Bounds on Subframes

Mike Desgrottes ${ }^{1}$, David Soukup ${ }^{1}$, Renjun Zhu ${ }^{1}$

Missouri State University REU; August 3, 2017
${ }^{1}$ This work was supported in part by NSF Grant DMS 1559911

What is a frame?

A frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}.

What is a frame?

A frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. (A Hilbert space is a special kind of vector space which will be defined soon).

What is a frame?

A frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. (A Hilbert space is a special kind of vector space which will be defined soon). Before formally introducing frames, we seek to answer a question: What good are they?

Equiangular frames

The equiangular lines question is a natural question which has been studied for many years:

Equiangular frames

The equiangular lines question is a natural question which has been studied for many years:

Equiangular lines question

What is the maximum number of lines $N(d)$ through the origin in \mathbb{R}^{d}, $d \geq 2$, such that the angle between any pair of lines is equal?

Equiangular frames

The equiangular lines question is a natural question which has been studied for many years:

Equiangular lines question

What is the maximum number of lines $N(d)$ through the origin in \mathbb{R}^{d}, $d \geq 2$, such that the angle between any pair of lines is equal?

For example, we could pick our lines to be the x_{1}-axis, x_{2}-axis, ... , and x_{d}-axis, in which case the angle between any pair of lines is $\pi / 2$.

Equiangular frames

The equiangular lines question is a natural question which has been studied for many years:

Equiangular lines question

What is the maximum number of lines $N(d)$ through the origin in \mathbb{R}^{d}, $d \geq 2$, such that the angle between any pair of lines is equal?

For example, we could pick our lines to be the x_{1}-axis, x_{2}-axis, ... , and x_{d}-axis, in which case the angle between any pair of lines is $\pi / 2$. This means $N(d) \geq d$; in general one can do better.

Equiangular frames

The equiangular lines question is a natural question which has been studied for many years:

Equiangular lines question

What is the maximum number of lines $N(d)$ through the origin in \mathbb{R}^{d}, $d \geq 2$, such that the angle between any pair of lines is equal?

For example, we could pick our lines to be the x_{1}-axis, x_{2}-axis, ... , and x_{d}-axis, in which case the angle between any pair of lines is $\pi / 2$. This means $N(d) \geq d$; in general one can do better. In [2], Greaves, Koole, Munemasa, and Szöllősi give (for example) $N(2)=3, N(3)=N(4)=6$, $N(15)=36$;

Equiangular frames

The equiangular lines question is a natural question which has been studied for many years:

Equiangular lines question

What is the maximum number of lines $N(d)$ through the origin in \mathbb{R}^{d}, $d \geq 2$, such that the angle between any pair of lines is equal?

For example, we could pick our lines to be the x_{1}-axis, x_{2}-axis, ... , and x_{d}-axis, in which case the angle between any pair of lines is $\pi / 2$. This means $N(d) \geq d$; in general one can do better. In [2], Greaves, Koole, Munemasa, and Szöllősi give (for example) $N(2)=3, N(3)=N(4)=6$, $N(15)=36$; but the problem is still open for $d=14,16 \leq d \leq 20$, and $d \geq 42$.

Equiangular frames

The equiangular lines question is a natural question which has been studied for many years:

Equiangular lines question

What is the maximum number of lines $N(d)$ through the origin in \mathbb{R}^{d}, $d \geq 2$, such that the angle between any pair of lines is equal?

For example, we could pick our lines to be the x_{1}-axis, x_{2}-axis, ... , and x_{d}-axis, in which case the angle between any pair of lines is $\pi / 2$. This means $N(d) \geq d$; in general one can do better. In [2], Greaves, Koole, Munemasa, and Szöllősi give (for example) $N(2)=3, N(3)=N(4)=6$, $N(15)=36$; but the problem is still open for $d=14,16 \leq d \leq 20$, and $d \geq 42$.
This set of lines forms a frame in a natural way; Jasper, Mixon, and Fickus use frames to give applications of this problem to coding theory in [3].

Signal processing

Imagine that I know the location of some free pizza, and I want to send that information to you.

Signal processing

Imagine that I know the location of some free pizza, and I want to send that information to you. If I write the location in some agreed-upon coordinate system as $\mathbf{x}=\left(x_{1}, x_{2}\right)$, one possibility would be to just send you x_{1} and x_{2}, or equivalently $\mathbf{x} \bullet(1,0)$ and $\mathbf{x} \bullet(0,1)$.

Signal processing

Imagine that I know the location of some free pizza, and I want to send that information to you. If I write the location in some agreed-upon coordinate system as $\mathbf{x}=\left(x_{1}, x_{2}\right)$, one possibility would be to just send you x_{1} and x_{2}, or equivalently $x \bullet(1,0)$ and $x \bullet(0,1)$. But if the information is being sent over some noisy channel, this is not ideal, since if one of the coordinates is lost then there is no recourse.

Signal processing

Imagine that I know the location of some free pizza, and I want to send that information to you. If I write the location in some agreed-upon coordinate system as $\mathbf{x}=\left(x_{1}, x_{2}\right)$, one possibility would be to just send you x_{1} and x_{2}, or equivalently $x \bullet(1,0)$ and $x \bullet(0,1)$. But if the information is being sent over some noisy channel, this is not ideal, since if one of the coordinates is lost then there is no recourse. I could send you each coordinate twice to protect against loss, but that requires four transmissions.

Signal processing

Imagine that I know the location of some free pizza, and I want to send that information to you. If I write the location in some agreed-upon coordinate system as $\mathbf{x}=\left(x_{1}, x_{2}\right)$, one possibility would be to just send you x_{1} and x_{2}, or equivalently $x \bullet(1,0)$ and $x \bullet(0,1)$. But if the information is being sent over some noisy channel, this is not ideal, since if one of the coordinates is lost then there is no recourse. I could send you each coordinate twice to protect against loss, but that requires four transmissions. Or I can send you $\mathbf{x} \bullet(1,0), \mathbf{x} \bullet(0,1)$, and $\mathbf{x} \bullet(1,1)$; any two of these will allow you to recover \mathbf{x}.

