq

+,

• f(x , y) ≥ 0 with f(x , y0) = 0 in Γ, and

• F ≥ 0, V−1 ≥ 0, V−1F be irreducible.

Then

• If R0 < 1, then the DFE is GAS in Γ.

• If R0 > 1, then the DFE is unstable, the system is uniformly
persistent, and there exists at least one endemic equilibrium
point.
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Original Shen Model

S ′ = − (βI+βεJ+βDD)S
N − ξS

V ′ = ξS + (βI+βεJ+βDD)ηV
N

E ′1 = (βI+βεJ+βDD)(S+ηV )
N − k1E1

E ′2 = k1E1 − (k2 + fT )E2

I ′ = k2E2 − (α + γ)I
J ′ = fTE2 + αI + γrJ
D ′ = δγ I + δγr J − γDD
R ′ = (1− δ)γI + (1− δ)γrJ

• First, we proved that we have a feasible region
Γ =

{
z ∈ R8 : z ≥ 0, z ≤ K

}
which is compact and positively

invariant.
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Theorem 2.2 [Shuai and Van Den Driessche]

If

! Γ ⊂ Rp+q
+ be compact such that (0, y0) ∈ Γ,

! Γ be positively invariant with respect to the system,

• ẏ = g(0, y) has a unique equilibrium y = y0 > 0 that is GAS
in Rq

+,

• f(x , y) ≥ 0 with f(x , y0) = 0 in Γ, and

• F ≥ 0, V−1 ≥ 0, V−1F be irreducible.

Then

• If R0 < 1, then the DFE is GAS in Γ.

• If R0 > 1, then the DFE is unstable, the system is uniformly
persistent, and there exists at least one endemic equilibrium
point.
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Shen Model: Equilibrium Point

• The Disease-Free Equilibrium (DFE) is the origin which is
contained in Γ where

• The origin is GAS in the disease-free subsystem because

S
′

= −ξS
V
′

= ξS

R
′

= 0

• So we have solution

S = e−ξt

V = −e−ξt
R = R(0)
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Theorem 2.2 [Shuai and Van Den Driessche]

If

! Γ ⊂ Rp+q
+ be compact such that (0, y0) ∈ Γ,

! Γ be positively invariant with respect to the system,

! ẏ = g(0, y) has a unique equilibrium y = y0 > 0 that is GAS
in Rq

+,

• f(x , y) ≥ 0 with f(x , y0) = 0 in Γ, and

• F ≥ 0, V−1 ≥ 0, V−1F be irreducible.

Then

• If R0 < 1, then the DFE is GAS in Γ.

• If R0 > 1, then the DFE is unstable, the system is uniformly
persistent, and there exists at least one endemic equilibrium
point.
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Shen Model Global Stability at DFE (1)

• First, we considered the global stability of the system at the
origin, and then at DFE1.

• We will be considering the global stability of the system with
the assumption that there is no vaccine.
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Shen Model Global Stability at DFE (2)

• This gives us the 7-dimensional system

S
′

= − (βI+βεJ+βDD)S
N

E
′
1 = (βI+βεJ+βDD)(S)

N − k1E1

E
′
2 = k1E1 − (k2 + fT )E2

I
′

= k2E2 − (α + γ)I

J
′

= fTE2 + αI − γrJ
D
′

= δγI + δγrJ − γDD
R
′

= (1− δ)γI + (1− δ)γrJ
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Shen Model Global Stability at DFE (3)

• The feasible region Γ remains the same.

•

ẋ =


(βI+βεJ+βDD)(S)

N
0
0
0
0

−


k1E1

−k1E1 + (k2 + fT )E2

−k2E2 + (α + γ)I
−fTE2 − αI + γrJ
−δγI − δγrJ + γDD



ẏ =

[
− (βI+βεJ+βDD)(S)

N
(1− δ)γI + (1− δ)γrJ

]
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Shen Model Global Stability at DFE (4)

F(0, y0) =


0 0 (S)β

N
(S)βε
N

(S)βD
N

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



V(x , y) =


k1 0 0 0 0
−k1 k2 + fT 0 0 0

0 −k2 α + γ 0 0
0 −fT −α γr 0
0 0 −δγ −δγr γD
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Shen Model Global Stability at DFE (5)

•

f(x , y) =


(S̃ − S)(βI+βεJ+βDD

N )
0
0
0
0


• If S̃ = N, then f (x , y) ≥ 0.

