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COMMUNICATIONS IN ALGEBRA, 22(9), 3545-3552 (1994) 

SOME CHANGE OF RING THEOREMS FOR 
MATLIS REFLEXIVE MODULES 

Richard Belshoff 

Department of Mathematics 
Southwest Missouri State University 

Springfield, Missouri 65804-0094, U.S.A. 
email: rgb865f@smsvma.bitnet 

Abstract. Suppose (R,m) 4 (S, n) is a local homomorphism of lo- 
cal rings. We show that if M is a Matlis reflexive R-module, then 
EX~&(S, M) and TorfiS, M) are Matlis reflexive S-modules if S is 
module-finite over the image of R. In case S = R, the m-adic comple- 
tion of R, we show that if M is a reflexive R-module, then R @R M 
is a reflexive R-module and in fact M 'Y R @JR M. We also show that 
if R is any local ring and M and N  are two reflexive R-modules, then 
EX~&(M, N )  and T O ~ ~ M ,  N )  are reflexive R-modules for all i. 

A ring will always mean a commutative, noetherian ring with identity. 
If R is a ring and M an R-module then ER(M)  will denote an injective 
envelope (or injective hull) of M .  If (R, m) is local and E = E R ( R / ~ ) ,  then 
D(-) will denote the exact contravariant functor Hom~(-, E), called the 
Matlis dual functor, and an R-module M is said to be Matlis reflexive if the 
canonical injection M ---+ D(D(M)) is an isomorphism. Throughout this 
paper "reflexive" will mean Matlis reflexive, and "dual" will mean Matlis 
dual. Results from Matlis [5] and Bass [l] will be freely used. For general 
references, see also [6, $181, [8, Chapter 31, and [9]. 

One aim of this note is to extend and clarify some of the results in [2]. For 
example, it was shown in [2, Theorem 4, p . l l l O ]  that if R is a complete local 
ring and M and N are reflexive R-modules, then HomR(M, N), M @R N,  
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3546 BELSHOFF 

and also E X ~ ~ ( M ,  N )  and ~ o r r ( M ,  N )  for i 2 1 are reflexive R-modules. 
Furthermore, we have the following "ext-tor" duality for reflexive modules: 
D ( E X ~ ~ ( M ,  N ) )  TO$(M,D(N)) .  In this note, we show that it is not 
necessary to assume that R i s  complete. 

Before we state our next result we introduce some notation that will be 
used throughout this paper. I f  (R ,  m )  -i ( S ,  n )  is a local homomorphism 
of local rings, then D(-) will denote the Matlis dual functor H o m ~ ( - ,  E ) ,  
where E = E R ( R / m ) ,  and Dl(-) will denote Horns(-, El) ,  where E' = 
Es(SIn) .  

W e  first consider the case where the local homomorphism R -+ S makes 
S a finitely generated R-module, an obvious example being the canonical 
map R -i R I I ,  where I is an ideal of R. 

Theorem 1 Let ( R ,  m )  -+ ( S ,  n )  be a local homomorphism of local rings, 
and suppose that S is module-finite over the image of R. Let M be an R-  
module. Then, using the notation above, 

(3) If M is a reflexive R-module, then EX&(,$, h4) and T O ~ ( S ,  M )  are re- 
flexive S-modules for all i > 0 .  

In Section 2 ,  we will consider the local homomorphism R -+ R, where R 
is the m-adic completion of R. 

Theorem 2 Let R be a local ring and let M be a reflezive R-module. Then 

( i i )  M has a finitely generated submodule S which is complete in the m-adic 
topology, such that M I S  is artinian. 

(iii) R g R  M is a reflexive R-module. 

In Section 3 we prove the following result, which, as mentioned above, is 
already known in the case where R is a complete local ring. 

Theorem 3 Let R be any local ring. Let M and N be reflexive R-modules. 
Then EX&(M, N )  and T O ~ ( M ,  N )  are reflezive R-modules for all i 2 0 and 

D ( ~ x t i ( M ,  N ) )  r T O ~ ( M ,  D ( N ) ) ,  

D(TO?(M, N ) )  E E X ~ ~ ( M ,  D ( N ) ) .  

Although Theorem 3 is not a "change of ring" theorem, it can be proved 
using Theorem 2 and the result in [2] cited above. However, we will give a 
direct proof of Theorem 3. 
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MATLIS REFLEXIVE MODULES 

1 The proof of Theorem 1 

Lemma 1 Let (R, m) be a local ring. If M is any finitely generated R- 
module, and N is reflexive, then EX&(M, N )  and T O ~ ( M ,  N )  are reflexive 
R-modules for all i 2 0 and 

D(EX&(M, N))  r TO?(M, D(N)), 

D ( T o ~ ( M ,  N) )  r EX~;(M, D(N)). 

