BEYOND BACKPRORGATION: USING SIMULATED
ANNEALING FOR TRAINING NEURAL NETWORKS

Randall S. Sextdn
Department of Management
Ball State University
Muncie, Indiana 47306
Office: (765) 285-5320
Fax: (765) 285-8024
email: rssexton@mail.bsu.edu

Robert E. Dorsey
Department of Economics and Finance
University of Mississippi
University, Mississippi
Office: (601) 232-7575
email: dorsey@bus.olemiss.edu

John D. Johnson
Department of Marketing and Management
University of Mississippi
University, Mississippi
Office: (601) 232-5492
email: johnson@bus.olemiss.edu

!Randall Sexton is an assistant professor in the College of Business, Ball State UniRetsity. Dorsey
and John Johnson are Agste Professors in the College of Business, University of Mississippi. Dr’s Johnson
and Dorsey are supported in part by the Mississippi Alabama Sea Grant Consortium NO#&Agh

BEYOND BACKPROFRAGATION: USING SIMULATED
ANNEALING FOR TRAINING NEURAL NETWORKS

ABSTRACT

The vast majority of neural network research relies on a gradient algorithm, typically a
variation of backpropagation, to obtain the weights of the model. Because of the enigmatic
nature of complex nonlinear optimization problems, such as training artificial neural networks,
this technique has often produced inconsistent and unpredictable results. To go beyond
backpropagation’s typical selection of local solutions, simulated annealing is suggested as an
alternative training technique that will search globally. In this research, backpropagation will
be directly compared with this global search technique via an intensive Monte Carlo study on
seven test functions

KEY WORDS: Neural networks; backpropagation; simulated annealing; global search
algorithms

1. Introduction

Interest in business applications of artificial neural networks is growing rapidly. Evidence
for this exists in both the academic and trade business literature. A search for articles applying
artificial neural networks (ANN) to business applications, in the BUSI business index, returned
586 citations in journals from January 1988 to May 1997. The increase in popularity of ANNSs is
not surprising since neural networks can approximate unknown functions to any degree of desired
accuracy (Funahashi, 1989; Hornik et al. 1989) and the underlying functions of many problems in
business are generally unknown. ANNSs are used for solving problems in business related areas
such as production and operations, real estate, finance, economics, management and accounting.
Simply by scanning journals in these areas a user can accumulate a wealth of evidence that the use
of ANNSs is increasing. Many other areas such as engineering, physics, chemistry and biology are
also rapidly taking advantage of this new tool. With each new success, the popularity of ANNs
grows, not only with researchers but with practitioners as well.

The vast majority of these studies rely on a gradient algorithm, typically a variation of
backpropagation (LeCun, 1986; Parker, 1985; Rumelhart et al., 1986a; Werbos, 1993) to search
for optimal weights of the model. The well-known limitations of gradient search techniques
applied to complex nonlinear optimization problems such as training of artificial neural networks
often result in inconsistent and unpredictable performance (Archer & Wang, 1993; Rumelhart et
al., 1986a; White, 1987). Many modifications have been implemented in past ANN literature to
overcome these problems, but have had limitedess. In this paper we demonstrate that such
modifications are unnecessary if a sufficiently complex initial architecture and an appropriate

global search algorithm is used for network training. We further show that the simulated

2

annealing algorithm is an appropriate global search technique that consistently outperforms
backpropagation for ANN training.
2. Statement of Problem

Backpropagation (BP) is the training method used by most ANN researchers
(Salchenberger et al., 1992) and should be credited with much of the popularity of neural network
research. Although, this technique has produced promising results, it has not fully realized
ANN'’s ability to approximate any unknown function to any desired degraecofacy, mainly
because of its tendency to become trapped in local optima.

Researchers have used a variety of approaches to try to adjust for this characteristic of
backpropagation. For example, parameters of the algorithm can be adjusted to affect the
momentum or step size of the search so that the search will break out of locals and move toward
the global solution. The correct value of these parameters, however, is not&kpaowa and is
often problem specific. Therefore, for any given problem, many parameters must be tried to
generate confidence that a global solution has been found. Since this algorithm is designed to
converge on local solutions, a dependency occurs between the initial random starting points and
the solutions found. Although, many initial points can be tried, there is no known method, beyond
mere chance, for finding a global solution with BP.

