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Introduction

• Neurons are the fundamental unit of the brain.

• Rapid increases/decreases in electric potential allow for
communication between neurons.

• Spiking and bursting are the big two.

• Models that can spike and burst are called neuronal burster
models.



Ion Dynamics — Ion Channels

• Tunnels within the cell membrane, which can be opened or
closed

• Triggered by input signals, including the presence of ions and
voltage

• Diffusive motion only

Figure: A ligand-gated calcium ion channel.



Neuron Firing in General

• This is not exactly the process we’re modelling — more on
that later

• Resting potential : the cell has a voltage of -70mV. More K+

inside, more Na+ outside.



Depolarization

• Action potential occurs when voltage reaches -55mV

• Voltage-gated Na+ channels open, increasing voltage

• Feedback loop



Repolarization

• Na+ channels close after a time

• K+ channels are opened, letting voltage decrease

• Overshot



Getting Back to Resting Potential

• Various processes return the neuron to its initial state



Figure: Visual representation of the flow of ions in the neuron cell during
spiking behavior. [2]



Dynamical Systems

• Nonlinear systems of the form

x(t)′ = f
(
x(t)

)
, f : Rn → Rn. (1)

• Typically impossible to obtain explicit solutions

• We want to characterize qualitative behavior of solutions
without getting the actual solutions



Invariant Set

• A set S ⊂ Rn is called invariant with respect to a dynamical
system x ′ = f (x) if for any initial vector x(t0) = x0 ∈ S , the
solution x(t) remains in S for all time t ≥ t0.

• Typical examples include equilibrium points and periodic
orbits.



Stability of Equilibrium Points

• An equilibrium point x0 ∈ Rn is stable if for all ε > 0, there
exists a δ > 0 such that

||x(0)− x0|| < δ =⇒ ||x(t)− x0|| < ε (2)

for all t > 0.

• Asymptotic stability: lim
t→∞

x(t) = x0.

• Unstable points are not stable

• Analysis can be on local or global scales



Local Stability

• A linearization of a system x ′ = f (x) at x0 is x ′ = Ax where
A = Df (x0)

• The strategy is to locate equilibria and study their
linearizations at those points. The linear system behavior
informs us about neighborhoods in the nonlinear system.

• How do we know linearized models are reliable?



Stable Manifold Theorem

Theorem

Let E ⊂ Rn be open containing the origin, f ∈ C 1(E ), and let φt
be the flow of x ′ = f (x). Suppose the origin is a hyperbolic
equilibrium point and that A = Df (0) has k eigenvalues with
negative real part and the remaining n − k eigenvalues have
positive real part. Then,

• (a) There exists a k-dimensional differentiable manifold S
tangent to E s (stable subspace of the linearization) at the
origin, such that φt(S) ⊂ S , ∀t ≥ 0 and
lim
t→∞

φt(x) = 0, ∀x ∈ S .

• (b) There exists an (n − k)-dimensional differentiable
manifold U tangent to Eu (unstable subspace of the
linearization) at the origin, such that φt(U) ⊂ U, ∀t ≤ 0 and

lim
t→−∞

φt(x) = 0, ∀x ∈ U.



Hartman-Grobman Theorem

Theorem

Let x0 be a hyperbolic equilibrium of the nonlinear system (1).
Then, in a neighborhood of x0, the system (1) and its
corresponding linearization

ẋ = Ax , (3)

where A = Df (x0), are equivalent; that is, there is a
homeomorphism h that maps trajectories in (1) near x0 onto
trajectories in (3).



Linearization

These theorems also work together for n > 2



Global Stability

• Global theory provides techniques to determine large regions
in Rn that may act as attracting or repelling basins.

• Global stability implies local stability, but the converse is not
true in general.