Signal processing

Imagine that I know the location of some free pizza, and I want to send that information to you. If I write the location in some agreed-upon coordinate system as $\mathbf{x}=\left(x_{1}, x_{2}\right)$, one possibility would be to just send you x_{1} and x_{2}, or equivalently $x \bullet(1,0)$ and $x \bullet(0,1)$. But if the information is being sent over some noisy channel, this is not ideal, since if one of the coordinates is lost then there is no recourse. I could send you each coordinate twice to protect against loss, but that requires four transmissions. Or I can send you $\mathbf{x} \bullet(1,0), \mathbf{x} \bullet(0,1)$, and $\mathbf{x} \bullet(1,1)$; any two of these will allow you to recover \mathbf{x}. That is because the set $\{(0,1),(1,0),(1,1)\}$ forms a frame over \mathbb{R}^{2}.

Signal processing

When transmitting a signal, the process is very similar.

Signal processing

When transmitting a signal, the process is very similar. The elements we wish to describe are functions, and the basis is typically the celebrated Fourier basis, which consists (up to normalizations) of

$$
f(t)=\left\{\sin (n t), \cos (n t) \mid n \in \mathbb{Z}_{+}\right\}
$$

Signal processing

When transmitting a signal, the process is very similar. The elements we wish to describe are functions, and the basis is typically the celebrated Fourier basis, which consists (up to normalizations) of

$$
f(t)=\left\{\sin (n t), \cos (n t) \mid n \in \mathbb{Z}_{+}\right\}
$$

In this context the study of frames has powerful applications to signal processing, wavelets, and data compression (see [1]).

What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}.

What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. So what is a Hilbert space?

What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. So what is a Hilbert space?
An inner product space is a vector space V over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} together with a function $\langle-,-\rangle: V \times V \rightarrow \mathbb{F}$ (the inner product) satisfying:

What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. So what is a Hilbert space?
An inner product space is a vector space V over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} together with a function $\langle-,-\rangle: V \times V \rightarrow \mathbb{F}$ (the inner product) satisfying:

- $\left\langle a_{1} v_{1}+a_{2} v_{2}, w\right\rangle=a_{1}\left\langle v_{1}, w\right\rangle+a_{2}\left\langle v_{2}, w\right\rangle$

What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. So what is a Hilbert space?
An inner product space is a vector space V over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} together with a function $\langle-,-\rangle: V \times V \rightarrow \mathbb{F}$ (the inner product) satisfying:

- $\left\langle a_{1} v_{1}+a_{2} v_{2}, w\right\rangle=a_{1}\left\langle v_{1}, w\right\rangle+a_{2}\left\langle v_{2}, w\right\rangle$
- $\left\langle v, b_{1} w_{1}+b_{2} w_{2}\right\rangle=\overline{b_{1}}\left\langle v, w_{1}\right\rangle+\overline{b_{2}}\left\langle v_{2}, w_{2}\right\rangle$

What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. So what is a Hilbert space?
An inner product space is a vector space V over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} together with a function $\langle-,-\rangle: V \times V \rightarrow \mathbb{F}$ (the inner product) satisfying:

- $\left\langle a_{1} v_{1}+a_{2} v_{2}, w\right\rangle=a_{1}\left\langle v_{1}, w\right\rangle+a_{2}\left\langle v_{2}, w\right\rangle$
- $\left\langle v, b_{1} w_{1}+b_{2} w_{2}\right\rangle=\overline{b_{1}}\left\langle v, w_{1}\right\rangle+\overline{b_{2}}\left\langle v_{2}, w_{2}\right\rangle$
- $\langle v, v\rangle \geq 0$; and $\langle v, v\rangle=0 \Longleftrightarrow v=0$.

What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. So what is a Hilbert space?
An inner product space is a vector space V over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} together with a function $\langle-,-\rangle: V \times V \rightarrow \mathbb{F}$ (the inner product) satisfying:

- $\left\langle a_{1} v_{1}+a_{2} v_{2}, w\right\rangle=a_{1}\left\langle v_{1}, w\right\rangle+a_{2}\left\langle v_{2}, w\right\rangle$
- $\left\langle v, b_{1} w_{1}+b_{2} w_{2}\right\rangle=\overline{b_{1}}\left\langle v, w_{1}\right\rangle+\overline{b_{2}}\left\langle v_{2}, w_{2}\right\rangle$
- $\langle v, v\rangle \geq 0$; and $\langle v, v\rangle=0 \Longleftrightarrow v=0$.

For example, the following are inner product spaces:

What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. So what is a Hilbert space?
An inner product space is a vector space V over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} together with a function $\langle-,-\rangle: V \times V \rightarrow \mathbb{F}$ (the inner product) satisfying:

- $\left\langle a_{1} v_{1}+a_{2} v_{2}, w\right\rangle=a_{1}\left\langle v_{1}, w\right\rangle+a_{2}\left\langle v_{2}, w\right\rangle$
- $\left\langle v, b_{1} w_{1}+b_{2} w_{2}\right\rangle=\overline{b_{1}}\left\langle v, w_{1}\right\rangle+\overline{b_{2}}\left\langle v_{2}, w_{2}\right\rangle$
- $\langle v, v\rangle \geq 0$; and $\langle v, v\rangle=0 \Longleftrightarrow v=0$.

For example, the following are inner product spaces:

- \mathbb{R}^{d} or \mathbb{C}^{d} with the standard dot product $\langle v, w\rangle=v \bullet w=\sum v_{i} \overline{w_{i}}$.

What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for some Hilbert space \mathcal{H}. So what is a Hilbert space?
An inner product space is a vector space V over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} together with a function $\langle-,-\rangle: V \times V \rightarrow \mathbb{F}$ (the inner product) satisfying:

- $\left\langle a_{1} v_{1}+a_{2} v_{2}, w\right\rangle=a_{1}\left\langle v_{1}, w\right\rangle+a_{2}\left\langle v_{2}, w\right\rangle$
- $\left\langle v, b_{1} w_{1}+b_{2} w_{2}\right\rangle=\overline{b_{1}}\left\langle v, w_{1}\right\rangle+\overline{b_{2}}\left\langle v_{2}, w_{2}\right\rangle$
- $\langle v, v\rangle \geq 0$; and $\langle v, v\rangle=0 \Longleftrightarrow v=0$.

For example, the following are inner product spaces:

- \mathbb{R}^{d} or \mathbb{C}^{d} with the standard dot product $\langle v, w\rangle=v \bullet w=\sum v_{i} \overline{w_{i}}$.
- $L^{2}[0,1]$, the functions $f:[0,1] \rightarrow \mathbb{F}$ such that $\int_{0}^{1}|f(x)|^{2} d x$ converges, with $\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x$.