• For now, we will assume S̃ = N.
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Shen Model Global Stability at DFE (6)

• We calculated FV−1 and V−1F explicitly. FV−1 is a matrix
with positive entries in the first row and zero entries
everywhere else. V−1F has two columns of zeros and positive
entries everywhere else.

Theorem [Seneta]

Let An×n be irreducible and Metzler. Then the eigenvalue with
largest real part is real and it has a positive associated eigenvector.

• Using the next generation matrix FV−1, we find R0 to be
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Basic Reproduction Number

R0 = ρ(FV−1) = (1− θ)β 1
α+γ

+βε
[
(1− θ)( α

α+γ )( 1
γr

) + θ 1
γr

]
+ δβD

1
γD

with the substitution 1− θ = k2
k2+fT

.
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Shen Model Global Stability at DFE (7)

• Let wT be defined as the left eigenvector corresponding to R0

in (FV−1)T .

• (0, y0) ∈ Γ, Γ is positively invariant, f (x , y) ≥ 0 with
f (x , y0) = 0 ∈ Γ, and F and V−1 are both non-negative.

• While V−1F is not irreducible, irreducibility was only used to
show the non-negative condition of wT in the proof of Shuai
Theorem 2.2.

• Considering the disease free system ẏ = g(x , y) with the
disease compartment set equal to 0, we have the system
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Shen Model Global Stability at DFE (8)

•

dS
dt = 0
dR
dt = 0

• This has the unique solution

S = S(0)
R = R(0)
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Shen Model Global Stability at DFE (9)

• Assuming the disease free system starts at values S0 = S̃ and
R0 = R̃, we find that the disease free system has a unique
globally asymptotically stable solution. Therefore, we may
conclude by Shuai Theorem 2.2:

• If R0 < 1, then the disease free equilibrium point is globally
asymptotically stable in Γ

• If R0 > 1, then the disease free equilibrium point is unstable,
and there exists at least one endemic equilibrium point.
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Theorem 2.2 [Shuai and Van Den Driessche]

If

! Γ ⊂ Rp+q
+ be compact such that (0, y0) ∈ Γ,

! Γ be positively invariant with respect to the system,

! ẏ = g(0, y) has a unique equilibrium y = y0 > 0 that is GAS
in Rq

+,

! f(x , y) ≥ 0 with f(x , y0) = 0 in Γ, and

! F ≥ 0, V−1 ≥ 0, V−1F be irreducible.

Then

• If R0 < 1, then the DFE is GAS in Γ.

• If R0 > 1, then the DFE is unstable, the system is uniformly
persistent, and there exists at least one endemic equilibrium
point.
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Shen Model Global Stability at DFE: Conclusions

• This result may seem quite useful at first glance, but upon
examining the assumptions made during this proof we find
that this result only holds if S0 = S̃ = N.

• We turn to modified models to attempt to better understand
the stability of such a system.
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Modified Shen Model

• Consider the following modified Shen Model

S
′

= − (βI+βεJ)S
N − ξS

V
′

= ξS − (βI+βεJ)ηV
N

E
′
1 = (βI+βεJ)(S+ηV )

N − k1E1

E2
′ = k1E1 − (k2 + fT )E2

I
′

= k2E2 − (α + γ)I

J
′

= fTE2 + αI − γrJ
R
′

= γI + γrJ
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Equilibrium Points, Local Stability, and Global Stability

• Equilibrium points have the form (0, Ṽ , 0, 0, 0, 0, R̃) where
Ṽ ≥ 0 and R̃ ≥ 0. Assuming there is no vaccine, equilibrium
points may take the form (S̃ , 0, 0, 0, 0, R̃) with S̃ ≥ 0.