A more effective approach might be to replace the gradient based search technique with a
global search technique. A limited amount of research has been conducted that shows two global
search techniques, the genetic algorithm (Sexton, Dorsey, & Johnson, 1998; Sexton & Dorsey,
1998; Dorsey, Johnson, & Mayer, 1994; Dorsey, Johnson, & Van Boening, 1994) and tabu search

(Sexton, Dorsey, & Johnson, 1998), to consistently find superior solutions when compared with

3

BP for training ANNs. Our study examines simulated annealing (SA) as another alternative to BP
for ANN training. The NULL hypothesis is:

H,: Simulated annealing does not find significantly better solutions in training neural networks,
compared with neural networks trained using backpropagation.

3. The Search Algorithms

The following sections provide a historical background of the algorithms as well as a
general description of the simulated annealing algorithm used in this study. Comparisons of these
algorithms are based upon their appropriateness for training ANNs, and the need for parameter
adjustment for finding superior solutions.
3.1. Backpropagation

Although, Rumelhart et al. (1986a & 1986b) popularized the use of BP for training ANNSs,
they also made two important observations regarding the BP algorithm, which is its slowness in
convergence and its inability to escape local optima. Many attempts have been made to improve
upon the original BP algorithm. Most of these attempts focus upon one or more of the following
strategies; differential scaling, changing the error metric, and modifying the transfer function.
Several examples of such research are listed in Alpsan et al. (I2@&nples of some commonly
known BP variations available to address such problems which are included in NeuralWare®, a
popular commercial ANN software package, include Norm-Cum-Delta, Extended Delta-Bar-
Delta, QuickProp, MaxProp, and Delta-Bar-Delta.

When using BP (Neural Works Professional 1l/Plus by NeuralWare®), user defined
parameter adjustments such as step size, momentum value, learning rule (variation of BP),

normalization technique, random seed, transfer function, and network architecture can all be

4

modified to find the best combination for solving the particular problem. Given the number of
possible parameter combinations, the possibility of finding the correct combination of parameter
settings for finding a global solution, given a random starting point, is unlikely and is based
primarily on chance.

Since most of the problems with BP are due to its gradient nature, it seems plausible that
many, if not all, of these problems could be eliminated by using global search methods that are not
hill climbing algorithms.

3.2. Simulated Annealing

Annealing, refers to the process that occurs when physical substances, such as metals, are
raised to a high energy level (melted) and then gradually cooled until some solid state is reached.
The goal of this process is to reach the lowest energy state. Physical substances usually move
from higher energy states to lower ones, so minimization naturally occurs, but in this process
there is always some probability that a transition to a higher energy state will occur. As the
energy state naturally declines, the probability of moving to a higher energy state will decrease.

Metropolis et al. (1953) proposed an algorithm to simulate the annealing process,
modeling the transition of a solid from an elevated temperature to thermal equilibrium. The
analogy between the slow cooling of a solid and minimizing the cost function of a combinatorial
optimization problem was not realized until it was suggested by Kirkpatrick et al. (1982), and
independently by Cerny (1985Kirkpatrick et al. (1982) developed this “simulated annealing”
algorithm by substituting cost for energy and by executing the Metropolis algorithm at a sequence
of slowly decreasing temperature values. This method was reported to perform well even in the

presence of a high number of variables. Modifications were proposed by Corana et al. (1987) and

5

Goffe (1994) that would allow this algorithm to be effectively used for functions defined in a
continuous domain. However, these functions do not need to be smooth or even continuous.

Goffe et al. (1994) tested simulated annealing on four econometric problems and
compared it with the simplex, conjugate gradient and quasi-newton algorithms for ANN training.
Although, SA was found to out perform the other training algorithms, a comparison was not
made with BP.

The simulated annealing (SA) implementation used in this study was taken from Goffe et
al. (1994). While a complete description can be found there, a summary of this algorithm follows.
Given the functiori(X) to be minimized, several initial parameters must be set, incliigirige
starting temperaturé, the starting solution vector of weights; andhe step length faX. Both
X andV are vectors of length, the number of weights in the ANN. Note tRandv are
elements of vector® andV. For exampley; is the first weight irK andv; is the first element in
V. We definef(X) to be the sum-of-squared errors that is produced by the vectbaking the
initial vectorX, the weights are used for the ANN to calculate and sat®alse as the current
optimum and best optimum. A candidatéis then chosen by varying eagtby Equation 1,

wherer is a random number drawn from a uniform distribution between [-1,1].