What is a frame? (redux)

Notice that the inner product $\langle-,-\rangle$ generates a norm on V by

What is a frame? (redux)

Notice that the inner product $\langle-,-\rangle$ generates a norm on V by

$$
\|v\|=\langle v, v\rangle^{1 / 2}
$$

What is a frame? (redux)

Notice that the inner product $\langle-,-\rangle$ generates a norm on V by

$$
\|v\|=\langle v, v\rangle^{1 / 2}
$$

which makes our vector space V into a metric space.

What is a frame? (redux)

Notice that the inner product $\langle-,-\rangle$ generates a norm on V by

$$
\|v\|=\langle v, v\rangle^{1 / 2}
$$

which makes our vector space V into a metric space.

Definition

A Hilbert space \mathcal{H} is an inner product space which is complete relative to the induced norm (which means that all Cauchy sequences in \mathcal{H} converge).

What is a frame? (redux)

Notice that the inner product $\langle-,-\rangle$ generates a norm on V by

$$
\|v\|=\langle v, v\rangle^{1 / 2}
$$

which makes our vector space V into a metric space.

Definition

A Hilbert space \mathcal{H} is an inner product space which is complete relative to the induced norm (which means that all Cauchy sequences in \mathcal{H} converge).

Both of the examples of inner product spaces from last slide are also Hilbert spaces.

What is a frame (for real this time)?

Now we are ready to define a frame.

What is a frame (for real this time)?

Now we are ready to define a frame.

Definition

In a Hilbert space \mathcal{H}, a frame is a subset $F=\left\{\varphi_{i}\right\}_{i \in I}$ such that:

What is a frame (for real this time)?

Now we are ready to define a frame.

Definition

In a Hilbert space \mathcal{H}, a frame is a subset $F=\left\{\varphi_{i}\right\}_{i \in I}$ such that:
(1) The elements of F span \mathcal{H}.

What is a frame (for real this time)?

Now we are ready to define a frame.

Definition

In a Hilbert space \mathcal{H}, a frame is a subset $F=\left\{\varphi_{i}\right\}_{i \in I}$ such that:
(1) The elements of F span \mathcal{H}.
(2) There exist uniform positive constants A, B such that

$$
A\|x\|^{2} \leq \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

for all $x \in \mathcal{H}$.

What is a frame (for real this time)?

Now we are ready to define a frame.

Definition

In a Hilbert space \mathcal{H}, a frame is a subset $F=\left\{\varphi_{i}\right\}_{i \in I}$ such that:
(1) The elements of F span \mathcal{H}.
(2) There exist uniform positive constants A, B such that

$$
A\|x\|^{2} \leq \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

for all $x \in \mathcal{H}$.
For example, if $\left\{\varphi_{i}\right\}$ happen to form an orthonormal basis, then $\sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2}=\|x\|^{2}$ so this is a frame with $A=B=1$.

The upshot

If both I and $\operatorname{dim}(\mathcal{H})$ are finite, then condition 1 implies condition 2 .

The upshot

If both I and $\operatorname{dim}(\mathcal{H})$ are finite, then condition 1 implies condition 2 . So in \mathbb{R}^{d}, any finite spanning set is a frame! This is why we like to think of a frame as an overcomplete basis.

The upshot

If both I and $\operatorname{dim}(\mathcal{H})$ are finite, then condition 1 implies condition 2 . So in \mathbb{R}^{d}, any finite spanning set is a frame! This is why we like to think of a frame as an overcomplete basis.
In the infinite case, things are a bit more complicated since we need to ensure positivity (since $A>0$) and finiteness (since $B<\infty$).

The upshot

If both I and $\operatorname{dim}(\mathcal{H})$ are finite, then condition 1 implies condition 2 . So in \mathbb{R}^{d}, any finite spanning set is a frame! This is why we like to think of a frame as an overcomplete basis.
In the infinite case, things are a bit more complicated since we need to ensure positivity (since $A>0$) and finiteness (since $B<\infty$). Fortunately, we will be dealing mostly with the finite case.

Some definitions

In order to make more sense of the definition of a frame, we introduce the following function:

Some definitions

In order to make more sense of the definition of a frame, we introduce the following function:

$$
t_{F}(x)=\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2}
$$

Some definitions

In order to make more sense of the definition of a frame, we introduce the following function:

$$
t_{F}(x)=\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2}
$$

We're interested in the best possible constants A, B for a given frame, which are as follows:

Some definitions

In order to make more sense of the definition of a frame, we introduce the following function:

$$
t_{F}(x)=\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2}
$$

We're interested in the best possible constants A, B for a given frame, which are as follows:

$$
\begin{aligned}
& A_{F}=\inf _{x \neq 0 \in \mathcal{H}} t_{F}(x) \\
& B_{F}=\sup _{x \neq 0 \in \mathcal{H}} t_{F}(x)
\end{aligned}
$$

Some definitions

In order to make more sense of the definition of a frame, we introduce the following function:

$$
t_{F}(x)=\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2}
$$

We're interested in the best possible constants A, B for a given frame, which are as follows:

$$
\begin{aligned}
& A_{F}=\inf _{x \neq 0 \in \mathcal{H}} t_{F}(x) \\
& B_{F}=\sup _{x \neq 0 \in \mathcal{H}} t_{F}(x)
\end{aligned}
$$

Note that since $t_{F}(a x)=t_{F}(x)$ for all nonzero scalars a, it suffices to consider $\|x\|=1$ in the equations above.

Some definitions

In order to make more sense of the definition of a frame, we introduce the following function:

$$
t_{F}(x)=\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2}
$$

We're interested in the best possible constants A, B for a given frame, which are as follows:

$$
\begin{aligned}
& A_{F}=\inf _{x \neq 0 \in \mathcal{H}} t_{F}(x) \\
& B_{F}=\sup _{x \neq 0 \in \mathcal{H}} t_{F}(x)
\end{aligned}
$$

Note that since $t_{F}(a x)=t_{F}(x)$ for all nonzero scalars a, it suffices to consider $\|x\|=1$ in the equations above. This also means that if $\operatorname{dim}(\mathcal{H})$ is finite, the inf and sup above are actually attained.

Obscurity: our goal

We will soon see from examples that we want A_{F} and B_{F} to be close together; we will quantify this as follows:

Obscurity: our goal

We will soon see from examples that we want A_{F} and B_{F} to be close together; we will quantify this as follows:

Definition

The obscurity $\Omega(F)$ of a frame F is defined as

$$
\Omega(F)=\frac{B_{F}}{A_{F}}
$$

Obscurity: our goal

We will soon see from examples that we want A_{F} and B_{F} to be close together; we will quantify this as follows:

Definition

The obscurity $\Omega(F)$ of a frame F is defined as

$$
\Omega(F)=\frac{B_{F}}{A_{F}}
$$

The obscurity is independent of scaling and rotation about the origin.