• Lyapunov function analysis
• Works on arbitrary equilibrium points — hyperbolic and

nonhyperbolic



Theorem to find Global Stability

Theorem

Let E be an open subset of Rn containing x0. Suppose that f
∈ C 1(E ) and that f (x0) = 0. Suppose further that there exists a
real valued function V ∈ C 1(E ) satisfying V (x0) = 0 and
V (x) > 0 if x 6= x0. Then

(a) if V ′(x) 6 0 for all x ∈ E, x0 is stable;

(b) if V ′(x) < 0 for all x ∈ E ∼ {x0}, x0 is asymptotically stable;

(c) if V ′(x) > 0 for all x ∈ E ∼ {x0}, x0 is unstable.

• The function V satisfying these conditions is called a
Lyapunov function.

• Constructing a Lyapunov function:
• Matrix-theoretic method
• Graph-theoretic method



Graph Theoretic Method

Theorem

(Shuai and Van Den Driessche’s Theorem) Suppose that the
following assumptions are satisfied:

1 There exists function Di : U → R, Gij : U → R and constant
aij > 0 such that for every 1 6 i 6 n,
D ′i = D ′i |(3.6) 6

∑n
j=1 aijGij(z) for z ∈ U.

2 For A = [aij ], each directed cycle C of (G ,A) has∑
(s,r)∈(C) Grz(z) 6 0 for z ∈ U, where (C ) denotes the arc

set of the directed cycle C .

Then, the function

D(z) =
n∑

i=1

ciDi (z) (4)

with constant ci > 0 satisfies D ′ = D ′|(3.6) 6 0; that is, D is a
Lyapunov function [5].



The next two theorems can be used to find ci .

Theorem

If aij > 0 and d+(j) =1 for some i, j then

ciaij =
n∑

k=1

cjajk

Theorem

If aij > 0 and d−(i) = 1 for some i, j then

ciaij =
n∑

k=1

ckaki



LaSalle’s Invariance Principle

Theorem

(LaSalle’s Theorem) Let Ω ⊂ D ⊂ Rn be a compact positively
invariant set with respect to the system dynamics. Let V : D → R
be a continuously differentiable function such that V ′(x(t)) 6 0 in
Ω. Let E ∈ Ω be the set of all points in Ω where V ′(x) = 0. Let
M ⊂ E be the largest invariant set in E. Then every solution
starting in Ω approaches M as t →∞, that is

lim
t→∞

( inf
z∈M
||x(t)− z ||) = 0 (5)

Notice that the inclusion of the sets in the LaSalle’s theorem is:

M ⊂ E ⊂ Ω ⊂ D ⊂ Rn



Bifurcations

• In most applications, the vector field f depends on one or
more parameters, that is, the dynamical systems take the form

x(t)′ = f
(
x(t), µ

)
(6)

with µ ∈ Rp for some positive integer p.

• In general, solutions of (6) will vary as the parameters vary,
but most importantly, there are special values of the
parameters, say µ = µ0, such that an arbitrarily small
variation around µ0 will cause drastic changes in the
qualitative behavior of the solutions.



Codimension-1 Bifurcations

• The codimension of a bifurcation is the minimum number of
parameters necessary for the system (6) to experience a
drastic change.

• These changes include:
• The number of eq. points
• Stability properties
• Creation/destruction of special solutions

• The following bifurcations are common codimension-one
bifurcations



First Example

• Consider the following system of equations:

x ′ = µx − x2

y ′ = µx2 − y
(7)

with parameter µ. The value of µ alone can determine how
solutions of this system behave, so there will be a
codimension-1 bifurcation.



Transcritical Bifurcation

• This type of bifurcation is characterized by an exchange of
stability at bifurcation values (a stable equilibrium becomes
unstable and an unstable one becomes stable).

Figure: Animation showing a transcritical bifurcation in (7) with varying
µ.

http://i.imgur.com/NMf9xp0.gif


Saddle-node Bifurcation

• In this type of bifurcations, equilibria coalesce in such a way
that the number of equilibria can go from two to one to none:
equilibria collide and annihilate one another.