X{ =X +rlv, (1)

From this newX ’the function valué’ is then computed. ff'is less tham, X is
accepted as the nexv If this newf is the smallest solution so férand its corresponding are
saved as the best solution.f 1fs greater than or equal tpthe Metropolis criterion is used to
test for acceptance. The value from Equation 2 is computed and comparpd withndom
number drawn from a uniform distribution between [0, 1]p if greater thap’, the new point is

accepted an is updated wittX’, otherwise X ’is rejected.

e e

p=e

The process repeats for a user defined number of Ntgpsough all elements of. Ngis
set to the recommended value of 20 for our study. During this process, the step isngth
adjusted so that 50% of all moves are accepted. Nftémes through the above procegss
reduced. An examination of Equation 2, shows that a decre@seillidecrease the probability
of accepting uph moves. The reduction i is calculated by the formula shown in Equation 3.

The valuer; is also user defined and set between [0, 1].

T, = T, (3

The first new point tried after a reduction in temperafli)doecomes the current
optimum. A decrease in temperature causes the number of rejections to increase and the step
lengths to decline. Termination of the algorithm occurs when the function value for the last
temperatur€T) reduction differs from the corresponding value at the current temperature by less
than the error tolerandé. and the final function value at the curr@ndiffers from the current

optimal function by less tha, Escape from local solutions is possible by SA’s acceptance of

uphill moves. As the algorithm iterates and the reduction in temperature aumeagtance of
uphill moves and step lengths decrease.

To demonstrate this algorithm a simple example follows. Given a training data set, the
initial weights of vectoX are randomly drawn. These weights are plugged into the ANK@nd
sum-of-squared errors is computed. For this example lets shydhe is 3.5. Using Equation
1, a candidatX “is generated andis computed that is equal to 3.25. Since, this value is less
thanf the candidat& “is accepted as the nedwector and the search continues from this point.

A new candidat& “is then generated by Equation 1 and itéunction is computed to be 3.75.

This function value is worse than the current optimum so the Metropolis criterion, Equation 2, is
used to check if the point should be accepted. Given the initial tempeFatdwethep value is
computed to be .904837. A random numptes then drawn from the range [0, 1].plfis less

thanp the point is accepted, otherwise the candidate vector is rejected. As the algorithm
progresses with reductions in temperature, the chance of acceptihghapés will decrease.

For example, using the above scenarib=3.25,f = 3.75, and the neWw = 1, the valug

decreases to .606531. As can be seen, this value is smaller and the chance of drawing a random
numberp “that is larger than this value is increased, therefore, rejections of uphill moves increase
as the temperature falls.

4. Problems and Data Generation

A Monte Carlo study was conducted on the seven test problems listed below to compare
simulated annealing with BP. For the first five test problems, 50 observations were used as the
training set and two sets of 150 observations were used for out-of-sample interpolation and

extrapolation test samples. Interpolation data sets, for computer generated data,

1) Y=X +X,

2) Y = XX,
X
3) Y-
X, +1

4) Y =X - XS
5) Y =X - X/

) N
6) Y, =Y., + 10. T O (Y
+
t_

7) Y = ajarctank;, - B;) + a,arctank, - B,) + ajarctang, - By + A
where A = -«,arctan(p,) - a,arctan(p,) - ajarctanp,)

aregenerated from the same gas as the trainipdata. The ogldifference between the
interpolation data and trainindata is that there are no identical observations (combinations of
input values) between the two.yBsirg an intepolation data set for testinwe can test how

well the ANN performs on observations that it has not seen dtinie trainirg process but are
within the same rage as the traingpdata. Extrpolation data sets agenerated in a similar
fashion ony differing in the raige from which iput values are drawn. Thepimt values are drawn
from rarges that are outside the gas of the trainig and intepolation data. This extpalation
test data demonstrates the apitif the ANN togeneralize outside the rga of the trainig data.
For the first Sproblems, the trainmand intepolation data wergenerated Y randomy drawirg

the irputs from the sets Xe [-100,100] and Xe [-10,10]. The extrapolation test sets were
generated from Xe [-200, -101], [101, 200] and for»€ [-20, -11], [11, 20]. The training data
was normalized from -1 to 1 for all algorithms in order to have identical training and output data
for comparison with the BP trained ARNThe same normalizing factor was used on the

extrapolation data as was used for the training and interpolation data.