Obscurity: our goal

We will soon see from examples that we want A_{F} and B_{F} to be close together; we will quantify this as follows:

Definition

The obscurity $\Omega(F)$ of a frame F is defined as

$$
\Omega(F)=\frac{B_{F}}{A_{F}}
$$

The obscurity is independent of scaling and rotation about the origin. We would like the obscurity to be small to make a better frame.

Obscurity: our goal

We will soon see from examples that we want A_{F} and B_{F} to be close together; we will quantify this as follows:

Definition

The obscurity $\Omega(F)$ of a frame F is defined as

$$
\Omega(F)=\frac{B_{F}}{A_{F}}
$$

The obscurity is independent of scaling and rotation about the origin. We would like the obscurity to be small to make a better frame.

Definition

A frame is tight if $\Omega(F)=1$.

Obscurity: our goal

We will soon see from examples that we want A_{F} and B_{F} to be close together; we will quantify this as follows:

Definition

The obscurity $\Omega(F)$ of a frame F is defined as

$$
\Omega(F)=\frac{B_{F}}{A_{F}}
$$

The obscurity is independent of scaling and rotation about the origin. We would like the obscurity to be small to make a better frame.

Definition

A frame is tight if $\Omega(F)=1$.
A tight frame is Parseval if $A_{F}=B_{F}=1$.

A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in \mathbb{R}^{2} :

A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in \mathbb{R}^{2} :

$$
\varphi_{1}=(0,1) \quad \varphi_{2}=(\sqrt{3} / 2,-1 / 2) \quad \varphi_{3}=(-\sqrt{3} / 2,-1 / 2)
$$

A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in \mathbb{R}^{2} :

$$
\varphi_{1}=(0,1) \quad \varphi_{2}=(\sqrt{3} / 2,-1 / 2) \quad \varphi_{3}=(-\sqrt{3} / 2,-1 / 2)
$$

so for any nonzero $x=\left(x_{1}, x_{2}\right)$, we have:

A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in \mathbb{R}^{2} :

$$
\varphi_{1}=(0,1) \quad \varphi_{2}=(\sqrt{3} / 2,-1 / 2) \quad \varphi_{3}=(-\sqrt{3} / 2,-1 / 2)
$$

so for any nonzero $x=\left(x_{1}, x_{2}\right)$, we have:

$$
t_{F}(x)
$$

A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in \mathbb{R}^{2} :

$$
\varphi_{1}=(0,1) \quad \varphi_{2}=(\sqrt{3} / 2,-1 / 2) \quad \varphi_{3}=(-\sqrt{3} / 2,-1 / 2)
$$

so for any nonzero $x=\left(x_{1}, x_{2}\right)$, we have:

$$
t_{F}(x)=\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in 1}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2}
$$

A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in \mathbb{R}^{2} :

$$
\varphi_{1}=(0,1) \quad \varphi_{2}=(\sqrt{3} / 2,-1 / 2) \quad \varphi_{3}=(-\sqrt{3} / 2,-1 / 2)
$$

so for any nonzero $x=\left(x_{1}, x_{2}\right)$, we have:

$$
\begin{aligned}
t_{F}(x) & =\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2} \\
& =\frac{\left(x_{2}\right)^{2}+\left((\sqrt{3} / 2) x_{1}-(1 / 2) x_{2}\right)^{2}+\left(-(\sqrt{3} / 2) x_{1}-(1 / 2) x_{2}\right)^{2}}{x_{1}^{2}+x_{2}^{2}}
\end{aligned}
$$

A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in \mathbb{R}^{2} :

$$
\varphi_{1}=(0,1) \quad \varphi_{2}=(\sqrt{3} / 2,-1 / 2) \quad \varphi_{3}=(-\sqrt{3} / 2,-1 / 2)
$$

so for any nonzero $x=\left(x_{1}, x_{2}\right)$, we have:

$$
\begin{aligned}
t_{F}(x) & =\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2} \\
& =\frac{\left(x_{2}\right)^{2}+\left((\sqrt{3} / 2) x_{1}-(1 / 2) x_{2}\right)^{2}+\left(-(\sqrt{3} / 2) x_{1}-(1 / 2) x_{2}\right)^{2}}{x_{1}^{2}+x_{2}^{2}} \\
& =3 / 2
\end{aligned}
$$

A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in \mathbb{R}^{2} :

$$
\varphi_{1}=(0,1) \quad \varphi_{2}=(\sqrt{3} / 2,-1 / 2) \quad \varphi_{3}=(-\sqrt{3} / 2,-1 / 2)
$$

so for any nonzero $x=\left(x_{1}, x_{2}\right)$, we have:

$$
\begin{aligned}
t_{F}(x) & =\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2} \\
& =\frac{\left(x_{2}\right)^{2}+\left((\sqrt{3} / 2) x_{1}-(1 / 2) x_{2}\right)^{2}+\left(-(\sqrt{3} / 2) x_{1}-(1 / 2) x_{2}\right)^{2}}{x_{1}^{2}+x_{2}^{2}} \\
& =3 / 2
\end{aligned}
$$

So $A_{F}=B_{F}=3 / 2$, meaning the Mercedes-Benz frame is tight $(\Omega(F)=1)$.

A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in \mathbb{R}^{2} :

$$
\varphi_{1}=(0,1) \quad \varphi_{2}=(\sqrt{3} / 2,-1 / 2) \quad \varphi_{3}=(-\sqrt{3} / 2,-1 / 2)
$$

so for any nonzero $x=\left(x_{1}, x_{2}\right)$, we have:

$$
\begin{aligned}
t_{F}(x) & =\frac{1}{\left\|x_{i}\right\|^{2}} \sum_{i \in I}\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2} \\
& =\frac{\left(x_{2}\right)^{2}+\left((\sqrt{3} / 2) x_{1}-(1 / 2) x_{2}\right)^{2}+\left(-(\sqrt{3} / 2) x_{1}-(1 / 2) x_{2}\right)^{2}}{x_{1}^{2}+x_{2}^{2}} \\
& =3 / 2
\end{aligned}
$$

So $A_{F}=B_{F}=3 / 2$, meaning the Mercedes-Benz frame is tight $(\Omega(F)=1)$. It's not Parseval; we could make it Parseval by scaling the φ_{i} by a factor of $\sqrt{2 / 3}$.