Saddle-Node bifurcation diagram.



Hopf Bifurcation

• This type of bifurcation is characterized by a stable (focus)
equilibrium point losing stability, and one or more periodic
solutions appearing in the system.

Bifurcation diagram

Before Hopf - stable spiral

After Hopf - unstable spiral,
stable per. orbit



Sotomayor’s Theorem

Theorem

Suppose that f (x0, µ0) = 0 and that the n × n matrix
A ≡ Df (x0, µ0) has a simple eigenvalue of λ = 0 with the
eigenvector v and that AT has an eigenvector w corresponding to
the eigenvalue λ = 0. Further more, suppose that A has k
eigenvalues with negative real part and (n-k-1) eigenvalues with
positive real part. Then the following three sets of conditions
correspond with different types of bifurcations:

• There is a saddle-node bifurcation if

wT fµ(x0, µ0) 6= 0,

wT [D2f (x0, µ0)(v , v)] 6= 0



Theorem

• There is a transcritical bifurcation if

wT fµ(x0, µ0) = 0

wT [Df µ(x0, µ0)v ] 6= 0

wT [D2f (x0, µ0)(v , v)] 6= 0

• There is a pitchfork bifurcation if

wT fµ(x0, µ0) = 0

wT [Df µ(x0, µ0)v ] 6= 0

wT [D2f (x0, µ0)(v , v)] = 0

wT [D3f (x0, µ0)(v , v , v)] = 0

• This theorem is used later on to prove bifurcations in the
system we are studying.



The Hopf Bifurcation Theorem

Theorem

If σ 6= 0, then a Hopf bifurcation occurs at the origin of the planar
analytic system (2) at the bifurcation value µ = 0; in particular, if
σ < 0, then a unique stable limit cycle bifurcates from the origin of
(2) as µ increases from zero and if σ > 0, then a unique unstable
limit cycle bifurcates from the origin of (2) as µ decreases from
zero. If σ < 0, the local phase portraits for (2) are topologically
equivalent to those in the nonlinear system.

x ′ =µx − y + p(x , y)

y ′ =x + µy + q(x , y) (2)



Higher-Codimension Bifurcations

• The behavior of solutions will depend on the changes of more
than one control parameter.

• This can lead to a curve of bifurcation points.

• Keep in mind that detecting one single bifurcation point is
complicated. Here we try to find continuous curves of
bifurcation points that collide to form a codimension-2
bifurcation

• The following are some common codimension-2 bifurcations.



Second Example

• Consider now the system

x ′ = σ + µx − x3

y ′ = µx3 − y
(8)

with two parameters, µ and σ.

• If we hold µ=0.33 constant, then there are two saddle-nodes
in σ (codim-1):

http://i.imgur.com/HkWKhPs.gif


Cusp Bifurcation

• A codimension-2 saddle-node bifurcation happens when two
curves of saddle-nodes bifurcations collide, so there are two
saddle-node curves before the bifurcation (before the
collision), and none after that. This is known as a cusp.

Figure: An animation displaying the changes in σ bifurcation diagrams as
µ varies.

http://i.imgur.com/dWAJJvP.gif


Bogdanov-Takens Bifurcation

• When a curve of saddle-node bifurcations collides with a curve
of Hopf bifurcations (each point on this curve represents a
codimension-1 Hopf bifurcation), then we get codimension-2
Bogdanov-Takens bifurcation

Figure: Example of Bogdanov-Takens bifurcation on XPPaut. The
saddle-node bifurcation is in red and the Hopf bifurcation is in blue.



Bautin or Generalized Hopf Bifurcation

• Suppose we have two distinct curves of (codimension-1) Hopf
bifurcations, one generating stable periodic orbits
(supercritical) and the other generating unstable orbits
(subcritical).

• When two such curves collide, we have a so called Bautin (or
Generalized Hopf) bifurcation.