• Local stability and global stability is similar to the original
model
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Generalized Shen Model

• Consider the following generalized Shen Model

dS
dt = Λ− (βI+βεJ+βDD)S

N − ξS − µS
dV
dt = ξS − (βI+βεJ+βDD)ηV

N − µV
dE1
dt = (βI+βεJ+βDD)(S+ηV )

N − k1E1 − µE1
dE2
dt = k1E1 − (k2 + fT )E2 − µE2
dI
dt = k2E2 − (α + γ)I − µI
dJ
dt = fTE2 + αI − γrJ − µJ
dD
dt = δγI + δγrJ − γDD
dR
dt = (1− δ)γI + (1− δ)γrJ − µR
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Equilibrium Points(1)

• The disease free equilibrium point can be easily calculated to
be DFE1 = ( Λ

ξ+µ ,
Λξ

µ(ξ+µ) , 0, 0, 0, 0, 0, 0) = (S̃ , Ṽ , 0, 0, 0, 0, 0, 0)
by setting the derivatives and disease variables equal to zero.

• To calculate the endemic equilibrium point, we first rewrote
E ∗2 , I

∗, J∗, and D∗ in terms of E ∗1 and solved for S∗,V ∗,E ∗1 .
We calculated
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Equilibrium Points(2)

S∗ = ΛN
Nµ+Nξ+βDD∗+βI∗+βεJ∗

V ∗ = ΛN2ξ
(Nµ+βDD∗η+βI∗η+βεJ∗η)(Nµ+Nξ+βDD∗+βI∗+βεJ∗)

E∗
1 = (Λ(βDD

∗+βI∗+βεJ∗)(Nµ+βDD
∗η+βI∗η+Nηξ+βεJ∗η))

(k1+µ)(Nµ+βDD∗η+βI∗η+βεJ∗η)(Nµ+Nξ+βDD∗+βI∗+βεJ∗))

E∗
2 = k1

k2+fT +µE
∗
1

I ∗ = k1k2

(α+γ+µ)(k2+fT +µ)E
∗
1

J∗ = k1(fT (α+γ+µ)+αk2)
(µ+γr )(k2+fT +µ)(α+γ+µ)E

∗
1

D∗ = δk1(k2γµ+k2γγr+γrαk2+γr fT (α+γ+µ))
γD (µ+γr )(k2+fT +µ)(α+γ+µ) E∗

1

R∗ = (1−δ)k1(k2γµ+k2γγr+γrαk2+γr fT (α+γ+µ))
µγD (µ+γr )(k2+fT +µ)(α+γ+µ) E∗

1
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Global Stability of Generalized Shen model

• We now consider the global stability of the disease free
equilibrium point for this generalized model.

Theorem (2)

Assume that the initial values of the system satisfies at least one of

• The total population of the system is less than or equal to
Λ
ξ+µ + ηξ

µ(ξ+µ)

• The vaccinated population is greater than Ṽ

Then the disease free equilibrium point of the generalized Shen
model is globally asymptotically stable if the basic reproduction
number R0 < 1, and if R0 > 1 the disease free equilibrium point is
unstable and there must exist at least one endemic equilibrium
point.
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Proof of Theorem 2 (1)

• First we consider the feasible region of this system

(S ′ + V ′ + · · ·+ R ′) = Λ− µ(S + V + · · ·+ R)− γDD + µD

• We may assume γD > µ without loss of generality
(biologically, this should be true for Ebola outbreaks). Hence,
we get

(S ′ + V ′ + · · ·+ R ′) ≤ Λ− µ(S + V + · · ·+ R)

S + V + · · ·+ R ≤ Λ
µ + Ce(−µ)t

lim
t→∞

(S + V + · · ·+ R) ≤ Λ
µ

• Thus, we have some feasible region

Γ =
{
z ∈ R8 : 0 ≤ z ≤ Λ

µ

}
.
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Proof of Theorem 2 (2)

ẋ =


(βI+βεJ+βDD)(S+ηV )