’Most BP software normalizes the data prior to training.

9

The sum of squared errors (SSE) was used as the objective function and the networks
were compared on the basis of the Root Mean Squared (RMS) forecast error. Each network
included 6 hidden nodes for all problems. A bias term was used on both the input and hidden
layers so there was a total of 25 weights for problems one through four and 19 weights for
problem five. There may be better network architectures for the given problems, but since the
goal of this research is training technique comparison there was no need to modify the ANN'’s
architecture.

The sixth problem consisted of a discrete version of the Mackey-Glass equation that has
previously been used in neural network literature (Gallant & White, 1992; Goffe et al., 1994).
This chaotic series is interesting because ofrtgasity to economic and financial series found in
financial markets. Because of its apparent randomness and many local optima, this function is a
challenging test for global training algorithms. Again, we chose 6 hidden nodes for the neural
network architecture. Five lagged values of the dependent variable were used as the input
variables. Clearly, three of these were unnecessary but this information is often not known to the
researcher and the ability of the ANN to ignore irrelevant variables is critical to its usefulness.
Since there are five input variables, the total number of parameters included 36 weights
connecting the five inputs and one bias term to the hidden nodes and seven weights connecting
the hidden nodes and bias term to the output node, totaling 43 parameters overall. The training
set of 100 observations for problem six started from the initial point of [1.6, O, O, O, 0]. The
interpolation test data consisted of 150 observations generated from the randomly chosen point [-
0.218357539, 0.05555536, 1.075291525, -1.169494128, 0.263368033]. An extrapolation data

set was not generated for this problem because of its bounded nature.

10

The seventlproblem is goroduction function that exhibits both increasamd diminishig
maminal returns. Three ingeendent variables (XX, X;) were randonyl drawn from a uniform
distribution from the rage [0, 200]. Wegenerated a trainipset of 100 observations and an
interpolation set of 150 observations from thisgan The 150 observations for exiodation
testirg weregenerated from randogntirawirg values from the rage [201, 400]. Six hidden
nodes weregain chosen for consistenaesultirg in 31 totalparameters. The constants were set

to the values below.

¢, = 5 a,= 10 a;= 15
B, - 50 P, -100 B, - 150

4.1. Training with Backpropagation

Several commercial neural network softwpagkajes werepreliminarily evaluated to
decide whichpackaye wouldprovide the best solutions for tigeven problems. Thepackayes
included Neural Works Professional II/PlusNeuralWare®, Brain MakenyCalifornia
Scientific, EXPO g Leadirg Markets Technolgies and MATLAB ty Math Works (usig both
the backropagation and the Majuardt-Levenbay algorithms). Althogh theperformance was
similar for allprograms, Neural Works Professional 1l/Plus, a PC-based neural network
application, consistenyl outperformed the othgorograms and was chosen for the test series.

In training the ANNs with BP, four factors were mpnlated to find the best
configuration for trainig. They included the learngrate, momentum,pech size, and the
logicon aborithm. The different combinations of the leagimate and momentum are introduced

to try to find the rght combination that will allow the solution to epedocal minima but not i

11

over the global solution. The epoch is defined as the number of iterations before function
evaluation and weight adjustments. Normally, BP makes adjustments after every training pair, but
recent modifications of the algorithm allow for larger epoch sizes (Norm-Cum- Delta). The

logicon algorithm was introduced by Gregg Wilensky and Narbik Manukian and was developed to
help backpropagation to converge faster by combining the advantages of closed and open
boundary networks, into a single network (Wilensky and Manukian, 1992).

Each of these four factors was varied to reduce the chances of becoming trapped in local
minima. While rules of thumb exist for setting these values, there are no set standards for deriving
optimum configurations for BP networks. Guidelines suggested by the Neural Works manual
were used in selecting the values used.