Bautin or Generalized Hopf Bifurcation

Figure: Generalized Hopf bifurcation diagram. The vertical axis
corresponds to the Hopf bifurcation (supercritical at H−and subcritical at
H+); the curve LPC corresponds to the saddle-node bifurcation of
periodic orbits. The phase portraits drawn in the margins indicate
solution behavior in each region of parameter space [3].



Global Bifurcations

• All previous examples were local bifurcations — collisions of
equilibrium points (or curves of equilibrium points)

• Global bifurcations — collisions of periodic orbits with
equilibrium points or each other



Homoclinic Bifurcation
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Homoclinic Bifurcation

In a Homoclinic bifurcation, the period of a periodic orbit (around
some equilibrium point x∗2 ) grows so large that the periodic orbit
itself collides with an equilibrium point x∗1 , generating a homoclinic
connection, that is special solution of the system which connect x∗1
to itself, after wandering far away from it.



Homoclinic Connection

Definition

Suppose x0 ∈ Rn is an equilibrium point of the system x ′ = f (x).
We say that a trajectory or a solution x(t) of this system is a
homoclinic connection if

x(t) −→ x0, as t −→ ±∞



HH Model: Too Much

• Hodgkin-Huxley model: describes the biology very well, but is
complicated

V ′m = − 1

Cm
(ICa + IK + IKCa

)

n′ =
n∞(Vm)− n

τn
c ′ = −fc (αICa(Vm) + kPMCAc)



ICa(Vm) = gCam
2
∞(Vm)(Vm − VCa)

IK(Vm, n) = gKn(Vm − VK )

IKCa
(Vm, c) = gKCa

s∞(c)(Vm − VK)

m∞(Vm) =

(
1 + exp

(
VmL
− Vm

sm

))−1

n∞(Vm) =

(
1 + exp

(
Vn − Vm

sn

))−1

s∞(c) =
c4

c4 + k4
s

• Three variables; fourteen parameters



FHN Model: Too Little

• Fitzhugh-Nagumo Model: a reduction of the HH model.

• Much simpler, but cannot reproduce all the same behaviors

v ′ = v − v3

3
− w + Iext

w ′ =
1

τ
(v + a− bw)

• Two variables; four parameters



HR Model: Just Right

The Hindmarsh-Rose model has three variables and eight
parameters. It’s simpler than the HH model, but can also replicate
all of its behaviors.

• x(t): Membrane potential (primary output variable)

• y(t): A measure of activity in voltage-gated potassium
channel (fast variable)

• z(t): Cytosolic calcium (slow variable)

x ′ = −s(−ax3 + x2)− y − bz

y ′ = φ(x2 − y)

z ′ = ε(sa1x + b1 − kz)



HR Model: Slightly Different

• Instead of Na+, Ca2+ causes depolarization.

• Ca2+ opens some K+ channels, so it plays a part in
repolarization too.



Physical Interpretations of Parameters

s : A weight on depolarization dynamics for both x ′ and z ′.

a : How much the ”high point” of depolarization influences x ′.

a1 : Calcium gate sensitivity to voltage.

b : Strength of calcium-gated potassium channels.

b1 : Baseline rate of calcium uptake.

k : Rate of cytosolic calcium decay.

φ : Timescale for potassium channel dynamics.

ε : Timescale for cytosolic calcium dynamics.



The Fast System

• Assume that changes in calcium are negligibly small. So
ε = z ′ = 0.

• The value of z is now a parameter.

x ′ = −s(−ax3 + x2)− y − bz
y ′ = φ(x2 − y)

(9)

• Studying dynamics here can tell us about the full system
• Example in full-system bursting: loss of fixed-point stability →

beginning of active phase, and loss of limit cycle stability →
end of active phase [1].



Findings from Burke et al.