Proof. The isomorphisms are the usual "ext-tor dualities" (see Strooker 
[8], Proposition 3.4.14 (ii), p.47). In fact, the second isomorphism holds 
without any hypotheses on M or N (by [8, Proposition 3.4.14(i)]). By taking 
duals and using the fact that N is reflexive it follows that Exth(M, N )  and 
TO~?(M, N) are reflexive. 0 

Proof of Theorem 1. It is easy to see that HomR(S, E) is an injective S- 
module, and it is known (by Hochster's notes [4]) that HomR(S, E) is an 
injective envelope of S/n  in case S is a finitely generated R-module. Thus 
we may let E' = HomR(S, E) .  It then follows immediately that for any 
S-module N,  Homs(N, El) Z HomR(N S, E) ,  and so there is a natural 
isomorphism of functors (of S-modules) 

To prove ( I ) ,  we have D'(EX~;(S, M))  E D(EX~;(S, M) @s S).  But since 
S is finitely generated, it follows by the "ext-tor" duality cited above that 
there is an isomorphism D ( E x ~ ~ ( s ,  M)) E TO$(S, D(M)). To prove (2), we 
have 

D'(TO~;(S, M)) E D(TO~"S, M))  Z Extk(S,D(M)).  

Finally (3) follows immediately from (1) and (2) by taking duals. 

Next we discuss an example which shows that Theorem 1 is not necessarily 
true if S is not finitely generated as an R-module. We will need to use the 
fact that if 0 + A --+ B --+ C --+ 0 is exact, then B is reflexive if and only 
if A and C are reflexive. This follows by mapping the short exact sequence 
into its double dual and applying the snake lemma. 

First of all, it is clear that any field k is a reflexive k-module. In fact, in 
this case Ek(k) = k, so the Matlis dual is the usual vector space dual. When 
R = k and S = k [ x ] ( , ) ,  there is an obvious local homomorphism R + S,  and 
S is not finitely generated as an R-module. 
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3548 BELSHOFF 

Example 1 Suppose k is a field, and S = k[x](,). Then Homk(S, k) is not 
a rejlesive S-module. 

For the inclusion map k[x] ~t k[x](,) induces a k[x]-linear surjection 

and by Northcott [7, p.2911 the latter is isomorphic to k[[x-'I] as a k[x]- 
f (x) module. However if f (x)  4 (x) then k[[x-'I] ---t k[[x-I]] is an isomorphism, 

and so k[[x-'I] is also an S-module. Hence there is an S-linear surjection of 
S-modules 

Homk(S, k) --+ k[[x-']], 

and so it is enough to show that k[[x-'I] is not S-reflexive. But k[z-'1 C 
k[[x-'I] is an S-submodule, so it suffices to show that k[x-'1 (or it's dual) 
is not S-reflexive. By [7, Theorem 2, p.2921, we know that Es(k) k[z-'1, 
and so it follows from [5, Theorem 3.7, p.5221 that 

Therefore the dual of k[x-'1 is isomorphic to s = k[[x]]. But if S is a local 
ring which is not complete, then 3 is not S-reflexive. 

2 The proof of Theorem 2 

In this section we will let R be local, and consider the local homomorphism 
R -+ R. Recall that if R is a local ring with maximal ideal m and residue 
field k = Rlm, then the m-adic completion R has the same residue field. It 
is also well-known that ER(k) E ER(k) (see [8, Theorem 3.431, [ 5 ] ,  or [6, 
Theorem 18.6 (iii)] for details), which means, using the notation introduced 
earlier. that E E'. 

Proof of Theorem 2. Any artinian module A embeds in a finite direct sum 
of copies of E. By taking the dual of such an embedding we see that D(A) 
is a finitely generated R-module, and hence D(A) is complete. 

And if T is any finitely generated submodule of M ,  then D(T) is artinian, 
so D(D(T)) is complete. But any submodule of? refl~xive module is reflexive, 
so T Z D(D(T)). Hence T is complete. But T 2 R BR T canonically for a 
finitely generated T. So T -r R @ R  T is an isomorphism. Then taking the 
obvious direct limit of the T's gives M -, R BR M is an isomorphism. This 
proves (i). 
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MATLIS REFLEXIVE MODULES 3549 

If M is a reflexive R-module, then M has a finitely generated submodule S 
such that M I S  is artinian. (See the proof of Proposition 1.3 in Enochs [3], or 
[8, Theorem 3.4.13, p.45].) There it is assumed that the ring is complete, and 
shown that a module M is reflexive if and only if M has a finitely generated 
submodule S such that MIS is artinian, but the proof of the implication we 
need does not require that R be complete.) By the remark above, any finitely 
generated submodule of a reflexive module is complete, and so we have (ii). 

To prove (iii), since D'(R @R M )  D(M) we get that 

D(D(M)) = Homn(D(M), E) and D ' (D ' (RB~ M)) H o q ( D ( M ) , E ) .  