A bad frame: close vectors

Fix an angle $0<\alpha \ll \pi / 4$, and let F consist of the following three vectors:

A bad frame: close vectors

Fix an angle $0<\alpha \ll \pi / 4$, and let F consist of the following three vectors:

$$
\varphi_{1}=(1,0) \quad \varphi_{2}=(\cos \alpha, \sin \alpha) \quad \varphi_{3}=(\cos \alpha,-\sin \alpha)
$$

A bad frame: close vectors

Fix an angle $0<\alpha \ll \pi / 4$, and let F consist of the following three vectors:

$$
\varphi_{1}=(1,0) \quad \varphi_{2}=(\cos \alpha, \sin \alpha) \quad \varphi_{3}=(\cos \alpha,-\sin \alpha)
$$

Then

$$
t_{F}(1,0)=1^{2}+(\cos \alpha)^{2}+(\cos \alpha)^{2}=1+2 \cos ^{2} \alpha
$$

A bad frame: close vectors

Fix an angle $0<\alpha \ll \pi / 4$, and let F consist of the following three vectors:

$$
\varphi_{1}=(1,0) \quad \varphi_{2}=(\cos \alpha, \sin \alpha) \quad \varphi_{3}=(\cos \alpha,-\sin \alpha)
$$

Then

$$
\begin{gathered}
t_{F}(1,0)=1^{2}+(\cos \alpha)^{2}+(\cos \alpha)^{2}=1+2 \cos ^{2} \alpha \\
t_{F}(0,1)=0^{2}+(\sin \alpha)^{2}+(\sin \alpha)^{2}=\sin ^{2} \alpha
\end{gathered}
$$

A bad frame: close vectors

Fix an angle $0<\alpha \ll \pi / 4$, and let F consist of the following three vectors:

$$
\varphi_{1}=(1,0) \quad \varphi_{2}=(\cos \alpha, \sin \alpha) \quad \varphi_{3}=(\cos \alpha,-\sin \alpha)
$$

Then

$$
\begin{gathered}
t_{F}(1,0)=1^{2}+(\cos \alpha)^{2}+(\cos \alpha)^{2}=1+2 \cos ^{2} \alpha \\
t_{F}(0,1)=0^{2}+(\sin \alpha)^{2}+(\sin \alpha)^{2}=\sin ^{2} \alpha
\end{gathered}
$$

So $A_{F} \leq \sin ^{2} \alpha, B_{F} \geq 1+2 \cos ^{2} \alpha$.

A bad frame: close vectors

Fix an angle $0<\alpha \ll \pi / 4$, and let F consist of the following three vectors:

$$
\varphi_{1}=(1,0) \quad \varphi_{2}=(\cos \alpha, \sin \alpha) \quad \varphi_{3}=(\cos \alpha,-\sin \alpha)
$$

Then

$$
\begin{gathered}
t_{F}(1,0)=1^{2}+(\cos \alpha)^{2}+(\cos \alpha)^{2}=1+2 \cos ^{2} \alpha \\
t_{F}(0,1)=0^{2}+(\sin \alpha)^{2}+(\sin \alpha)^{2}=\sin ^{2} \alpha
\end{gathered}
$$

So $A_{F} \leq \sin ^{2} \alpha, B_{F} \geq 1+2 \cos ^{2} \alpha$. This means

$$
\Omega(F) \geq \frac{1+2 \cos ^{2} \alpha}{\sin ^{2} \alpha}
$$

A bad frame: close vectors

Fix an angle $0<\alpha \ll \pi / 4$, and let F consist of the following three vectors:

$$
\varphi_{1}=(1,0) \quad \varphi_{2}=(\cos \alpha, \sin \alpha) \quad \varphi_{3}=(\cos \alpha,-\sin \alpha)
$$

Then

$$
\begin{gathered}
t_{F}(1,0)=1^{2}+(\cos \alpha)^{2}+(\cos \alpha)^{2}=1+2 \cos ^{2} \alpha \\
t_{F}(0,1)=0^{2}+(\sin \alpha)^{2}+(\sin \alpha)^{2}=\sin ^{2} \alpha
\end{gathered}
$$

So $A_{F} \leq \sin ^{2} \alpha, B_{F} \geq 1+2 \cos ^{2} \alpha$. This means

$$
\Omega(F) \geq \frac{1+2 \cos ^{2} \alpha}{\sin ^{2} \alpha} \rightarrow \infty \quad(\alpha \rightarrow 0)
$$

So what makes frames good and bad?

In the previous example, the main problem was

So what makes frames good and bad?

In the previous example, the main problem was that as $\alpha \rightarrow 0$, the vector x could be close to orthogonal to all three vectors at once, so A_{F} could get very small.

So what makes frames good and bad?

In the previous example, the main problem was that as $\alpha \rightarrow 0$, the vector x could be close to orthogonal to all three vectors at once, so A_{F} could get very small. This wasn't an issue in the Mercedes-Benz frame, because the symmetry of that frame meant that no vector could get too close or too far from all of the frame vectors at once.

So what makes frames good and bad?

In the previous example, the main problem was that as $\alpha \rightarrow 0$, the vector x could be close to orthogonal to all three vectors at once, so A_{F} could get very small. This wasn't an issue in the Mercedes-Benz frame, because the symmetry of that frame meant that no vector could get too close or too far from all of the frame vectors at once.
In short, the obscurity measures how far from symmetry our frame is (in a certain sense).

So what makes frames good and bad?

In the previous example, the main problem was that as $\alpha \rightarrow 0$, the vector x could be close to orthogonal to all three vectors at once, so A_{F} could get very small. This wasn't an issue in the Mercedes-Benz frame, because the symmetry of that frame meant that no vector could get too close or too far from all of the frame vectors at once.
In short, the obscurity measures how far from symmetry our frame is (in a certain sense).

Question

Given a large frame, under what conditions does there exist a smaller frame of specified size with small obscurity?

Our strategy

In order to answer our questions, we adopt the following strategy:

Our strategy

In order to answer our questions, we adopt the following strategy:

- Given an original frame F, use some condition on F to find some "nice" subframes.

Our strategy

In order to answer our questions, we adopt the following strategy:

- Given an original frame F, use some condition on F to find some "nice" subframes.
- Using the definition of obscurity, bound the obscurity of these small frames.

Our strategy

In order to answer our questions, we adopt the following strategy:

- Given an original frame F, use some condition on F to find some "nice" subframes.
- Using the definition of obscurity, bound the obscurity of these small frames.
- Take the union of these small frames to get our desired frame.