We examined 16 different configurations of these parameters and the ANNs were trained
with each configuration. Ten replications were performed for each configuration and in each case
the ANN was trained for 20,000 iterations. These combinations are shown in Table 1. Each
replication was started with a new random seed, totaling, 160 training attempts for each problem.
Out of this set of 160, the best solution for each problem (lowest sum of squared errors) and its
corresponding configuration (parameter settings) was used as the starting point for additional
training.

Table 1 - Backpropagation Parameters

Parameter Values Use(d

Learning Rate (Step Valug) .5,1

Momentum 3,.9

Epoch Size 1,50

Logicon Algorithm On, Off

12

The best solution for each of the seven problems was then trained at least 100,000
iterations, and up to a maximum of 1,000,000 iterations. During this last sequence of network
training, the error was checked every 10,000 iterations for a reduction, terminating when 10
consecutive checks resulted in no reduction in error. The sets of weights that achieved the
smallest errors were then saved for the comparison.

Since simulated annealing was implemented on the CRAY J-916, precision and
operation time could affect the comparison with the PC-based Neural Works, so a BP algorithm
written and optimized for the CRAY was acquitedlsing this program on the CRAY J-916, 10
additional replications were conducted for each problem. The same data was used for both PC
and CRAY replications. Since the speed of the CRAY J-916 was much greater than the PC used
for this study many more iterations were possible without affecting the time for each run. Each
replication was trained for 1,000,000 initial iterations for all problems, differing only in the
random seed. The best replication for each problem was then trained for 50,000,000 additional
iterations. The ANN that had the smallest error out of all 170 different replications for each
problem across both platforms was then selected for comparison.

4.2. Training with Simulated Annealing

The version of simulated annealing used in this study came from Goffe et al. (1994). This
code was written in Fortran 77 and implemented on a CRAY J-916 supercomputer. In training
the ANNs with SA, three factors were manipulated to find the best configuration for training each

problem. They included the temperatiirat three levels, the temperature reduction fagtor

This software was provided by Roger W. Meier at the US Army Engineering Waterways
Experimentation Station, Vicksburg MS.

13

and the number of function evaluations before temperature reddztieach at two levels. The
different combinations of these factors were used in an attempt to try to find the best combination
for SA to obtain the global solution. Other parameters that could have been adjusted were set to
the recommended values in Goffe et al (1994). Specifically, the number of y@las set to
20. AfterNg*N function evaluations, each elementMofstep length) is adjusted so that
approximately half of all function evaluations are accepted. The number of final function
evaluations\Ngpswas set to 4. This is used as part of the termination process. The error tolerance
for termination was set to 10E-06 and the upip&t for the total number of function evaluations
MAXEVLwas set to 10

Although this Monte Carlo study included the parameter settings recommended by both
Goffe et al. (1994) and Corana et al. (1987), a more rigorous exploration of the parameters may
produce better results for SA. Table 2 illustrates the specific parameter settisashor
combination. Since the optimal solutions are not knavanori, the size of the search space was
set between -600 and 600.

Table 2 - Simulated Annealing Parameters

Parameter Values Used

)

Temperature (T) 5, 50 Thousand, 50 Millio

Temperature Reduction Factor (RT) .50, .85

Number of Function Evaluations |5, 125
Before Temperature Reduction (NT)

A total of 120 SA networks for each problem were trained that consisted of these 12
configurations with 10 replications for each configuration. Each replication was started with a

new random seed The maximum number of function evaluations was set arbitrarily high

14

(MAXEVL = 10°) in order for all problems to terminate with the internal stopping rule based on
the predefined error tolerance.
5. Results

The first section describes the results obtained from the 170 replications for each problem
generated by the BP ANNs. The second section describes the SA results obtained from the 120
replications for each of the seven problems. Finally, a comparison of these results is discussed in
the last section.
5.1. Backpropagation Results

Sixteen network configuratiohwere initially tested to determine the optimal combination
of parameter levels for each of the seven test problems. Out of the four chosen parameter
adjustments (step value, momentum, epoch size, and the logicon algorithm) used to find an
optimal backpropagation configuration, the momentum, epoch size, and logicon algorithm were
found not to vary when determining the optimum configuration for each of the seven problems.
The only factor that appeared to be problem specific was the learning rate. Table 3 shows the
factors and levels that achieved the best results across the 160 different training runs for each
problem. Since the BP program used in this study was PC-based and the SA algorithm was
implemented on the CRAY J-916, there was a need to test these PC solutions with another BP
algorithm optimized for use on the CRAY J-916. Using the same training data, for each problem,

the best configuration of parameters was taken from the PC results and 10 new replications, each

Configurations included combinations of the four parameter settings with two levels each for the
learning rate, momentum, epoch size, and logicon algorithm. All the network architectures
included six hidden nodes.

