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A typical susceptible-infected-recovered (SIR) mathematical model considers only isolated communities, 

where the corresponding onset condition for outbreak of the disease is directly related to what is called 

a basic reproduction number. In practice however, infection patterns are influenced by spatial 

distributions of human settlements, and by pathogen transmission via hydrological and human mobility 

networks. Thus, integrating hydrology and human mobility into epidemiological models is mandatory [1, 

2, 6].  

The hydrological networks can be those of river basins, and/or those of human-made water distribution 

and sewage systems. Network nodes can be cities, towns or villages, depending on spatial resolution [5]. 

The connections between communities can be described by two stochastic matrices, one for the 

hydrological network and one for human mobility. Pathogens can move in water from node one node to 

another with a given probability, but they can also be spread by human mobility [5, 6]. The model under 

consideration will consider a graph, which is the union of the two graphs associated with the stochastic 

matrices described above, and we will assume that the resulting graph is strongly connected, and 

therefore its associated matrix A is irreducible.  

The dynamics of the model can be described by a three-dimensional system of differential equations on 

the susceptible, the infected/infectives, and the transport of pathogens over the network [5, 6]. Unlike 

typical SIR models, in this networked model, the requirement that the basic reproduction number be 

larger than one is neither necessary nor sufficient for outbreaks to occur. Instead, we must study the 

behavior of the dominant eigenvalue and corresponding dominant eigenvector of A [3, 4,5,7] as this will 

allow us getting conclusions about conditions for outbreak as well as about a short-term geographical 

distribution of disease insurgence. The analysis of the model also includes the study of bifurcations in 

the model that can be related to the onset conditions for outbreak. We plan to extend current results by 

studying and rigorously proving existence of bifurcations beyond transcritical ones, including 

codimension-two bifurcations. Our study should also include a full analysis of local and global stability of 

the system, including a relatively recent technique using graph-theoretic methods.  

Prerequisites: A basic background on differential equations and linear algebra, in addition to the calculus 

sequence. Some programming experience is desirable but not required.  
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