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Background

We study Anti-Ramsey problems (rainbow problems). Ramsey
Theory studies monochromatic substructure within a
structure.

Classical Ramsey Theory - Schur’s Theorem:
Coloring the natural numbers into finite number of colors, then
there must a color class contain a triple with (x , y , x + y)

Goal: find a condition on the coloring to guarantee a rainbow
configuration.
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What’s a Rainbow Configuration?

Suppose we have a set X={0 , 1 , 2 , 3 , 4 , 5 }
Q: Can you find (x , y , x + y) such that x, y, and x+y are different
colors?

Hint:
1 + 2 = 3
2 + 3 = 5
0 + 1 = 1
2 +2 = 4
1 + 4 = 5
. . .

We also see (1,4 ,5) is a triple with all distinct color elements.
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Definition

Definition
A coloring of X is a function f ∶ X → C of colors. Here the
preimages {f −1(C)} are the color classes from X.

Definition
The configuration space is the set F = {(x1, x2, . . . , xk) ∈ X k} for
k ≥ 3
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Definition

Definition
A rainbow tuple is an element f ∈ F such that the elements
π1(f ), π2(f ) . . . πk(f ) all belong to distinct color classes. If no
rainbow tuples exist, then our configuration space {X ,F , c} is
rainbow-free.

From our previous example, X = {0,1,2 ,3,4 ,5}. The color
classes are {2,4},{0,5},{1,3}.
Our configuration space F = {(x , y , x + y) ∈ X 3}

Our coloring is not rainbow-free since there are rainbow
triples, (1,4,5), (2,3,5), etc.
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Known Results

Theorem: Ceja, Cook, and Hayden (2016)
If we let X = Z/p, for large prime p, and k ≥ 3, then for every
partitioning of X into k colors with each of size ⌈p

k ⌉ or ⌊p
k ⌋, there

must exist a rainbow tuple of the form (x1, x2, x1 + x2).

Theorem: Schönheim (1990)
For every 3-coloring of 1,2,3, . . .n, with every color class with at
least n/4 elements, there exists a rainbow tuple (x1, x2, x1 + x2).

Theorem: Senger (2017)
Fix c > 0. Given a coloring of F2

q, with q sufficiently large, where
no color class has size ≥ cq2, if unit equilateral triangles exist in F2

q
then there must be a rainbow unit equilateral triangle.
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Constant M

Definition
Given F ⊂ X k , we define Mi ,j as the constant such that for any
x = (x1, x2, . . . , xk) ∈ F , we have ∣{y ∈ F ∶ yi = xi , yj = xj}∣ ≤ Mi ,j

M = ∑i<j Mi ,j

1 Given F = {(x , y , x + y) ∈ X 3}, M = M1,2 +M1,3 +M2,3 = 3
If we fix any two coordinates, then we can uniquely determine
the other coordinate. So, there’s only one tuple in F , namely
M1,2 = M2,3 = M1,3 = 1

2 Given F = {(x , y , x + y , xy) ∈ X 4},
M = M1,2 +M1,3 +M1,4 +M2,3 +M2,4 +M3,4 = 5 ⋅ 1 + 2 = 7
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Finite Case Theorem(FCT)

Theorem

Let X be a finite set of size n, and F ⊂ X k be a set of k-tuples. If
no color class has size ≥ Cn, where ∣F ∣ ≥ Dn2, and C < 2D

9M , then
there must be a rainbow k-tuple in F .

Sketch of the proof:
1 Assume it is a rainbow-free.
2 Merge color classes until attaining a minimum and maximum

bound on all the color class sizes.
3 Use ∣F ∣ bounds to get a lower bound on the number of color

classes.
4 We use what we know about the color classes’ size to reach a

contradiction.
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Merging

Definition
Define a coloring λ to be a merging of λ′ if x , y are the same
color under λ′ , then they also have the same color under λ.

Figure: Merge color classes can destroy but not create rainbow
configurations.
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Proof.
We merge the color classes until every color class has size
between 1

2 Cn and 3
2 Cn. Let s denote the number of color

class after this process.