Recommendations for much lower learning and momentum rates for the Logicon algorithm were
tried, but there was no significant difference in effect.

15

with a new random seed, were run on the CRAY J-916. These replications were trained to
50,000,000 iterations to ensure that they had converged. For all seven problems, the PC-based
ANN software found superior solutions over the CRAY version.

Table 3 - Optimal Configuration Factors for Backpropagation
Problem 1 2 3 4 5 6 7

Learning Rate 1 1 1 5 1 5 1

Momentum 9 .9 .9 .9 .9 9 .9
Epoch Size 1 1 1 1 1 1 1
Logicon OFF| OFF OFH OFF OFF OHF OFF

5.2. Simulated Annealing Results

Although, the twelve configurations included the recommended parameter settings of two
previous studies (Corana et al., 1987; Goffe et al., 1994), none of the seven test problems found
an optimal solution with these configurations. To determine the best configuration, each test
problem was initialized at ten different random points for all twelve configurations. Out of these
120 replications for each problem, the best solution so far was then chosen as the optimal
configuration of the SA parameters for the particular test problem. However, since there were
several other variables that could have been adjusted, as well as the infinite combination of
possible levels for, r;, andN;, an optimal configuration cannot be determined by this study.

A problem facing a researcher who wishes to use SA is the lack of rules for adjusting the
configuration to produce better results. Heuristics for setting SA parameters are suggested in
Corana (1987) and Goffe (1994). The suggestion tb;setMax[100, 5N] can be followed, as

was done in this study, but there is no guarantee that an optimal configuration for the algorithm

16

would be found. The optimal configurations for the seven problems, given the limited levels of
parameters, are shown in table 4, as well as the number of function evaluations for each solution.

Each of the 120 trials was terminated with an error tolerance of 10E-06 used in
conjunction with a user defined valNg.sof 4. For example, if no reduction in the best function
evaluation occurs that is greater than the error tolerance 10E-Ng.{¢4) iterations, then the
process would be terminated.

Table 4 - Optimal Configuration Parameters for SA

Problem T r | Ny | Function Evaluationg
1 50,000| .50 125 2,625,041
2 50,000,000 .85 12% 12,625,001
3 50,000| .50 5 112,50[
4 50,000| .50 125 2,562,501
5 50,000,000 .5d f 96,901
6 5 .85 5 473,001
7 5 .85| 125 8,680,001

5.3. Comparison Results

After selecting the best solutions for each problem and algorithm, these weights were then
applied to the interpolation and extrapolation data sets. A comparison for in-sample,
interpolation, and extrapolation RMS error for each algorithm is given in table 5. As shown in
this table, SA found solutions for the seven problems that had superior RMS errors for in-sample,

interpolation, and extrapolation estimates.

17

Table 5 - Root Mean Squared error (RMSE) Comparison

In-Sample Interpolation Extrapolation
Problem BP SA BP SA BP SA

1 0.36| 0.00 0.43 0.00 17.53 0.00
2 11.41] 0.03 23.79 0.1¢ 259.41 7.42
3 3.57 1.77 7.81 5.89 26.3P 8.06
4 164.83(0.48 213.11 2.58 5199.60 234(26
5 6518.58| 0.43 19233.18 1.47 149673444 1647.81
6 0.12] 0.01 0.47 0.19 N/A N/A

7 3.51| 0.06 6.1 1.11 29.9|5 0.37

To show statistical differences for these algorithms, each data set was compared using the
Wilcoxon Matched Pairs Rank test, as shown in table 6. SA was significantly superior, at the .01
level, for 19 out of 20 comparisons. The in-sample comparison for problem 3 was at the .0518
level of significance. Although the in-sample results were not as strong for problem three the SA
found significantly superior solutions for both interpolation and extrapolation test sets, indicating
a better estimate of the underlying function. Out of the 2,400 estimates, SA found 2,281
solutions that were closer to the actual output value than those estimated by the BP networks. To
illustrate out-of-sample differences graphically, figures 1-4 show the estimates for both
algorithms for problem 4. As can be seen from these figures, the SA trained ANN is much closer

to finding the true functional form.