N
0
0
0
0

−


k1E1 + µE1

−k1E1 + (k2 + fT )E2 + µE2

−k2E2 + (α + γ)I + µI
−fTE2 − αI + γrJ + µJ
−δγI − δγrJ + γDD
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Proof of Theorem 2 (3)

F(0,DFE1) =


0 0

( Λ
(ξ+µ) +η Λξ

µ(ξ+µ)β)

N

( Λ
(ξ+µ) +η Λξ

µ(ξ+µ) )βε

N

( Λ
(ξ+µ) +η Λξ

µ(ξ+µ) )βD

N
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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Proof of Theorem 2 (4)

V(x , y) =


k1 + µ 0 0 0 0
−k1 k2 + fT + µ 0 0 0

0 −k2 α + γ + µ 0 0
0 −fT −α γr + µ 0
0 0 −δγ −δγr γD



f(x , y) =


(S̃ − S + η(Ṽ − V ))

(
βI+βεJ+βDD

N

)
0
0
0
0
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Proof of Theorem 2 (5)

• Consider the sign of f (x , y). The sign of the first term of f
determines f ’s sign, so we consider the conditions of its sign.

(S̃ − S + η(Ṽ − V )) = (S̃ + ηṼ )− (S+)

= ( Λ
ξ+µ + ηξ

µ(ξ+µ) )− (S + ηV )

• Notice that the maximum value that S + ηV could take is Λ
µ ,

where V = 0 and S = Λ
µ . However, this would make f

negative, so this starting point is not feasible. However, if we
assume that S + ηV < Λ

ξ+µ + ηξ
µ(ξ+µ) , then f (x , y) > 0.
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Proof of Theorem 2 (6)

• Biologically, the assumptions require that either the population
starts below the maximum population by at least Λξ(1−η)

µ(µ+ξ) , or
the population starts with more vaccinated individuals than
the equilibrium value for vaccinated individuals Ṽ . These
assumptions, while not ideal, are biologically feasible.

• V−1,FV−1 and V−1F were calculated to be very large and
non-negative matrices similar in structure to the unmodified
Shen model. wT was again a strictly non-negative vector with
large entries, so V−1F does not need to be irreducible.

• We now consider the disease free system with no disease,
ẏ = g(0, y).
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Proof of Theorem 2 (7)

dS
dt = Λ− ξS − µS
dV
dt = ξS − µV
dR
dt = −µR

(1)

This system has solution

S = Λ
ξ+µ

V = Λξ
µ(ξ+µ) + C1e

−µt

R = C2e
−µt

(2)
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Proof of Theorem 2 (8)

• This solution corresponds to the disease free equilibrium point
as time approaches infinity.

• Therefore, by Shuai Theorem 2.2, whose conditions are all
met, we have

• If R0 < 1, then the disease free equilibrium point is globally
asymptotically stable in Γ

• If R0 > 1, then the disease free equilibrium point is unstable,
and there exists at least one endemic equilibrium point.
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Outline
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Global Stability of EE for Generalized Shen Model

Theorem (3)

If all the conditions for Theorem 2 are met, R0 > 1, V = 0 and the
maximum population N is biologically reasonable, then the
endemic equilibrium point is globally asymptotically stable in Γ.

To prove this theorem, we will look at the system using a graph
theoretic method proposed by Shuai.
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Theorem 3.5 [Shuai and Van Den Driessche]

Goal is to construct a Liapunov function, D(z).

If

• There exist functions Di : U → R and Gij : U → R and

• constants aij ≥ 0 such that

• for every 1 ≤ i ≤ n , D ′i ≤
∑n

j=1 aijGij(z). And

• for A = [aij ], each directed cycle C of G has∑
(s,r)∈ε(C) Grs(z) ≤ 0 where ε(C ) denotes the arc set of the

directed cycle C .

Then the function

D(z) =
n∑

i=1

ciDi (z)

is a Liapunov function for the system.
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Generalized Shen Graph Theoretic Method (1)

• We start by differentiating Lotka-Volterra type Liapunov
functions.