Let ni denote the size of color class i. Recall that M counts
the number of tuples in F that share a pair of coordinates. So
there are at most Mn2

i elements in F with at least two
coordinates from color class i.
∣F ∣ ≤ M∑s

i=1 n2
i ≤ M∑s

i=1 (3
2 Cn)2 ≤ s 9M

4 C 2n2

it implies s ≥ 4
9M

1
C2
∣F ∣
n2 ≥ 4D

9MC2

Finally, X has at least (1
2 Cn) ⋅ 4D

9MC2 > n elements, for C < 2D
9M

Contradiction!
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Finite Case Corollary

Corollary 1
Suppose we have a coloring of a finite abelian group, G . If all color
class has size < 2

27 ∣G ∣ then there must be a rainbow triple of the
form (x , y , x + y).

Applying FCT, here X = G , k = 3, and
F = {(x , y , x + y) ∈ G3∣x , y ∈ G}.

so M = 3, ∣F ∣ = n2

thus, D = 1, and C < 2D
9M = 2

27
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Corollary 2

If we color Fq such that each color class has size <
(2−o(1))

63 q, then
there must be a rainbow quadruple of the form (x , y , x + y , xy).

Corollary 3
If we color a finite (additive) abelian group G , with no
(nonidentity) element of order < k, then if there are no rainbow
k-arithmetic progressions, at least one color class has size ≥ 2

9(k2)
∣G ∣.

Corollary 4
If we color [1..n] such that there are no rainbow triples of the form
(x , y , x + y), then at least one color class has size ≥

1−o(1)
27 n.
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Pathological Coloring

Example
Suppose we have the following color classes on Q, where a,b ∈ Z
for b ≠ 0

color class 0: {Z}⋃{ a
b ∈ Q ∶ 2 ∤ a,b}

color class 1: { a
21b ∶ 2 ∤ a,b}

color class 2: { a
22b ∶ 2 ∤ a,b}

⋯

color class i: { a
2i b ∶ 2 ∤ a,b}

If x ∈ color class i , and y ∈ color class j , then x + y ∈ color class
max(i , j). Here we have infinitely many classes, but still
rainbow-free of the form (x , y , x + y).
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Pathological Coloring

Example
Suppose we color vector space R over Q as following, and let
{xi}i∈I be a well-ordered basis.

Define Aj to be the set of linear combinations ∑i∈I ci xi with
all but fintely many ci equal to zero and j =min(i ∶ ci /= 0)

The color classes are Aj . We see that if ai ∈ Ai and aj ∈ Aj ,
then ai + aj , ai − aj , aj − ai ∈ Amin(i ,j)

Here we have uncountably many color classes, but again it’s a
rainbow-free of the form (x , y , x + y) in this coloring.
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Here we have uncountably many color classes, but again it’s a
rainbow-free of the form (x , y , x + y) in this coloring.
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What is more do we need?

Measure!!!

Before we talk about the size of the set X, we can do that earlier
because our sets were finite. However, now we can have
base space and color classes be infinite. For that, we need a way
to talk about the ”size” of an infinite case.
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Measure Space to the Rescue

Measure Space
1 X: finite or infinite set
2 Σ: Measurable sets

a collection of subsets of X, also known as σ-algebra, which is
closed under its compliment, countable unions, and
intersections;
contains X, and ∅.

3 µ: Measure, a function map Σ→ R+⋃{0,∞} such that:
µ(∅) = 0;
µ(⋃Ei) = Σµ(Ei), where Ei ⋂Ej = ∅

(X ,Σ, µ) is called measure space.

X is Finite: µ(X) <∞
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Definition

Technique: merging color classes

Challenge: we don’t want to merge measurable color classes and
get an non-measurable color classes /

Solve: we need to have a countably many different color classes.,

Definition
Let (X , µ) be a measure space, a coloring of X is tractable if
every color class is a measurable subset of X, and there are only at
most countably many color classes.
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Infinite Case Theorem (ICT)
Let (X , µ) be a finite measure space, n = µ(X) <∞, and F ⊂ X k

be a set of k-tuples. If we have a tractable coloring where no
color class has measure ≥ Cn, with m(F) ≥ D(k

2)n2, and C < 2D
9M ,

then there must be a rainbow k-tuple in F .

m(F) =∑
i<j

mij(F)

where
mij(F) =

x
∣{y ∈ F ∶ xi = yi , xj = yj}∣dxi dxj

Note: The finite case is considered µ as counting measure.
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Merging

Remark
Suppose we have an original coloring, λ0. Let Λ be the set of all
coloring that are merging of λ0 and have no color classes of size
> Cn.