• Used numerical methods

• Found curves of Hopf, saddle-node of fixed points (SNf),
saddle-node of periodic orbits (SNp), and homoclinic
bifurcations.

• Codimension-2 bifurcations occur at the intersections of these
curves [1]



Codimension-1 Bifurcation Diagram

Codimension-1 bifurcation diagram for the fast system.Two saddle-nodes of fixed
points occur at z = 0 and z = 0.01336 and a saddle-node of periodic orbits exists at
z = −0.002064 and z = −0.0011931888 where stable and unstable periodic orbits
collide. A Hopf bifurcation exists at z = −0.001199265 as well as a neutral saddle.



Figure: 3-D Extension of bifurcation diagram in previous figure. From
Hopf bifurcation at z = 0.001199265, there are unstable periodic orbits
becomes stable periodic orbits and then collide into one homoclinic orbit.



Numerical Simulation Results

Using XPPaut and MatCont, we have reproduced and expanded
the results in [1] have begun to prove the existence of some of
these bifurcations as further work.

Figure: Codimension-2 bifurcation diagram for the fast system.



Cusp



Generalized Hopf



Bogdanov-Takens



Branch of Homoclinic Orbits

Figure: Branch of homoclinic connections out of Bogdanov-Takens point
from previous figure.



Figure: One homoclinic connection grabbed from previous figure in red.
Starting from different points around this orbit, different behavior occurs.



Figure: Time series plot of one of the solutions inside of the homoclinic
orbit from previous figure.



Proof for Saddle-node Bifurcation in the Fast System

Proposition

The system (9) has a saddle-node bifurcation at the equilibrium
point (x0, y0) = (x∗, x∗

2
), where x∗ > 0.

Proof.

The Jacobian at this point is

J(x0, y0) =

[
3sax∗

2 − 2sx∗ −1
2φx∗ −φ

]
The eigenvalues of this matrix satisfy the characteristic polynomial

λ2 + λ
(
φ+ 2sx∗ − 3asx∗

2
)
− 3aφsx∗

2
+ 2φx∗(1 + s) = 0



Proof.

Sotomayor’s Theorem requires one of these eigenvalues to be 0.
Therefore, the following condition must be solved:

−3asx∗
2

+ 2φx∗(1 + s) = 0

the corresponding bifurcation value of z is

z0 = − 4

27

s3 + 3s2 + 3s + 1

ba2s2
(10)



Proof.

The right eigenvector of this matrix for λ = 0 is

v =

[
1

2x∗

]
and the left eigenvector is

wT = [−φ 1]



Proof.

Finally, check the two conditions:

•

wT fz(x0, z0) = [−φ 1]

[
−b
0

]
= φb

6= 0

•

wTD2f (x0, z0)(v , v) = [−φ 1]

[
6sax∗ − 2s

2φ

]
= −φ(6sax∗ − 2s) + 2φ

6= 0

Both conditions are satisfied, so a saddle-node bifurcation exists by
Sotomayor’s Theorem.



Proof for Hopf Bifurcation in the Fast system

Proposition

Under certain conditions, the system (9) exhibits subcritical and
supercritical Hopf bifurcations.

Proof.

Shifting the variables such that the equilibrium point is the origin:

u = x − x0

v = y − y0

and renaming u, v as x , y gives the following shifted system:

x ′ = (x + x0)2(sa(x + x0)− s)− (y + y0)− bz

y ′ = φ(x + x0)2 − φ(y + y0)



Proof.