DS = S − S∗ − S∗ ln S
S∗

DV = V − V ∗ − V ∗ ln V
V ∗

DE1 = E1 − E ∗1 − E ∗1 ln E1
E∗1

DE2 = E2 − E ∗2 − E ∗2 ln E2
E∗2

DI = I − I ∗ − I ∗ ln I
I∗

DJ = J − J∗ − J∗ ln J
J∗

DI = D − D∗ − D∗ ln D
D∗

DI = R − R∗ − R∗ ln R
R∗
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Generalized Shen Graph Theoretic Method (2)

• Before we differentiate, let x = βI+βεJ+βDD
N and

x∗ = βI∗+βεJ∗+βDD
∗

N . We will be using the inequality
1− x ≤ −ln(x) in all of the upcoming differentiation.

• Differentiating our Di ’s, we find
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Generalized Shen Graph Theoretic Method (3)

D
′
S =

(
1− S∗

S

)
[Λ− xS − (ξ + µ)S ]

=

(
1− S∗

S

)
[x∗S∗ − xS + (ξ + µ)(S∗ − S)]

= x∗S∗ − xS − x∗(S∗)2

S
+ xS∗ − 1

S
(ξ + µ)(S − S∗)2

≤ x∗S∗
[

1− xS

x∗S∗
− S∗

S
+

x

x∗

]
≤ x∗S∗

[
x

x∗
− ln

x

x∗
− xS

x∗S∗
+ ln

xS

x∗S∗

]
=: a1,7G1,7
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Generalized Shen Graph Theoretic Method (4)

D
′
V =

(
1− V ∗

V

)
[ξS − xηV − µV ]

... =
...

= ξS∗
[
S

S∗
− V

V ∗
− SV ∗

VS∗
+ 1

]
:= a2,1G2,1

+ x∗ηV ∗
[
− xV

x∗V ∗
+

V

V ∗
+

x

x∗
− 1

]
=: a2,7G2,7
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Generalized Shen Graph Theoretic Method (5)

D
′
E1

=

(
1− E ∗1

E1

)
[x(S + ηV )− (k1 + µ)V ]

... =
...

≤ x∗S∗
[

xS

x∗S∗
− ln

xS

x∗S∗
− E1

E ∗1
+ ln

E1

E ∗1

]
=: a3,1G3,1

+ x∗ηV ∗
[

xV

x∗V ∗
− ln

xV

x∗V ∗
− E1

E ∗1
+ ln

E1

E ∗1

]
=: a3,2G3,2
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Generalized Shen Graph Theoretic Method (6)

D
′
E2

=

(
1− E ∗2

E2

)[
k1E1 −

k1E
∗
1

E ∗2
E2

]
... =

...

≤ k1E
∗
1

[
E1

E ∗1
− ln

E1

E ∗1
− E2

E ∗2
+ ln−E2

E ∗2

]
=: a4,3G4,3
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Generalized Shen Graph Theoretic Method (7)

D
′
I =

(
1− I ∗

I

)[
k2E2 −

k2E
∗
2

I2∗
I

]
... =

...

≤ k2E
∗
2

[
E2

E ∗2
− ln

E2

E ∗2
− I

I ∗
+ ln− I

I ∗

]
=: a5,4G5,4
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Generalized Shen Graph Theoretic Method (8)

D
′
J =

(
1− J∗

J

)
[fTE2 + αI + (γr − µ)J]

... =
...

≤ fTE
∗
2

[
E2

E ∗2
− ln

E2

E ∗2
− J

J∗
+ ln

J

J∗

]
=: a6,4G6,4

+ αI ∗
[
I

I ∗
− ln

I

I ∗
− J

J∗
+ ln

J

J∗

]
=: a6,5G6,5

We may rewrite a6,5G6,5 as

a6,5G6,5 =
N

1− β
αI ∗

[
(

1− β
N

)(
I

I ∗
− ln

I

I ∗
− J

J∗
+ ln

J

J∗
)

]
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Generalized Shen Graph Theoretic Method (9)

D
′
D =

(
1− D∗

D

)
[δγI + δγrJ − γDD]

... =
...

