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THE EXISTENCE OF FLAT COVERS 

RICHARD BELSHOFF, EDGAR E. ENOCHS, AND JINZHONG XU 

(Communicated by J. Ratliff, Jr.) 

ABSTRACT. We show that over a right coherent ring all pure invective left mod- 
ules have flat covers. Then using recent work of Auslander and Buchweitz we 
show that left modules of finite flat dimension over right coherent rings also 
have flat covers. 

1. INTRODUCTION 

We recall 

Definition 1.1. If k: F -, M is a linear map between left R-modules with F 
flat, then X is called a flat cover of M if 

F' 

(a) I 

4- 
F -*M 

can always be completed to a commutative diagram when F' , M is any linear 
map with F' flat and 

F 

(b) , 

F +,M 

can be completed to a commutative diagram only by automorphisms of F. 

If (a) is satisfied (and perhaps not (b)), then k: F , M is called a flat 
precover of M. If a flat cover exists, then it is unique up to isomorphism. If 
a ring R is left perfect, then every left R-module has a projective cover. Over 
such rings flat left modules are projective, hence it is easy to check that these 
projective covers are in fact flat covers. In [2, Theorem 2.1, p. 196] it was 
shown that if a module admits a flat precover then it has a flat cover, but the 
existence of flat covers in general is an open question. 
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If q: F - M is a flat cover and r/: F' -> M is a flat precover, then any 
map f: F F' such that q' o f = 0 maps F isomorphically onto a direct 
summand of F'. This can be seen by chasing the obvious diagram. 

Definition 1.2. A left R-module G is said to be cotorsion if Ext1 (F. G) = 0 
for all flat modules F. 

Proposition 1.3. If 0 -O G -+ F -E M 0 is an exact sequence ofleft R-modules 
with G cotorsion and F flat then F - M is a flat precover of M. Conversely, 
if 0: F -* M is a flat cover of M then ker q is cotorsion. 
Proof. If F' is flat module then 

Hom(F', F) -* Hom(F', M) -O 0 = Ext1(F', G) 

is exact. Hence F --* M is a flat precover of M. Conversely, if q: F -i M is 
a flat precover of M then kerq is cotorsion by Lemma 2.2 of [3, p. 182]. 

Proposition 1.4. If G is cotorsion then Ext'(F, G) = 0 for all flat modules F 
and all i > 1. 
Proof. If F is flat and 

0 -- K -+ Pn-2 Po --+ F --o 0 

is exact for n > 2 with PO, . . ., Pn-2 projective then Extn (F, G) = Ext1 (K, G). 
But F flat implies K flat, so Ext1(K, G) = 0. 

Corollary 1.4. If 0 -+ M' -- M -- M" A - 0 is an exact sequence of left R- 
modules and M' and M are cotorsion then so is M". 
Proof. Immediate. 

Proposition 1.5. If M = M1 e M2 has a flat cover then so does each of M1 and 
M2 . 

Proof. If q: F -- M is a flat cover then the composition F -i M 1 Mi (for 
i = 1, 2) with pi the projection map is easily seen to be a flat precover, hence, 
M, and M2 admit flat covers. 

We note that if Fs - Mi are flat covers for i = 1, 2 then by [2, Proposition 
4.1,p. 197], F1,EF2 MM1eM2 isaflatcover. 

2. FLAT COVERS OF PURE INJECTIVE MODULES 

Definition 2.1. A left R-module M is said to be pure infective if for every pure 
submodule S c N of a left R-module, HomR(N, M) -- HomR(S , M) 0 is 
exact. 

If M is pure invective, it is cotorsion, for if F is flat and 0 - > K - P - 

F -- 0 is exact with P projective then K c P is pure. The exactness of 

Hom(P, M) -- Hom(K, M) -+ Ext1(F, M) -*0 = Ext1(P, M) 

then gives the Ext1 (F, M) = 0. 
For a left (right) R-module M we let M+ = Homz (M, Q/Z). So M+ is 

a right (left) R-module. We have 
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Proposition 2.2. If R is a right coherent ring then for any right R-module 
M, M+ has flat cover. 
Proof. Let M c E with E an injective module. The embedding M -* E 
gives a map E+ - M+. Since R is right coherent, it is known that E+ is flat 
(to show I ? E+ - R ? E+ is an injection for every finitely generated (and so 
finitely related) right ideal I, simply use the canonical isomorphisms I ?R E+ = 
HomR(I, E)+ and R ? E+ HomR(R, E)+). To show that E+ -* M+ is a 
precover, let F be flat. We want to show that Hom(F, E+) -- Hom(FM+) is 
onto, i.e., by a natural isomorphism that 

Homz(E ?R F, Q/Z) -* Homz(M ?R F, Q/Z) 

is onto. But 0 -- M OR F -- E OR F is exact since F is flat and Q/Z is an 
injective Z-module, so the result follows. 