18

Table 6 - Wilcoxon Matched Pairs Signed Ranks Test {2 - Tailed P Significance}

Problem In-Sample Interpolation Extrapolation
Superior| 2-T-P # Superio 2-T-P # Superitl)r 2-T-P
BP| SA BP SA BP SA
1 o[50(.o000* 0| 150 .0000% ¢ 15p .0000*
2 o 50 .o000* 0| 150 .0000% 1 149 .0000*
3 19| 31 0518 49 101 .0019* D 150 .000p*
4 o[50(.o000* 0| 150 .0000% 2 148 .0000*
5 o[50(.o000* 0| 150 .0000% ¢ 15p .0000*
6 4 96| .0000% 22| 128 .0001Fr N/A NI/A N/A
7 11 99(.0000* of 141 .00001 12 13B .0000*
* Represents significant differences at the 0.01 level between the algorithm estimgtes.

Since BP and SA were implemented on two different platforms, direct time comparisons
of each algorithm are provided as well as an estimated time for a PC based SA algorithm. These
estimates were based on using the same SA code, which was recompiled and run on an 83-MHz
PC, using the Windows 95 operating system, which was also the system used for the PC-based
BP algorithm. Although, SA took longer to converge on 4 out 7 of these test problems (shown in
Table 7), the comparison shows that these times are reasonable considering that SA is finding far
superior solutions. Further research needs to be conducted, beyond the scope of this paper, to

identify ways in which SA can be modified to decrease convergence time.

Table 7 - Time Comparisons in Seconds

DNS

Number of processing seconds used to find the best soluti

Problem BP SAPE¢ SA Cray
1 1,250 4,591 1,638
2 1,250 22,084 7,85p
3 1,250 196 7d
4 1,250 4,425 1,574
5 1,100 163 58
6 1,350 1,180 420
7 1,250 11,313 4,024

y=Estimated time calculated by actual PC version of SA

6. Conclusions

19

The increased popularity of artificial neural networks in business is brought about by its

ability to serve as a flexible form estimator. Although, these networks can estimate any unknown

function to any desired degree of accuracy, the most popular methods of netviroikatipt,

variations of backpropagation, have not achieved this end. Seemingly, global search techniques,

such as simulated annealing are essential for finding solutions that will perform well not only for

in-sample observations but for observations that have not been used in the training process.

Although, backpropagation is the most common algorithm chosen for neural network

optimization, it is shown in this study that a global search algorithm, such as simulated annealing,

may indeed be a superior search alternative. Hopefully, the results of this study will encourage

researchers and practitioners to move beyond the limitations of backpropagation in order to find

superior global training techniques.

Figure 1

12000

Problem 4 BP Estimates (Interpolation)

10000

3000
8

6000
6

o
)
by % ——Prob 4
Q
S x BP
X
X
X
X
2000
X 5K X
-2¢00 2000 4000 6000 8000 10000 12000
True Values
Figure 2
Problem 4 BP Estimates (Extrapolation)
50000
45000
X XX
Xx * X
40000 x
X X X
X X %K X
35000
X X X
X X x x 5

30000 X
7} X X% X X
S o000 X TR ——Prob 4

XX

g x %4 x %§& Xg X x| X x BP
[T x X

20000 3

X
>2>§§ x Xx?k ¥ 3
15000 3
X R x X
10000
5000
0
5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

True Values

20

Figure 3

Problem 4 SA Estimates (Interpolation)

12000

10000

6000

——Prob 4

Forecast

4000

True Values

Figure 4

Problem 4 SA Estimates (Extrapolation)

50000

45000

40000

35000

30000

25000 —— Prob 4
x SA

Forecast

20000

15000

10000

5000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

True Values

22

REFERENCES

Alpsan, D., Towsey, M., Ozdamar, O., Tsoi, A. C., & Ghista, D. N. (1995) "Efficacy of modified
backpropagation and optimisation methods on a real-wold medical problem," Neural Networks,
8(6), 945-962.