≤ δγI ∗
[
I

I ∗
− ln

I

I ∗
− D

D∗
+ ln

D

D∗

]
=: a7,5G7,5

+ δγrJ
∗
[
J

J∗
− ln

J

J∗
− D

D∗
+ ln

D

D∗

]
=: a7,6G7,6

We may rewrite a7,6G7,6 as

a7,6G7,6 =
N

1− β − βε
δγrJ

∗
[

(
1− β − βε

N
)(

J

J∗
− ln

J

J∗
− D

D∗
+ ln

D

D∗
)

]
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Generalized Shen Graph Theoretic Method (10)

D
′
R =

(
1− R∗

R

)
[(1− δ)γI + (1− δ)γrJ − µR]

... =
...

≤ (1− δ)γI ∗
[
I

I ∗
− ln

I

I ∗
− R

R∗
+ ln

R

R∗

]
=: a8,5G8,5

+ (1− δ)γrJ
∗
[
J

J∗
− ln

J

J∗
− R

R∗
+ ln

R

R∗

]
=: a8,6G8,6
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Generalized Shen Graph Theoretic Method (8)

• Figure 1 shows the how the whole model would be connected
with a weighted digraph, and figure 2 shows the graph which
represents our model’s feasible cycle. While other cycles
appear to exist, the Gij ’s do not satisfy

∑
Gij ≤ 0 along those

cycles.
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Figure 1
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Figure 2
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Theorem 3.5 [Shuai and Van Den Driessche]

If

! There exist functions Di : U → R and Gij : U → R and

! constants aij ≥ 0 such that

! for every 1 ≤ i ≤ n , D ′i ≤
∑n

j=1 aijGij(z). And

• for A = [aij ], each directed cycle C of G has∑
(s,r)∈ε(C) Grs(z) ≤ 0 where ε(C ) denotes the arc set of the

directed cycle C .

Then the function

D(z) =
n∑

i=1

ciDi (z)

is a Liapunov function for the system.
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Generalized Shen Graph Theoretic Method (9)

∑
Gij =

(
xS

x∗S∗ − ln xS
x∗S∗ − E1

E∗
1

+ ln E1

E∗
1

)
+
(

E1

E∗
1
− ln E1

E∗
1
− E2

E∗
2

+ ln− E2

E∗
2

)
+
(

E2

E∗
2
− ln E2

E∗
2
− I

I∗ + ln− I
I∗

)
+(1− β

N )
(

I
I∗ − ln I

I∗ −
J
J∗ + ln J

J∗

)
+(1− β−βε

N )
(

J
J∗ − ln J

J∗ − D
D∗ + ln D

D∗

)
+
(

x
x∗ − ln x

x∗ − xS
x∗S∗ + ln xS

x∗S∗

)
= x

x∗ − ln x
x∗ − β

N ( I
I∗ − ln I

I∗ )

−βεN ( J
J∗ − ln J

J∗ )− (1− β−βε
N )( D

D∗ − ln D
D∗ )

=
(
β+βε+βD

N − 1
)

( D
D∗ − ln D

D∗ )

≤ 0
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Generalized Shen Graph Theoretic Method (10)

• The last line is true due to the following:

β+βε+βD
N < 1

β+βε+βD
N ≤ 3

N ≤ 1

• This follows from the earlier assumption that the total
population was biologically reasonable.

• We now construct the coefficients of the linear combination of
Di ’s to create our final Liapunov function. First, we relabel
the vertices and aij ’s in our system with indices 1 through 6
starting from S and ending at D (i.e., vertex S is now vertex 1
and directed path a31 is now a21).
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Figure 3
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Theorem’s 3.3 and 3.4 [Shuai and Van Den Driessche]

Theorem 3.3

If aij > 0 and d+(j) = 1 for some i , j then

ciaij =
n∑

k=1

cjajk

Theorem 3.4

If aij > 0 and d−(i) = 1 for some i , j then

ciaij =
n∑

k=1

ckaki
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Generalized Shen Graph Theoretic Method (11)