The expansion of the shifted system gives

x ′ = (−sx2
0 + asx3

0 − y0 − bz)− y + O(|y |4)+

(2sx0 + 3asx2
0 )x+

(−s + 3asx0)x2+

asx3 + O(|x |4)

y ′ = (φx2
0 − φy0)− φy

+ O(|y |4) + 2φx0x

+ φx2 + O(|x |4)



Proof.

and the Lyapunov number is

σ =
3π
(
4φx0(−s + 3asx0)

)
2
(
φx0(2s − 3asx0 + 2)

)3/2

with conditions x0 <
2(1+s)

3as and x0 6= 1
3a we have σ 6= 0

so a Hopf bifurcation occurs.
Under certain conditions for the equilibrium (x0, y0) = (x∗, x∗2) to
be center, the system (9) exhibits subcritical and supercritical Hopf
bifurcations.
In the expansion of the shifted system, a01 = −1,
a10 = 2sx0 + 3asx0

2, a20 = −s + 3asx0, a30 = as, and b01 = −φ,
b10 = 2φx0, b20 = φ
The Jacobian of system (9) at (x∗, x∗2) (or the shift system at
(0,0)) must have a determinant D > 0 and a trace τ = 0 for
(x∗, x∗2) to be center.



Proof.

The Jacobian at this point is

J(x0, y0) =

[
3sax∗

2 − 2sx∗ −1
2φx∗ −φ

]
The determinant of this Jacobian is

D = −3φsax∗2 + 2φx∗(s + 1)

and the trace is

τ = 3sax∗
2 − 2sx∗ − φ



Proof.

Combine the conditions of Lyapunov number, we obtain,
For σ < 0, x∗ < 1

3a , and for σ > 0, 1
3a < x∗ < 2(1+s)

3as . Numerical
calculations show that when a = 0.5, φ = 1, s = −1.6, and
x∗ = −1, we get σ = −32.0991. For a = 0.5, φ = 1, s = −2, and
x∗ = 1, we get σ = 94.2478. Therefore there exists an open set
S11 in the parameter space (a, φ, s) such that σ < 0 and all of our
restrictions hold:

S11 = {(a, φ, s) : D > 0, τ = 0, and σ1 < 0}

Similarly, another set S12 exists such that

S12 = {(a, φ, s) : D > 0, τ = 0, and σ1 > 0}

The surface Hp1 = {(a, φ, s) : (a, φ, s) ∈ S11} is the supercritical
Hopf bifurcation of the system (9) and the surface
Hb1 = {(a, φ, s) : (a, φ, s) ∈ S12} is the subcritical Hopf bifurcation
of the system (9).



Theorem for Local Stability of Fast system

In (9), for y ′ = 0 we need all equilibrium points to satisfy
(x0, y0) = (x∗, x∗2), then plug y0 = x∗2 in x ′ = 0, we obtain the
equation:

sax∗3 − (s + 1)x∗2 − bz = 0 (11)

In the fast system, s, a, b are fixed positive parameters and z is
varied. Hence we have sa > 0, −(s + 1) < 0 and −bz could be
positive or negative. So the sign of the equation (11) could change
once or twice. By Descarte’s Rule of signs, then there could be
none or one or two equilibrium points which are the positive real
roots of the first equation of (9) when we are changing the
parameter z .



Compute:

τ2 − 4D = (3sax∗
2 − 2sx∗ − φ)2 − 4(−3φsax∗

2
+ 8φx∗(s + 1))

with

−4D = 4φ2 − 8φx∗ + 4φ(3sax∗
2 − 2sx∗ − φ)

τ = 3sax∗
2 − 2sx∗ − φ

Therefore

τ2 − 4D = τ2 + 4φτ + 4φ2 − 8φx∗

= (τ + 2φ)2 − 8φx∗



τ2 − 4D > 0 ⇐⇒

(τ + 2φ)2 − 8φx∗ > 0 (12)

8φx∗ 6 (τ + 2φ)2

x∗ 6
(τ + 2φ)2

8φ

We solve

τ = 0 ⇐⇒ 3sax∗
2 − 2sx∗ − φ = 0

(13)

with x∗ > 0 and φ 6 s
3a , we obtain:



x∗ =
2s +

√
4s2 − 12saφ

6sa

The vertex of the parabola (13) is ( 1
3a ,
−s
3a )

With the condition x∗ > 0, we will only look at the range

0 < x∗ <
2s+
√

4s2−12saφ
6sa and x∗ > 2s+

√
4s2−12saφ
6sa .