Our strategy

In order to answer our questions, we adopt the following strategy:

- Given an original frame F, use some condition on F to find some "nice" subframes.
- Using the definition of obscurity, bound the obscurity of these small frames.
- Take the union of these small frames to get our desired frame.

The last step relies on the following lemma.

An important lemma

This lemma is a key component of our proofs:

An important lemma

This lemma is a key component of our proofs:
Lemma
Let F, G be disjoint frames in \mathcal{H}. Then

$$
\Omega(F \cup G) \leq \max (\Omega(F), \Omega(G))
$$

An important lemma

This lemma is a key component of our proofs:
Lemma
Let F, G be disjoint frames in \mathcal{H}. Then

$$
\Omega(F \cup G) \leq \max (\Omega(F), \Omega(G))
$$

In other words, if we glue two frames together, the resultant frame is no worse than the frames we started with.

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$.

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$. Then since $A_{F} \leq t_{F} \leq B_{F}$, $A_{G} \leq t_{G} \leq B_{G}$,

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$. Then since $A_{F} \leq t_{F} \leq B_{F}$, $A_{G} \leq t_{G} \leq B_{G}$,

$$
A_{F}+A_{G} \leq t_{F \cup G} \leq B_{F}+B_{G}
$$

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$. Then since $A_{F} \leq t_{F} \leq B_{F}$, $A_{G} \leq t_{G} \leq B_{G}$,

$$
A_{F}+A_{G} \leq t_{F \cup G} \leq B_{F}+B_{G}
$$

meaning $A_{F \cup G} \geq A_{F}+A_{G}, B_{F \cup G} \leq B_{F}+B_{G}$.

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$. Then since $A_{F} \leq t_{F} \leq B_{F}$, $A_{G} \leq t_{G} \leq B_{G}$,

$$
A_{F}+A_{G} \leq t_{F \cup G} \leq B_{F}+B_{G}
$$

meaning $A_{F \cup G} \geq A_{F}+A_{G}, B_{F \cup G} \leq B_{F}+B_{G}$. So

$$
\Omega(F \cup G)=\frac{A_{F \cup G}}{B_{F \cup G}}
$$

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$. Then since $A_{F} \leq t_{F} \leq B_{F}$, $A_{G} \leq t_{G} \leq B_{G}$,

$$
A_{F}+A_{G} \leq t_{F \cup G} \leq B_{F}+B_{G}
$$

meaning $A_{F \cup G} \geq A_{F}+A_{G}, B_{F \cup G} \leq B_{F}+B_{G}$. So

$$
\Omega(F \cup G)=\frac{A_{F \cup G}}{B_{F \cup G}} \leq \frac{A_{F}+A_{G}}{B_{F}+B_{G}}
$$

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$. Then since $A_{F} \leq t_{F} \leq B_{F}$, $A_{G} \leq t_{G} \leq B_{G}$,

$$
A_{F}+A_{G} \leq t_{F \cup G} \leq B_{F}+B_{G}
$$

meaning $A_{F \cup G} \geq A_{F}+A_{G}, B_{F \cup G} \leq B_{F}+B_{G}$. So

$$
\Omega(F \cup G)=\frac{A_{F \cup G}}{B_{F \cup G}} \leq \frac{A_{F}+A_{G}}{B_{F}+B_{G}} \leq \max \left(\frac{A_{F}}{B_{F}}, \frac{A_{G}}{B_{G}}\right)
$$

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$. Then since $A_{F} \leq t_{F} \leq B_{F}$, $A_{G} \leq t_{G} \leq B_{G}$,

$$
A_{F}+A_{G} \leq t_{F \cup G} \leq B_{F}+B_{G}
$$

meaning $A_{F \cup G} \geq A_{F}+A_{G}, B_{F \cup G} \leq B_{F}+B_{G}$. So

$$
\Omega(F \cup G)=\frac{A_{F \cup G}}{B_{F \cup G}} \leq \frac{A_{F}+A_{G}}{B_{F}+B_{G}} \leq \max \left(\frac{A_{F}}{B_{F}}, \frac{A_{G}}{B_{G}}\right)=\max (\Omega(F), \Omega(G))
$$

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$. Then since $A_{F} \leq t_{F} \leq B_{F}$, $A_{G} \leq t_{G} \leq B_{G}$,

$$
A_{F}+A_{G} \leq t_{F \cup G} \leq B_{F}+B_{G}
$$

meaning $A_{F \cup G} \geq A_{F}+A_{G}, B_{F \cup G} \leq B_{F}+B_{G}$. So

$$
\Omega(F \cup G)=\frac{A_{F \cup G}}{B_{F \cup G}} \leq \frac{A_{F}+A_{G}}{B_{F}+B_{G}} \leq \max \left(\frac{A_{F}}{B_{F}}, \frac{A_{G}}{B_{G}}\right)=\max (\Omega(F), \Omega(G))
$$

where the second inequality follows from the general fact that for all $a, b, c, d>0, \frac{a+b}{c+d} \leq \max \left(\frac{a}{c}, \frac{b}{d}\right)$.

Proof of lemma

To see this, notice that $t_{F \cup G}=t_{F}+t_{G}$. Then since $A_{F} \leq t_{F} \leq B_{F}$, $A_{G} \leq t_{G} \leq B_{G}$,

$$
A_{F}+A_{G} \leq t_{F \cup G} \leq B_{F}+B_{G}
$$

meaning $A_{F \cup G} \geq A_{F}+A_{G}, B_{F \cup G} \leq B_{F}+B_{G}$. So

$$
\Omega(F \cup G)=\frac{A_{F \cup G}}{B_{F \cup G}} \leq \frac{A_{F}+A_{G}}{B_{F}+B_{G}} \leq \max \left(\frac{A_{F}}{B_{F}}, \frac{A_{G}}{B_{G}}\right)=\max (\Omega(F), \Omega(G))
$$

where the second inequality follows from the general fact that for all $a, b, c, d>0, \frac{a+b}{c+d} \leq \max \left(\frac{a}{c}, \frac{b}{d}\right)$.
This completes the proof of the lemma; using this we can build frames out of smaller ones.