Using Shuai Theorem 3.3, we find

c1a16 =
∑6

k=1 c6a6k = c6a65

c2a21 =
∑6

k=1 c1a1k = c1a11

c3a32 =
∑6

k=1 c2a2k = c2a21
...

c6a65 =
∑6

k=1 c5a5k = c5a54
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Generalized Shen Graph Theoretic Method (12)

Letting c1 = 1 and substituting our aij ’s, we get the following:

x∗S∗ = c2x
∗S∗ = c3k1E

∗
1 = c4k2E

∗
2 = c5

N

1− β
αI ∗ = c6

N

1− β − βε
δγrJ

∗

Solving for the coefficients ci , we get

c1 = 1
c2 = 1

c3 = x∗S∗

k1E∗1
c4 = x∗S∗

k2E∗2

c5 =
(

1−β
N

)
x∗S∗

αI∗

c6 =
(

1−β−βε
N

)
x∗S∗

δγrJ∗

T. Stoller Missouri State University REU 81 / 95



Background Information
Original Shen Model

Modified Shen Model
Generalized Shen Model

Missouri State University

Generalized Shen Graph Theoretic Method (13)

Finally,

D = S − S∗ − S∗ ln S
S∗ + E1 − E ∗1 − E ∗1 ln E1

E∗1

+ x∗S∗

k1E∗1

(
E2 − E ∗2 − E ∗2 ln E2

E∗2

)
+ x∗S∗

k2E∗2

(
I − I ∗ − I ∗ ln I

I∗

)
+
(

1−β
N

)
x∗S∗

αI∗

(
J − J∗ − J∗ ln J

J∗

)
+
(

1−β−βε
N

)
x∗S∗

δγrJ∗

(
D − D∗ − D∗ ln D

D∗

)
where D is a Liapunov Function for our system. We will now use
LaSalle’s Invariance Principle and this Liapunov function to
determine the global stability of the system.
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LaSalle’s Invariance Principle

If

! Γ ⊂ D ⊂ Rn be a compact positively invariant set,

! V : D → R be a continuously differentiable function,

! V̇ (x(t)) ≤ 0 in Γ,

• E ⊂ Γ be the set of all points in Γ where V̇ (x) = 0, and

• M ⊂ E be the largest invariant set in E .

Then every solution starting in Γ approaches M as t →∞, that is,

lim
t→∞

 inf
z∈M
‖x(t)− z‖︸ ︷︷ ︸

dist (x(t),M)

 = 0.
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Shen Model: LaSalle’s Invariance Principle

D
′

=

(
1− S∗

S

)
S
′

+

(
1− E ∗1

E1

)
E
′
1 + c3D

′
3 + · · ·+ c6D

′
6

The endemic equilibrium point is the set E , and is also the
largest set M ⊂ E . Therefore, by LaSalle’s Invariance
Principle, if R0 > 1, V = 0 and N ≥ 3, then the endemic
equilibrium point is globally asymptotically stable in
Γ.Therefore, we have proven Theorem 3!
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Future Research

••• Continued exploration to deal with the computational
difficulties with local stability.

• Confirm numerical simulations are in line with stability results
presented.

• Use numerical simulations to verify bifurcation existence, and
study using advances with the local stability research.

• Find creative algebraic manipulations to allow graph theoretic
cycles including vaccine terms to cancel along the cycles.

• Consider both different models and modifications to the
generalized model.

• Proving general results for the graph theoretic method for
general dynamical systems
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Stable Manifold Theorem

Let E be an open subset of Rn containing the origin, let
f ∈ C 1(E ), and let φt be the flow of the nonlinear system.
Suppose that f (0) = 0 and that Df (0) = 0 has k eigenvalues with
negative real part and n − k eigenvalues with positive real part.
Then there exists a k-dimensional differentiable manifold S
tangent to the stable subspace E s of the linear system at 0 such
that for all t ≥ 0, φt(S) ⊂ S and for all x0 ∈ S .