Thus, we have established the following result:



Theorem

The equilibrium point has the following local stability properties:
Since x∗ < 2(1+s)

3sa based on the condition of Lyapunov number in
proposition 2,

1 (9) has no saddle at (x∗, x∗
2
).

2 if x∗ 6 (T+2φ)2

8φ , then (9) has a node at (x∗, x∗
2
);

• it is stable if x∗ <
2s+
√

4s2−12saφ

6sa causing τ < 0.

• it is unstable if x∗ >
2s+
√

4s2−12saφ

6sa causing τ > 0.

3 if x∗ > (T+2φ)2

8φ , and τ 6= 0 then (9) has a focus at (x∗, x∗
2
);

• it is stable if x∗ <
2s+
√

4s2−12saφ

6sa causing τ < 0.

• it is unstable if x∗ >
2s+
√

4s2−12saφ

6sa causing τ > 0.



Graph Theoretic method

Theorem

Suppose that the following assumptions are satisfied:

1 There exists function Di : U → R, Gij : U → R and constant
aij > 0 such that for every 1 6 i 6 n,
D ′i = D ′i |(3.6) 6

∑n
j=1 aijGij(z) for z ∈ U.

2 For A = [aij ], each directed cycle C of (G ,A) has∑
(s,r)∈(C) Grz(z) 6 0 for z ∈ U, where (C ) denotes the arc

set of the directed cycle C .

Then, the function

D(z) =
n∑

i=1

ciDi (z) (14)

with constant ci > 0 satisfies D ′ = D ′|(3.6) 6 0; that is, D is a
Lyapunov function [5].



Construction of Lyapunov Function to Prove Global
Stability of the Fast System

Proposition

There exists a Lyapunov function for the equilibrium point (x∗, x∗2)
if x and y satisfy the conditions 0 < x < x∗

e and 0 < y < y∗.

Proof.

We have at the equilibrium point (x∗, y∗) with y∗ = x∗2, so
substituting this into the first equation in (9), we obtain
bz = sax∗3 − sx∗2 − y∗.



Proof.

Construction: Let D1 = x − x∗ − x∗ ln x
x∗ and

D2 = y − y∗ − y∗ ln y
y∗ . We will also use the inequality

1− x + ln x 6 0 for x > 0 with equality holding if and only if
x = 1. Differentiation gives

D ′1 =
x − x∗

x
x ′

=
x − x∗

x
(sax3 − sx2 − y − (bz))

=
x − x∗

x
(sax3 − sx2 − y − (sax∗3 − sx∗2 − y∗))

= (1− x∗

x
)(sa(x3 − x∗3)− s(x2 − x∗2)− (y − y∗))



Proof.

since 0 < x < x∗ and 0 < y < y∗ we have
sa(x3 − x∗3) < 0,−s(x2 − x∗2) > 0, ln x

x∗ < 0, (y − y∗) < 0 and

(1− x∗

x ) 6 ln x
x∗

so D ′1 6 ln x
x∗ (−s(x2 − x∗2)− (y − y∗)) =: a12G12

and similarly

D ′2 =
y − y∗

y
y ′

=
y − y∗

y
φ(x2 − y)

= φ(x2(1− y∗

y
)− (y − y∗))

6 φ(x2ln
y

y∗
− (y − y∗)) =: a21G21



Proof.

with a12 = 1 > 0, a21 = φ > 0 and
G12 = ln x

x∗ (−s(x2 − x∗2)− (y − y∗)), G21 = x2 ln y
y∗ − (y − y∗)

We have

G12 + G21 = ln
x

x∗
(−s(x2 − x∗2)− (y − y∗)) + x2 ln

y

y∗
− (y − y∗)

= −s ln
x

x∗
(x2 − x∗2) + x2 ln

y

y∗
− (y − y∗)(ln

x

x∗
+ 1) < 0

with the initial conditions of x and y .