A theorem

Using this lemma, we can prove the following result:

A theorem

Using this lemma, we can prove the following result:

Theorem

Suppose we have a frame F consisting of n nonzero vectors in \mathbb{R}^{d}, with a the ratio between the largest and smallest norm, and $d \mid k \leq n$. Then if we can find d disjoint subsets $E_{1}, E_{2}, \ldots E_{d} \subset F$ each containing $\geq k / d$ vectors such that the angle between vectors in different subsets is $\geq \beta$, there is a subframe $E \subset F$ such that $|E|=k$ and:

A theorem

Using this lemma, we can prove the following result:

Theorem

Suppose we have a frame F consisting of n nonzero vectors in \mathbb{R}^{d}, with a the ratio between the largest and smallest norm, and $d \mid k \leq n$. Then if we can find d disjoint subsets $E_{1}, E_{2}, \ldots E_{d} \subset F$ each containing $\geq k / d$ vectors such that the angle between vectors in different subsets is $\geq \beta$, there is a subframe $E \subset F$ such that $|E|=k$ and:

- $B_{E} \leq(d-1) a^{2}+1$

A theorem

Using this lemma, we can prove the following result:

Theorem

Suppose we have a frame F consisting of n nonzero vectors in \mathbb{R}^{d}, with a the ratio between the largest and smallest norm, and $d \mid k \leq n$. Then if we can find d disjoint subsets $E_{1}, E_{2}, \ldots E_{d} \subset F$ each containing $\geq k / d$ vectors such that the angle between vectors in different subsets is $\geq \beta$, there is a subframe $E \subset F$ such that $|E|=k$ and:

- $B_{E} \leq(d-1) a^{2}+1$
- $B_{E} \leq a^{2}+(1 / 2)(d-2) a^{2}(1+\cos \beta)+(1 / 2)(1+\cos \beta)$

A theorem

Using this lemma, we can prove the following result:

Theorem

Suppose we have a frame F consisting of n nonzero vectors in \mathbb{R}^{d}, with a the ratio between the largest and smallest norm, and $d \mid k \leq n$. Then if we can find d disjoint subsets $E_{1}, E_{2}, \ldots E_{d} \subset F$ each containing $\geq k / d$ vectors such that the angle between vectors in different subsets is $\geq \beta$, there is a subframe $E \subset F$ such that $|E|=k$ and:

- $B_{E} \leq(d-1) a^{2}+1$
- $B_{E} \leq a^{2}+(1 / 2)(d-2) a^{2}(1+\cos \beta)+(1 / 2)(1+\cos \beta)$
- $A_{E} \geq(1 / 2)(1-\cos \beta)$ so long as $d=2$

A theorem

Using this lemma, we can prove the following result:

Theorem

Suppose we have a frame F consisting of n nonzero vectors in \mathbb{R}^{d}, with a the ratio between the largest and smallest norm, and $d \mid k \leq n$. Then if we can find d disjoint subsets $E_{1}, E_{2}, \ldots E_{d} \subset F$ each containing $\geq k / d$ vectors such that the angle between vectors in different subsets is $\geq \beta$, there is a subframe $E \subset F$ such that $|E|=k$ and:

- $B_{E} \leq(d-1) a^{2}+1$
- $B_{E} \leq a^{2}+(1 / 2)(d-2) a^{2}(1+\cos \beta)+(1 / 2)(1+\cos \beta)$
- $A_{E} \geq(1 / 2)(1-\cos \beta)$ so long as $d=2$

If $d>2$ we need a stronger condition on F to get a good bound on A_{E}.

A word on angles

Incidentally, the angle between two vectors x, y is defined as the unique $\theta \in[0, \pi / 2]$ such that

$$
\cos \theta=\frac{|\langle x, y\rangle|}{\|x \mid\| y \|}
$$

A word on angles

Incidentally, the angle between two vectors x, y is defined as the unique $\theta \in[0, \pi / 2]$ such that

$$
\cos \theta=\frac{|\langle x, y\rangle|}{\|x \mid\| y \|}
$$

The reason for this nonstandard definition is that replacing a vector φ_{i} in a frame by $-\varphi_{i}$ does not affect obscurity since $\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2}=\left|\left\langle x,-\varphi_{i}\right\rangle\right|^{2}$.

A word on angles

Incidentally, the angle between two vectors x, y is defined as the unique $\theta \in[0, \pi / 2]$ such that

$$
\cos \theta=\frac{|\langle x, y\rangle|}{\|x \mid\| y \|}
$$

The reason for this nonstandard definition is that replacing a vector φ_{i} in a frame by $-\varphi_{i}$ does not affect obscurity since $\left|\left\langle x, \varphi_{i}\right\rangle\right|^{2}=\left|\left\langle x,-\varphi_{i}\right\rangle\right|^{2}$. So in effect we want to measure the angle between lines and not vectors.

A_{E} in higher dimensions

In higher dimensions we need the following (stronger) assumptions to get the following (stronger) result:

Theorem

Suppose we have a frame F consisting of n nonzero unit vectors in \mathbb{R}^{d}, and $d \mid k \leq n$. Suppose further that there exists an orthonormal basis $\left\{f_{i}\right\}$ and an angle $\gamma<\pi / 4$ such that for each f_{i} there exist at least k / d vectors of F with angle $\leq \gamma$ from f_{i}. Then there exists a subframe E of F with

A_{E} in higher dimensions

In higher dimensions we need the following (stronger) assumptions to get the following (stronger) result:

Theorem

Suppose we have a frame F consisting of n nonzero unit vectors in \mathbb{R}^{d}, and $d \mid k \leq n$. Suppose further that there exists an orthonormal basis $\left\{f_{i}\right\}$ and an angle $\gamma<\pi / 4$ such that for each f_{i} there exist at least k / d vectors of F with angle $\leq \gamma$ from f_{i}. Then there exists a subframe E of F with

- $A_{E} \geq 1-\gamma$

A_{E} in higher dimensions

In higher dimensions we need the following (stronger) assumptions to get the following (stronger) result:

Theorem

Suppose we have a frame F consisting of n nonzero unit vectors in \mathbb{R}^{d}, and $d \mid k \leq n$. Suppose further that there exists an orthonormal basis $\left\{f_{i}\right\}$ and an angle $\gamma<\pi / 4$ such that for each f_{i} there exist at least k / d vectors of F with angle $\leq \gamma$ from f_{i}. Then there exists a subframe E of F with

- $A_{E} \geq 1-\gamma$
- $B_{E} \leq 1+\gamma$

A_{E} in higher dimensions

In higher dimensions we need the following (stronger) assumptions to get the following (stronger) result:

Theorem

Suppose we have a frame F consisting of n nonzero unit vectors in \mathbb{R}^{d}, and $d \mid k \leq n$. Suppose further that there exists an orthonormal basis $\left\{f_{i}\right\}$ and an angle $\gamma<\pi / 4$ such that for each f_{i} there exist at least k / d vectors of F with angle $\leq \gamma$ from f_{i}. Then there exists a subframe E of F with

- $A_{E} \geq 1-\gamma$
- $B_{E} \leq 1+\gamma$

This means $\Omega(E) \leq \frac{1+\gamma}{1-\gamma}$.