Archer, N., & Wang, S. (1993). "Application of the back propagation neural network algorithm
with monotonicity constraints for two-group classification problems," Decision Sciences, 24(1),
60-75.

Cerny, V. (1985). "Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm,” J. Opt. Theory Appl., 45, 41-51.

Corana, A., Marchesi, M., Martini, C., & Ridella, S., (1987). ‘imiaing multimodal functions
of continuous variables with the simulated annealing algorithm,” ACM Transactions on
Mathematical Software, 13, 262-80.

Dorsey, R. E., Johnson, J. D., & Mayer, W. J. (1994). "A genetic algorithm for the training of
feedforward neural networks,” Advances in Artificial Intelligence in Economics, Finance, and
Management (J. D. Johnson and A. B. Whinston, eds.) Greenwich, CT: JAI Press Inc., 1, 93-111

Dorsey, R. E., Johnson, J. D., & Van Boening, M. V. (1994). "The use of artificial neural
networks for estimation of decision surfaces in first price sealed bid auctions,” In W. W. Cooper
and A. B. Whinston (eds.), New Directions in Computational Economics, Netherlands: Kluwer
Academic Publishers, 19-40.

Funahashi, K. (1989) "On the approximate realization of continuous mappings by neural
networks," Neural Networks, 2(3), 183-192.

Gallant, R. A. & White, H. (1992). "On learning the derivatives of an unknown mapping with
multilayer feedforward networks," Artificial Neural Networks. Cambridge, MA: Blackwell
Publishers, 206-223.

Goffe, W. L., Ferrier, G. D., & Rogers, J., (1994). "Globairo@tation of statistical functions
with simulated annealing,” Journal of Econometrics, 60, 65-99.

Hornik, K., Stinchcombe, M., & White, H. (1989). "Multilayer feed-forward networks are
universal approximators,” Neural Networks, 2(5), 359-366.

Kirkpatrick, S., Gelatt Jr. C. D. & Vecchi, M. P. (1982). "@ptation by simulated annealing,”
IBM Research Report RC 9355.

23

LeCun, Y. (1986). "Learning processes in an asymmetric threshold network," Disordered
Systems and Biological Organization, Berlin: Springer Verlag, 233-240

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). "Equation of
state calculations by fast computing machines," Journal of Chemistry and Physics, 21, 1087-1090.

Parker, D. (1985). Learning logic, "Technical Report TR-87," Cambridge, MA: Center for
Computational Research in Economics and Management Science, MIT.

Rumelhart, D. E., Hinton, G. G., & Willams, R. 1986a). "Learning internal representations by
error propagation,” Parallel Distributed Processing: Exploration in the Microstructure of
Cognition (pp. 318-362). Cambridge MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Willams, R. 1986b). Learning representations by back
propagating errors,” Nature 323: 533-536.

Salchenberger, L. M., Cinar, E. M., & Lash, N. A, "Neural networks: A new tool for predicting
thrift failures,” Decision Sciences, 23, 899-916.

Sexton, R. S., Dorsey, R. E., & Johnson, J. D. (1998). "Toward a global optimum for neural
networks: A comparison of the genetic algorithm and backpropagation. Decision Support
Systems, 22(2), 171-186.

Sexton, R. S., Alidaee, B., Dorsey, R. E., & Johnson, J. D. (1998). "Globaizapion for
artificial neural networks: A tabu search application. European Journal of Operational Research,
106/2(3), 570-584.

Sexton, R. S. & Dorsey, R. E. (1998). "The use of parsimonious neural networks for forecasting
financial time series," Journal of Computational Intelligence in Finance, 6(1), 24-31.

Werbos, P. (1993). "The roots of backpropagation: From ordered derivatives to neural networks
and political forecasting,” New York, NY: John Wiley & Sons, Inc.

White, H, (1987). "Some asymptotic results for back-propagation,” Proceedings of the IEEE
Conference on Neural Networks 3, San Diego, IEEE, 261-266.

Wilensky, G. & Manukian, N. (1992). "The projection neural network," International Joint
Conference on Neural Networks I, 358-367.

