GENERALIZED MATLIS DUALITY

RICHARD G. BELSHOFF, EDGAR E. ENOCHS, AND JUAN RAMON GARCÍA ROZAS

(Communicated by Wolmer V. Vasconcelos)

Abstract. Let \(R \) be a commutative noetherian ring and let \(E \) be the minimal injective cogenerator of the category of \(R \)-modules. A module \(M \) is said to be reflexive with respect to \(E \) if the natural evaluation map from \(M \) to \(\text{Hom}_R(\text{Hom}_R(M, E), E) \) is an isomorphism. We give a classification of modules which are reflexive with respect to \(E \). A module \(M \) is reflexive with respect to \(E \) if and only if \(M \) has a finitely generated submodule \(S \) such that \(M/S \) is artinian and \(R/\text{ann}(M) \) is a complete semi-local ring.

Matlis and Gabriel in [7] and [5] considered modules over a complete local ring \(R \). They showed that if the dual of an \(R \)-module is taken with respect to \(E_R(k) \) (the injective envelope of the residue field \(k \) of \(R \)), then finitely generated and artinian modules are reflexive.

Various authors have considered related questions. For example, dropping the condition that \(R \) be complete or weakening local to semilocal ([1], [2], [6], [8], [9]). In this paper we let \(R \) be any commutative noetherian ring and let \(E \) be the minimal injective cogenerator in the category of \(R \)-modules. We give a classification of modules which are reflexive with respect to \(E \). The result is that a module \(M \) is reflexive with respect to \(E \) if and only if \(M \) has a finitely generated submodule \(S \) such that \(M/S \) is artinian and \(R/\text{ann}(M) \) is a complete semi-local ring.

We denote by \(\Omega \) the maximal spectrum of \(R \), and we let \(E = \bigoplus_{m \in \Omega} E_R(R/m) \) be the minimal injective cogenerator in the category of \(R \)-modules. For an \(R \)-module \(M \) we let \(M^\vee = \text{Hom}_R(M, E) \) and call \(M^\vee \) the Matlis dual of \(M \). If the canonical map \(M \to M^{\vee\vee} \) is an isomorphism we say that \(M \) is (Matlis) reflexive. We note that for any \(M \), the map \(M \to M^{\vee\vee} \) is an injection. From this it is easy to conclude that \(\text{ann}(M) = \text{ann}(M^\vee) \).

If \(S \subset R \) is a multiplicative set and the canonical map \(M \to S^{-1}M \) is an isomorphism, we write \(M = S^{-1}M \). If \(M = S^{-1}M \), then also \(M^\vee = S^{-1}(M^\vee) \).

When \(S = R - P \) is the complement of a prime ideal \(P \) of \(R \) we use the usual notation \(M_P \).

If \(R \) is a local ring we let \(\hat{R} \) denote its completion. If \(M \) is finitely generated we note that \(\hat{R} \otimes_R M \cong \hat{M} \) (the completion of \(M \)). We write \(\hat{R} \otimes_R M \cong M = M \) to mean that \(M \to \hat{R} \otimes_R M \cong \hat{M} \) is an isomorphism.

We note that if \(m \in \Omega \) and \(M \) is a finitely generated \(R \)-module \(M \), then \(\text{Hom}_R(M, E(R/m)) \neq 0 \) if and only if \(\text{ann}(M) \subset m \).

Received by the editors January 28, 1998 and, in revised form, July 1, 1998.

1991 Mathematics Subject Classification. Primary 13C05; Secondary 13H99.

Key words and phrases. Matlis, duality.
If R is a complete local ring, then all finitely generated and all artinian R-modules are reflexive. If R is a complete semilocal ring, then since R is the product of a finite number of complete local rings, we still have finitely generated and artinian modules over R are reflexive.

Lemma 1. If $I \subset R$ is an ideal and $IM = 0$ for an R-module M, then M is reflexive as an R-module if and only if M is reflexive as an R/I-module.

Proof. This follows from the fact that $\text{Hom}_R(R/I, E)$ is a minimal injective cogenerator over R/I and that, since $M \otimes_R R/I \cong M$, we have

$$\text{Hom}_{R/I}(M, \text{Hom}_R(R/I, E)) \cong \text{Hom}_R(M, E).$$

Lemma 2. If $S \subset R$ is multiplicative and $S^{-1}M = M$ for an R-module M, then M is reflexive as an R-module if and only if M is reflexive as an $S^{-1}R$-module.

Proof. As in Lemma 1, $\text{Hom}_R(S^{-1}R, E)$ is a minimal injective cogenerator over $S^{-1}R$ and

$$\text{Hom}_{S^{-1}R}(M, \text{Hom}_R(S^{-1}R, E)) \cong \text{Hom}_R(M, E).$$

The following result strengthens Theorem 2(i) in [1].