Here, apply Zorn’s lemma so that we can talk about maximum and
minimum measure of the color class.
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Sketch of ICT Proof

Proof.
1 Similar to the finite case, we start with assuming that our

coloring is rainbow-free.
2 Merge color classes until the measure of each the color class,
µ(A), is between 1

2 Cn and 3
2 Cn

3 We obtain contradiction based on the number of coloring.
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Corollary 1
Fix a probability measure µ on the unit circle in the complex plane.
If we color the circle with at least 14 equally sized µ−measurable
color classes, there must be a rainbow triple of the form (x , y , xy)

We note that the measure space is finite since µ(X) = 1.
F = {(x , y , xy) ∈ X 3∣x , y ∈ X}. We note that any two pairs of
elements uniquely determine a triple in F . So m(F) = 3.
Hence, D = 1.

We apply ICT with D = 1, M = 3, and C ≤
2D
3M

=
2

27
. We

satisfy the color class because each color classes has
µ−measure 1/14 < 2/27.
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Corollary 2
If we split any square into 104 equally sized Lebesgue measurable
color classes, then it must contain three points x , y , z such that
∣x − y ∣ = ∣z − y ∣ = ∣x − z ∣ with the points being distinct colors.
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Definition
Let X have a coloring, and x ∈ X k . Then x is w-subrainbow if x
has no w components of the same color.

(x1, x2, x3, x4, x5) is 3-subrainbow, but (x1, x2, x3, x4, x5) is not.

Note: earlier cases are when w = 2, since every tuple has no 2
elements of the same color.
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Definition
Let (X , µ) be a finite measure space, F ⊂ X k , and fix a
t ∈ [2..k − 1]. For any subset S ⊂ [1..k], such that ∣S ∣ = t, so write
S = {s1, s2, . . . , st}. Define t-bound of F be Mt , so
Mt = ∑s M(S), where M(S) = sup(y1,...,yk)∈F ∣{x ∈ F ∶ xsj = ysj}∣

x = (x1, x2, x3, . . . , xt , . . . , xk)
y = (y1, y2, y3, . . . , yt , . . . , yk)
Similarly,

m =∑
S

m(S)

where

m(S) = ∫ ⋯∫ ∣{y ∈ F ∶ xsi = ysi , i ∈ [1..t]}∣ds1⋯dst
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Theorem(Generalized)
Let (X , µ) be a finite measure space, and define n = µ(X). Let
F ⊂ X k be measurable, and let the t-bound be M, and suppose
m(F) ≥ D(k

t)nt and 2 ≤ w ≤ t < k. Then for any tractable
coloring of X, if µ(A) < Cn for all color classes A. Then F must

contain a w-subrainbow element, as long as Cw−1 <
2w−1D

3w M( t
w)

Proof.
We use the same technique as before
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Corollary
Let G be an abelian group, 2,3 ∤ ∣G ∣, with some coloring. Then:

1 If no color class has size ≥ 1
135 ∣G ∣, there must be a rainbow

quintuple of the form (x , y , z , x + y + z , x + 2y + 3z)

2 ...

For 1:
Applying Generalized Theorem, here X = G , k = 5, and
F = {(x , y , z , x + y + z , x + 2y + 3z) ∈ G5∣x , y , z ∈ G}.

so Mt = M3 = (5
3) = 10, ∣F ∣ = ∣G ∣3

thus, D = 1, w = 2, and Cw−1 < 2w−1D
3w M( t

w)
= 2⋅1

32⋅10(3
2)
= 1

135
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Corollary
Let G be an abelian group, 2,3 ∤ ∣G ∣, with some coloring. Then:

1 ...
2 If no color class has size

√
2

135 ∣G ∣, there must be a
3-subrainbow quintuple of the form
(x , y , z , x + y + z , x + 2y + 3z)

For 2:
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F = {(x , y , z , x + y + z , x + 2y + 3z) ∈ G5∣x , y , z ∈ G}.
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3) = 10, ∣F ∣ = ∣G ∣3

thus, D = 1, w = 3, and Cw−1 < 2w−1D
3w M( t

w)
= 22⋅1

33⋅10(3
3)
= 2

135
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