A probabilistic bound

Notice that as $n \rightarrow \infty, n \gg k$, there "should" be a good subframe of size k if the points are evenly distributed.

A probabilistic bound

Notice that as $n \rightarrow \infty, n \gg k$, there "should" be a good subframe of size k if the points are evenly distributed. This intuition turns out to be correct.

A probabilistic bound

Notice that as $n \rightarrow \infty, n \gg k$, there "should" be a good subframe of size k if the points are evenly distributed. This intuition turns out to be correct.

Theorem

Suppose we pick N points uniformly at random on the unit circle, and $2 \ll r \ll N$ with $2 \mid r$. Then for any $k>2,2 \mid k$, there is a $\geq q$ probability of finding a subframe F with $|F|=k$ and

$$
\Omega(F) \leq \operatorname{ctn}^{2}(\pi / 4-\pi / r)=\tan ^{2}(\pi / 4+\pi / r)
$$

so long as

$$
\Phi^{*}(2 k) \leq \sqrt{\frac{2(1-q)}{r}}
$$

where Φ^{*} is the cdf of a normal distribution with mean N and standard deviation $\sqrt{N(r-1)}$.

Unpacking this theorem

Equivalently:

$$
\frac{1}{\sqrt{2 \pi N(r-1)}} \int_{-\infty}^{2 k} e^{-\frac{(t-N)^{2}}{2 N(r-1)}} d t \leq \sqrt{\frac{2(1-q)}{r}}
$$

Unpacking this theorem

Equivalently:

$$
\frac{1}{\sqrt{2 \pi N(r-1)}} \int_{-\infty}^{2 k} e^{-\frac{(t-N)^{2}}{2 N(r-1)}} d t \leq \sqrt{\frac{2(1-q)}{r}}
$$

This looks ghastly; but it's quite useful. Suppose we let $N=1000$ and $r=100$.

Unpacking this theorem

Equivalently:

$$
\frac{1}{\sqrt{2 \pi N(r-1)}} \int_{-\infty}^{2 k} e^{-\frac{(t-N)^{2}}{2 N(r-1)}} d t \leq \sqrt{\frac{2(1-q)}{r}}
$$

This looks ghastly; but it's quite useful. Suppose we let $N=1000$ and $r=100$. Then we get that for 1000 points, distributed randomly on a circle, the probability of having a subframe of size k with obscurity at most $\tan ^{2}(\pi / 4+\pi / 100) \approx 1.134$ is at least:

Unpacking this theorem

Equivalently:

$$
\frac{1}{\sqrt{2 \pi N(r-1)}} \int_{-\infty}^{2 k} e^{-\frac{(t-N)^{2}}{2 N(r-1)}} d t \leq \sqrt{\frac{2(1-q)}{r}}
$$

This looks ghastly; but it's quite useful. Suppose we let $N=1000$ and $r=100$. Then we get that for 1000 points, distributed randomly on a circle, the probability of having a subframe of size k with obscurity at most $\tan ^{2}(\pi / 4+\pi / 100) \approx 1.134$ is at least:

$$
.999958 \quad(k=10)
$$

Unpacking this theorem

Equivalently:

$$
\frac{1}{\sqrt{2 \pi N(r-1)}} \int_{-\infty}^{2 k} e^{-\frac{(t-N)^{2}}{2 N(r-1)}} d t \leq \sqrt{\frac{2(1-q)}{r}}
$$

This looks ghastly; but it's quite useful. Suppose we let $N=1000$ and $r=100$. Then we get that for 1000 points, distributed randomly on a circle, the probability of having a subframe of size k with obscurity at most $\tan ^{2}(\pi / 4+\pi / 100) \approx 1.134$ is at least:

$$
.999958 \quad(k=10) \quad .998486 \quad(k=100)
$$

Unpacking this theorem

Equivalently:

$$
\frac{1}{\sqrt{2 \pi N(r-1)}} \int_{-\infty}^{2 k} e^{-\frac{(t-N)^{2}}{2 N(r-1)}} d t \leq \sqrt{\frac{2(1-q)}{r}}
$$

This looks ghastly; but it's quite useful. Suppose we let $N=1000$ and $r=100$. Then we get that for 1000 points, distributed randomly on a circle, the probability of having a subframe of size k with obscurity at most $\tan ^{2}(\pi / 4+\pi / 100) \approx 1.134$ is at least:

$$
.999958 \quad(k=10) \quad .998486 \quad(k=100) \quad .486196 \quad(k=300)
$$

Unpacking this theorem

Equivalently:

$$
\frac{1}{\sqrt{2 \pi N(r-1)}} \int_{-\infty}^{2 k} e^{-\frac{(t-N)^{2}}{2 N(r-1)}} d t \leq \sqrt{\frac{2(1-q)}{r}} .
$$

This looks ghastly; but it's quite useful. Suppose we let $N=1000$ and $r=100$. Then we get that for 1000 points, distributed randomly on a circle, the probability of having a subframe of size k with obscurity at most $\tan ^{2}(\pi / 4+\pi / 100) \approx 1.134$ is at least:

$$
.999958 \quad(k=10) \quad .998486 \quad(k=100) \quad .486196 \quad(k=300)
$$

Results in higher dimensions, though, would require bounds on sphere packings which are still open problems!

References

目 P．G．Casazza and J．Kovacevic，Uniform Tight Frames for Signal Processing and Communication，SPIE Proc．，San Diego（2001）． Wavelet Applications in Signal and Image Processing，A．Aldroubi，Z． Landeu，N．Unser，eds．Proceedings of SPIE，vol．4119，SPIE， Bellingham，WA（2000）129－134．

囦 G．Greaves，J．Koolen，A．Munemasa，and F．Szöllősi．Equiangular lines in Euclidean spaces，Journal of Combinatorial Theory，Series A 138 （2016）：208－235．

目 J．Jasper，D．G．Mixon，M．Fickus，Kirkman．Equiangular tight frames and codes，IEEE Trans．Inform．Theory． 60 （2014）：170－181．