Theorem 3. Let R be a local ring and M a finitely generated R-module. Then M is reflexive if and only if $\hat{R} \otimes_R M = M$.

Proof. For any such M we have the commutative diagram

$$
\begin{array}{ccc}
M & \longrightarrow & \text{Hom}_R(M, E_R(k)), E_R(k)) \\
\downarrow & & \downarrow \\
\hat{M} = \hat{R} \otimes_R M & \longrightarrow & \text{Hom}_{\hat{R}}(\hat{M}, E_{\hat{R}}(k)), E_{\hat{R}}(k))
\end{array}
$$

where k is the residue field of R and of \hat{R}. The bottom horizontal arrow is an isomorphism since \hat{M} is a reflexive \hat{R}-module.

But we claim that the right vertical arrow is an isomorphism. For $E_R(k) = E_{\hat{R}}(k)$ and

$$\text{Hom}_{\hat{R}}(\hat{M}, E_{\hat{R}}(k)) = \text{Hom}_{\hat{R}}(\hat{R} \otimes_R M, E_{\hat{R}}(k)) = \text{Hom}_R(M, E_{\hat{R}}(k)) = \text{Hom}_R(M, E_R(k)).$$

Since $A = \text{Hom}_R(M, E_R(k))$ and $E_R(k)$ are artinian R and \hat{R}-modules, we have $\text{Hom}_R(A, E_R(k)) = \text{Hom}_R(A, E_R(k))$. It follows that $M \rightarrow \hat{R} \otimes_R M$ is an isomorphism if and only if M is reflexive.

Corollary 4. If I is an ideal in a local ring R, then R/I is reflexive as an R-module (or as an R/I-module) if and only if R/I is a complete local ring.

Proof. This follows from the fact that $\hat{R} \otimes_R R/I = \hat{R}/I$.

Lemma 5. If M is an R-module and $S \subset M$ is a submodule, then M is reflexive if and only if S and M/S are reflexive.
Proof. The commutative diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & S & \rightarrow & M & \rightarrow & M/S & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & \rightarrow & S^\vee & \rightarrow & M^\vee & \rightarrow & (M/S)^\vee & \rightarrow & 0
\end{array}
\]

has exact rows and the vertical maps are all injections. So the result follows.

Lemma 6. No infinite direct sum of nonzero R-modules is reflexive.

Proof. Let \(\bigoplus M_i \) be reflexive where \(I \) is infinite and \(M_i \neq 0 \) for all \(i \in I \). We have

\[
(\bigoplus M_i)^\vee = \prod (M_i^\vee),
\]

and the canonical map

\[
\bigoplus M_i \rightarrow \left(\prod (M_i^\vee) \right)^\vee \cong \left(\bigoplus M_i \right)^{\vee \vee}
\]

sends \((x_i)_{i \in I} \) to the map \((\phi_i)_{i \in I} \mapsto \sum \phi_i(x_i)\). So the image of \((x_i)_{i \in I} \) is 0 on \(\bigoplus (M_i^\vee) \subseteq \prod (M_i^\vee) \) if and only if \(x_i = 0 \) for all \(i \), i.e., if and only if \((x_i)_{i \in I} = 0 \).

But \(\bigoplus (M_i^\vee) \neq \prod (M_i^\vee) \) so there is a nonzero linear \(f : \prod (M_i^\vee) \rightarrow E \) which is 0 on \(\bigoplus (M_i^\vee) \). By the above no such \(f \) can be the image of an \((x_i)_{i \in I} \in \bigoplus M_i\) and so \(\bigoplus M_i \) is not reflexive.

Corollary 7. If \(M \) is reflexive there is a finitely generated submodule \(S \) such that \(M/S \) is artinian.

Proof. If \(M = 0 \) this is trivial. If \(M \neq 0 \) there is a finitely generated \(S_1 \subset M \) such that \(\text{Soc}(M/S_1) \neq 0 \). If \(\text{Soc}(M/S_1) \) is essential in \(M/S_1 \), it is well known that \(M/S_1 \) (and in fact \(E(M/S_1) \)) is artinian. If it is not essential, let \(N/S_1 \cap \text{Soc}(M/S_1) = 0 \) with \(S_1 \subset N, S_1 \neq N \). Then there is a finitely generated \(S_2 \) with \(S_1 \subset S_2 \subset N \) and \(\text{Soc}(N/S_2) \neq 0 \). But then \(\text{Soc}(M/S_1) \rightarrow \text{Soc}(M/S_2) \) is injective but not surjective. We repeat the procedure and see that it must stop, for otherwise if \(T = \bigcup S_n \), then \(\text{Soc}(M/T) \) is an infinite direct sum. This is impossible by Lemma 6.