Proof.

So by Theorem 7, there exists c1 and c2 such that
D = c1D1 + c2D2 is a Lyapunov funtion for (9). Since d+(2) = 1,
Theorem 9 implies that c1 = φc2. Therefore, a Lyapunov function
D = φD1 + D2 can be used to prove the global stability of the
equilibrium point (x∗, x∗2).

Figure: Digraph constructed for the fast system (9)



The Full System

The full model of the Hindmarsh-Rose system is:

x ′ = sax3 − sx2 − y − bz
y ′ = φ(x2 − y)
z ′ = ε(sa1x + b1 − kz)

(15)

The key ingredient that we found in the fast system is the
existence of a saddle-node of periodic orbits which indicates the
existence of torus canards in the full system. The torus bifurcation
is between the transition from spiking to bursting in neurons where
the stable periodic orbits indicate rapid spiking in the neuron and
the unstable periodic orbits indicate rapid bursting.



Codimension-1 Bifurcation Diagram

Figure: Codimension-1 bifurcation diagram for the full system. The
red/black curve represents a branch of fixed points going from stable to
unstable with a curve of periodic orbits forming at the Hopf bifurcation
at b1 = −0.1927. These periodic orbits go from unstable to stable with
Torus bifurcations occurring where the periodic orbits go from stable to
unstable and unstable to stable at b1 = −0.1926 and b1 = −0.1603
respectively.



Torus Bifurcation in the Full System

Figure: Torus bifurcation diagram for the full system occurs at
b1 = −0.19267225. The red cycle NS is where torus bifurcation occurs
that stable periodic orbits inside NS curve become unstable and go into
the blue unstable surface.



Figure: Extension of previous figures in the xyz space. We obtained three
more Hopf bifurcations and two more Torus bifurcations which occur at
b1 = −0.1602552, and b1 = −0.16046985.



Figure: Stable (green) and unstable (blue) periodic orbits seen in previous
figure that collide together at a Torus bifurcation.



Unstable periodic orbit in blue. Starting
from a point near the unstable orbit, the
solution (red) spirals away into a Torus.

Time series plot.



Figure: Stable periodic orbit in blue. Starting from a point near the
stable orbit, the solution(red) at first spirals out but then spirals back
into the orbit.



Torus Canard

Figure: An animation displaying torus canard behavior in (15).

http://i.imgur.com/N72eZBJ.gif


Figure: Generalized Hopf and Bogdanov-Takens bifurcation diagrams



Figure: Cusp and Zero-Hopf bifurcation



Homoclinic curve out of Bogdanov-Takens bifurcation from previous figure in solid
blue. One Hopf bifurcation curve labeled H1, two saddle-node curves labeled S1, S2,
two GH-generalized Hopf bifurcations at (b1, s) ≈ (0,−0.088622) and
(0.05399,−0.57108), and a cusp bifurcation at (0.01628,−0.26748). The Hopf
bifurcation curve goes right through the homoclinic curve.



Figure: Solution curves from homoclinic connection in Figure 87.



Contributions

• Computed more codimension-1 and codimension-2
bifurcations for fast and full systems.

• Extended bifurcation regions and bifurcation boundaries,
helping explain more complex dynamics.

• Provided proofs for the existence of some of the
codimension-1 bifurcations.



Future Research

• Provide a detailed description of the dynamics of the H-R
model by completing and extending our current bifurcation
analysis.

• Provide existence proofs for some codimension-2 bifurcations.

• Obtain global stability results with larger (less restrictive)
attracting sets via graph–theoretic methods.

• Completing the proof for global stability of the fast system by
applying LaSalle’s Principle.

• Discover other bifurcations in the system. Possibility of
heteroclinic orbits?
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