lim
t→∞

φt(x0) = 0

and there exists an n − k dimensional differentiable manifold U
tangent to the unstable subspace Eu of the corresponding linear
system at 0 such that for all t ≤ 0, φt(U) ⊂ U and for all x0 ∈ U,

lim
t→∞

φt(x0) = 0
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Hartman-Grobman Theorem

Let E be an open subset of Rn containing the origin, let
f ∈ C 1(E ), and let φt be the flow of the nonlinear system.
Suppose that f (0) = 0 and that the matrix A = DF (0) has no
eigenvalue with zero real part. Then there exists a homeomorphism
H of an open set U containing the origin onto an open set V
containing the origin such that for x0 ∈ U, there is an open
interval I0 ∈ R containing zero such that for all x0 ∈ U and t ∈ I0

H ◦ φt(x0) = eAtH(x0)

i.e., H maps trajectories of the nonlinear system near the origin
onto trajectories of the linear system near the origin and preserves
the parametrization of time.
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Local Center Manifold Theorem

Let f ∈ C r (E ) where E is an open subset of Rn containing the
origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has c
eigenvalues with zero real parts and s eigenvalues with negative
real parts, where c + s = n. The nonlinear system x ′ = f(x) can
then be written in diagonal form

ẋ = Cx + F(x, y)
ẏ = Py + G(x, y).

where (x , y) ∈ Rc × Rs , C is a square matrix with c eigenvalues
having zero real part, P is a square matrix with s eigenvalues
having negative real part, and F(0) = G(0) = 0,
DF(0) = DG(0) = 0; furthermore, there exists a δ > 0 and
function h ∈ C r (Nδ(0)) that defines the local center manifold and
satisfies
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Local Center Manifold Theorem

Dh(x)[Cx + F(x,h(x))]− Ph(x)− G(x,h(x)) = 0

for |x | < δ; and the flow on the center manifold W c is defined by
the system of differential equations x ′ = Cx + F(x , h(x)) for all
x ∈ Rc with |x | < δ.
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Routh-Hurwitz Criterion

Consider a three dimensional system. If the characteristic
polynomial

λ3 + a1λ
2 + a2λ+ a3

satisfies the following:

a1 > 0,

a3 > 0,

a1a2 − a3 > 0

then the equilibrium point is locally stable.
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Spectral Radius

The spectral radius of a matrix or bounded linear operator is the
supremum among the absolute values of the elements in its
spectrum. The spectrum of such a matrix is its set of eingenvalues,
but the spectrum of a linear operator T : V → V is the set of
scalars λ such that T − λI is non-invertible.
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Partitioned Inversion (Using Shur Complements)

Given a partitioned matrix M:

M−1 =

[
A B
C D

]−1

=

[
(M/D)−1 −(M/D)−1BA−1

−D−1C(M/D)−1 D−1 + D−1C(M/D)−1BD−1

]
Where

(M/D)−1 = A−1 + A−1B(M/A)−1CA−1

if A and D are non-singular
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Sotomayor’s Theorem

If

• f(x0, µ0) = 0,

• the n × n matrix A = Df(x0, µ0) has a simple eigenvalue
λ = 0 with eigenvector v, and

• AT has an eigenvector w corresponding to the eigenvalue
λ = 0.

• As well as

wTfµ(x0, µ0) = 0,

wT[Dfµ(x0, µ0)v] 6= 0,

wT[D2f(x0, µ0)(v, v)] 6= 0.

Then the system experiences a transcritical bifurcation at the
equilibrium point x0 as the parameter µ varies the the bifurcation
value µ = µ0.
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Liapunov Functions

If

• E is an open subset of Rn containing z0,

• f ∈ C 1(E ) and f(z0) = 0, and

• there exists V ∈ C 1(E ) satisfying V (z0) = 0 and V (z) > 0 if
z 6= z0.

Then

(a) if V̇ (z) ≤ 0 for all z ∈ E , z0 is stable,

(b) if V̇ (z) < 0 for all z ∈ E , z0 is asymptotically stable,

(c) if V̇ (z) > 0 for all z ∈ E , z0 is unstable.
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