Any R-linear map is also R-linear, and therefore the following sequence is 
exact: 0 -+ D'(D'( R BR M))  -+ D(D(M)). So we have a commutative dia- 
gram: 

P 

o - B & M  - D / D ' ( A & ~  M)) 

I 
Now, if the top row M + D(D(M)) is an isomorphism, then by diagram 
chasing, so is the bottom row. 0 

Remark.  If A is any artinian R-module, then every element of A is annihi- 
lated by a power of m. It follows that the canonical injection A -+ R @R A 
is also surjective. This can be used to give another proof of (i). For suppose 
M is reflexive. Then let S be a finitely generated complete submodule with 
A := M I S  artinian. Since S -+ R BR S and A -+ R BR A are isomorphisms, 
M -+ R BR M is also an isomorphism. 

3 The proof of Theorem 3 

Throughout this section we will assume that (R, m) is a local ring with residue 
field k = Rlm, and E = ER(k). We will need to use the fact (see [5]) that 
every injective module is a direct sum of indecomposable injective modules, 
and each indecomposable injective module is isomorphic to E(R/p)  for some 
prime ideal p of R. 

Lemma 2 If N is a reflexive R-module, then the Bass numbers p ; ( N )  are 
finite for all i. 
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3550 BELSHOFF 

Proof. Recall that if 0 -+ N -+ EO(N) -t E1(N) -t . . . is a minimal injective 
resolution of N, then p;(N) is the number of copies of E appearing in a direct 
sum decomposition of E i (N)  into indecomposable injective modules. Let S 
be a finitely generated submodule of N with NIS  artinian. Then it is well- 
known that p,(S) < m for all i (by [I, Lemma 2 . 7 ] ) ,  and it is easy to see 
that pi(A) < m for all i for any artinian module A. For in this case each 
EYA) is a finite direct sum of copies of E .  But we also know that p;(N) is 
the dimension of the k-vector space ~ x t ' ( k ,  N) ,  i.e. pi(N) = dimk Exti(k, N) .  
(See [6,  Theorem 18.71, for example.) The result then follows from the long 
exact sequence 

and the fact that both ~ x t ' ( k ,  S) and Extl(k, N/S) are finite dimensional. O 

Lemma 3 Assume that A is an artinian reflexive module and that N is 
reflezive. Then EZ&(A, N) and T O ~ ( A ,  N) are reflexive for all i and 

D(EX&(A, N)) T O ~ ( A ,  D(N)). 

Proof. Let 0 4 N -+ EO(N)  4 E1(N) -+ . . .  be a minimal injective 
resolution of N ,  and let E* be the complex 0 -r E O ( N )  -t E1(N) -+ .. .. 
Let Do be the subcomplex of E* with Di C E'(N) being all x annihilated 
by some power of m. It is easy to verify that D* is a subcomplex; in fact, 
Di is just the sum of the E's in a decomposition of E ' ( N )  into E(B/p)'s for 
prime ideals p .  We have an exact sequence of complexes of injective modules 
0 -+ D* 4 E* -+ Ee/D* -+ 0 which splits at each level. So the sequence 

0 -+ Hom(A, Do) 4 Hom(A, E*) 4 Hom(A, E*/D*) -+ 0 

is exact. Since A is artinian, Hom(A, E(R/p) = 0 for P # m. This follows 
because some power of m kills each element of A, yet if x 6 p then x acts 
as an automorphism on E(R/p).  Therefore, the complex Hom(A, E*/Do)  is 
zero and 

H ' (Ho~(A,  D*)) r H ' ( H o ~ ( A ,  E e ) )  r E X ~ ' ( A ,  N). 

Since N is reflexive, by Lemma 2 each Di is a direct sum of a finite number 
of copies of E. Hence each Hom(A, D') is reflexive, since each Hom(A, D')  
is a direct sum of a finite number of copies of D(A) and A is assumed to 
be reflexive. Thus Hom(A, D*) is a complex of reflexive modules, so it's 
homology is reflexive for each i. Therefore, EX~'(A,  N)  is reflexive. 
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MATLIS REFLEXIVE MODULES 3551 

Now a module is reflexive if and only if it's dual is reflexive. So D(N) 
is reflexive and the isomorphism D(Tor;(A, N))  EX~'(A,  D(N)) implies 
that Tor;(A, N )  is reflexive. Finally, use this isomorphism once more: we 
know D(Tor;(A, D(N)))  g EX~'(A, DD(N)) g EX~'(A, N). So take duals 
and use the fact that Tori(A,D(N)) is reflexive to get D(Ex~'(A, N)) 2 
Tor;(A,D(N)). 0 

Proof of Theorem 3. If M is reflexive, it has a finitely generated (complete) 
submodule S such that M I S  is artinian. Since M is reflexive, both S and 
M I S  are reflexive. Consider the following commutative diagram with exact 
rows: - D(Ext(S, N))  - D(Ext(M, N)) - D(Ext(M/S, N))  - 

T i T 
---+ Tor(S, D(N))  - Tor(M, D(N)) --+ Tor(M/S,D(N)) - 

The theorem follows since the two outside maps are isomorphisms of reflexive 
modules. 0 
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