The argument above is taken from Enochs [3], Proposition 1.3, and is included here for completeness.

Proposition 8. Let \(M \) be an R-module and suppose that for some \(m \in \Omega \), \(\text{Hom}_R(M, E(R/n)) = 0 \) for \(n \in \Omega, n \neq m \). Then if \(M \) is reflexive, \(M_m = M \) and \(\text{Hom}_R(M^\vee, E(R/n)) = 0 \) for \(n \neq m \).

Proof. Let \(M \) be reflexive and \(m \in \Omega \) be such that \(\text{Hom}_R(M, E(R/n)) = 0 \) for \(n \neq m \). If \(M \neq 0 \), we have a natural nonzero homomorphism \(M \rightarrow M^\vee = \text{Hom}_R(M^\vee, E) \) (\(n \in \Omega \)). So if \(\text{Hom}_R(M^\vee, E(R/n)) \neq 0 \), then the projection \(E \rightarrow E(R/n) \) induces \(\text{Hom}_R(M^\vee, E) \rightarrow \text{Hom}_R(M^\vee, E(R/n)) \) and so we have a nonzero homomorphism \(M \rightarrow \text{Hom}_R(M^\vee, E(R/n)) \). So then

\[
\text{Hom}_R(M, \text{Hom}_R(M^\vee, E(R/n))) \neq 0.
\]
But

$$\text{Hom}_R(M, \text{Hom}_R(M^\vee, E(R/n_i))) \cong \text{Hom}_R(M^\vee, \text{Hom}_R(M, E(R/n_i)))$$

so $\text{Hom}_R(M, E(R/n)) \neq 0$. Hence $n = m$.

Since $M^\vee = \text{Hom}_R(M, E(R/m))$, it follows easily using properties of $E(R/m)$ that $(M^\vee)_m = M^\vee$. But then $(M^\vee)_m = M^\vee$ and so $M_m = M$. It now follows by Lemma 2 that M is a reflexive R_m-module as well as a reflexive R-module. \hfill \Box

In the next result we use the fact that if A is an artinian R-module, then there are distinct maximal ideals $n_1, n_2, \ldots, n_t \in \Omega$ and a decomposition

$$A = A_1 \oplus A_2 \oplus \cdots \oplus A_t$$

such that $(A_i)_{n_i} = A_i$. The n_1, \ldots, n_t and the decomposition are unique in the obvious sense. If $B \subset A$ is a submodule, then

$$B = (B \cap A_1) \oplus (B \cap A_2) \oplus \cdots \oplus (B \cap A_t)$$

gives the corresponding decomposition of B. We note that $\text{Hom}_R(A_i, E(R/m)) = 0$ for $m \in \Omega, m \notin \{n_1, \ldots, n_t\}$.

Theorem 9. Let M be a finitely generated R-module and let $I = \text{ann}(M)$. Then M is reflexive if and only if R/I is a complete semilocal ring.

Proof. We have $M^\vee = \text{Hom}_R(M, \bigoplus E(R/m)) \cong \bigoplus \text{Hom}_R(M, E(R/m))$ (the direct sum over all $m \in \Omega$) since M is finitely generated. Since M^\vee is also reflexive, we see by Proposition 8 that $\text{Hom}_R(M, E(R/m)) = 0$ except for a finite number of $m \in \Omega$. Let $n_1, n_2, \ldots, n_t \in \Omega$ be distinct elements of Ω such that $\text{Hom}_R(M, E(R/m)) = 0$ for $m \notin \{n_1, n_2, \ldots, n_t\}$, so $M^\vee = \bigoplus_{i=1}^t \text{Hom}_R(M, E(R/n_i))$. We can assume $\text{Hom}_R(M, E(R/n_i)) \neq 0$ for $i = 1, 2, \ldots, t$. If M_i denotes $\text{Hom}_R(M, E(R/n_i))$, then since $\text{Hom}_R(M, E(R/m)) = 0$ for $m \neq n_i$, we see $\text{Hom}_R(R/I_i, E(R/m)) = 0$ for $m \neq n_i$ where $I_i = \text{ann}(M_i)$. Hence I_i is contained in only one maximal ideal, namely n_i. Hence R/I_i is a local ring and $(R/I_i)_{n_i} = R/I_i$.

Since R/I_i is also reflexive and finitely generated, we get that R/I_i is a reflexive R_{n_i}-module by Lemma 2. But then by Theorem 9, $R_{n_i} \otimes_{R_{n_i}} R/I_i = R/I_i$. This means that R/I_i is a complete local ring.

But now if $I = \text{ann}(M)$, we have $I = \bigcap_{i=1}^t I_i$. The I_1, \ldots, I_t are pairwise comaximal so by the Chinese remainder theorem $R/I \cong R/I_1 \times R/I_2 \times \cdots \times R/I_t$. Hence R/I is a complete semilocal ring.

Now assume that M is a finitely generated R-module and that R/I is a complete semilocal ring where $I = \text{ann}(M)$. Then M is reflexive as an R/I-module and so by Lemma 1 is reflexive as an R-module. \hfill \Box

Corollary 10. If $I \subset R$ is an ideal, then R/I is reflexive if and only if R/I is a complete semilocal ring.

Proof. Immediate. \hfill \Box

Corollary 11. If $I, J \subset R$ are ideals such that R/I and R/J are complete semilocal rings, then R/IJ is a complete semilocal ring.
Proof. We only need argue that \(R/IJ \) is a reflexive \(R \)-module. We have the exact sequence
\[
0 \rightarrow I/IJ \rightarrow R/IJ \rightarrow R/I \rightarrow 0.
\]
But \(R/I \) is a reflexive \(R \)-module, and since \(I/IJ \) is a quotient of \((R/J)^n\) for some \(n \geq 1 \) it is a reflexive \(R \)-module. Hence \(R/IJ \) is a reflexive \(R \)-module. (These claims all use Lemma 5.)

We now give the complete classification of reflexive modules.

Theorem 12. An \(R \)-module \(M \) is reflexive if and only if it has a finitely generated submodule \(S \) such that \(M=S \) is artinian and if \(R/I \) is a complete semilocal ring where \(I=\text{ann}(M) \).

Proof. Assume that \(M \) is reflexive. By Corollary 7 we have the finitely generated \(S \) with \(M=S \) artinian. Since \(S \) is reflexive and finitely generated, \(R/J \) is a complete semilocal ring where \(J=\text{ann}(S) \) by Theorem 9. Since \(M=S \) is artinian and reflexive, \(R/K \) is complete semilocal. But \(\text{ann}(M/S)^\vee=\text{ann}(M/S) \). Since \(I=\text{ann}(M) \supset JK \) and since \(R/JK \) is complete semilocal by Corollary 11 we see that \(R/I \) is complete semilocal.

Conversely assume that \(M \) has a finitely generated submodule \(S \subset M \) with \(M=S \) artinian and that \(R/I \) is a complete semilocal ring where \(I=\text{ann}(M) \).

Then, since \(J=\text{ann}(S) \supset \text{ann}(M) = I \), we see that \(R/J \) is complete and semilocal. Hence \(S \) is reflexive.

Since \(M/S \) is artinian and \(K=\text{ann}(M/S) \supset \text{ann}(M) = I \), we see that \(R/K \) is complete and semilocal. Then the artinian \(R/K \)-module is reflexive as an \(R/K \)-module. By Lemma 11 this implies that \(M/S \) is a reflexive \(R \)-module. But then by an appeal to Lemma 5 it follows that \(M \) is a reflexive \(R \)-module.

Examples.

1. If \(k \) is an algebraically closed field and \(I \subset k[x_1, \ldots, x_n] \) is such that \(k[x_1, \ldots, x_n]/I \) is semilocal, then in fact \(k[x_1, \ldots, x_n]/I \) is artinian. Hence a finitely generated reflexive module \(M \) over \(k[x_1, \ldots, x_n] \) has finite length. Since the dual \(A^\vee \) of an artinian reflexive \(k[x_1, \ldots, x_n] \)-module \(A \) is finitely generated, we see that \(A \) also has finite length. So by Theorem 12 the reflexive \(k[x_1, \ldots, x_n] \)-modules are exactly those of finite length.

2. If \(k \) is any field and \(R=k[[x]][y] \), then \(R/(y) \) is a complete local ring and so is a reflexive \(R \)-module which is not of finite length.

Remark. We recall that a module \(M \) is said to be cotorsion if \(xt^1(F, M) = 0 \) for all flat \(R \)-modules \(F \). In [4], finitely generated cotorsion modules were characterized over a commutative noetherian ring \(R \) of finite Krull dimension. In effect, over such a ring \(R \), a finitely generated module \(M \) is cotorsion if and only if it is reflexive. We do not know if this holds if we allow \(R \) to have infinite Krull dimension.

References

Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804

E-mail address: belshoff@math.smsu.edu

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

E-mail address: enochs@ms.uky.edu

Department of Algebra and Analysis, University of Almería 04120 Almería, Spain

E-mail address: jrgrozas@ualm.es