Theorem 2.3. If R is right coherent, every pure invective left R-module has a flat 
cover. 
Proof. By the preceeding M++ has a flat cover. But M is pure injective if and 
only if the canonical map M -- M++ isomorphically onto a direct summand 
of M++ (see [8] or [7]), so by Propositions 1.5 and 2.1, M has a flat cover. 

We note for use below that M+ is pure injective for any module M. 

Proposition 2.4. If a left R-module M has a flat cover 0: F -- M then M is 
cotorsion if and only if F is. If M is pure invective and R is right coherent 
then F is pure invective. 
Proof. The first follows by considering the exact sequence 

Ext1 (F', kerq$) -* Ext1(F', F) -* Ext1(F', M) -* Ext2(F', kerq0) 

where F' is flat and using Propositions 1.3 and 1.4. 
If R is right coherent and M+ c E for an injective right R-module E then 

as in the proof of Proposition 2.2 we see that E+ - M++ is a flat precover. But 
E+ is pure injective, so if F -- M++ is a flat cover of M++, F is isomorphic 
to a direct summand of E+ and hence is pure injective. But M pure injective 
implies M is a direct summand of M++, so the flat cover of M is a summand 
of F and hence is also pure injective. 

Flat covers of modules of finite flat dimension. If M is a left R-module then 
PE(M) denotes the pure injective envelope of M. We recall that PE(M) is 
pure injective and that M -- PE(M)/S is a pure injection for a submodule 
S c PE(M) if and only if S = 0. 

We need 

Proposition 3.1 (Gruson and Jensen [6, Proposition 4.1]). If R is right coherent 
and F is a flat left R-module then PE(F) is flat. 

The idea for the use of the pushout and pullback diagrams in the proofs 
of the next three results is due to Auslander and Buchweitz in [1] where they 
study maximal Cohen-Macaulay approximations (or in our language, maximal 
Cohen-Macaulay precovers). We are happy to acknowledge our debt to their 
work. 
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Proposition 3.2. If R is right coherent and a left R-module M has a flat cover 
then M is a submodule of a cotorsion module whose quotient by M is flat. If 
R is commutative, noetherian of finite Krull dimension, then the converse also 
holds. 

Proof. Assume M has a flat cover 0: F -- M, and let K = kerq$. Then by 
Proposition 1.3, K is cotorsion. The pushout of the diagram 

F -*M 

PE(F) 

gives rise to a commutative diagram 

o o 0 

o - K - F - M - 0 

o - K - PE(F) - G - 0 

O- C - C 

0 0 

with exact rows and columns. K is cotorsion and PE(F) is pure injective hence 
cotorsion, so G is cotorsion by Corollary 1.5. C is flat since F c PE(F) is 
pure and PE(F) is flat. 

Now suppose that R is commutative, noetherian, and of finite Krull dimen- 
sion. Let 0 -- M -- G -- C -- 0 be exact with G cotorsion and C flat. Then 
by [4, Theorem 3.1, p. 36], G has a flat cover, say H -* G with kernel K. 
Then the pull back of 

M 

H - G 



THE EXISTENCE OF FLAT COVERS 989 

gives rise to the commutative diagram 

o o 0 

O K ,L ,M , 

O K ,H ,G , 

O C ,C ,0 

0 0 
with exact rows and columns. 

Since C and H are flat, so is L. By Proposition 1.3, K is cotorsion, hence, 
L -, M is a flat precover, so M admits a flat cover. 

Proposition 3.3. If R is right coherent and 0 -O K -- F -- M -O 0 is an exact 
sequence of left R-modules with F flat, then if K has a flat cover then so does 
M. 
Proof. By Proposition 3.1 we have an exact sequence 0 -O K G C 0 
with G cotorsion and C flat. Then the pushout of 

K F 

G 
gives rise to the commutative diagram 

o o 0 

0 - K - F M - 0 

O G ,L ,M , 

O- C ,C - 0 

0 0 
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with exact rows and columns. L is flat since C and F are and G is cotorsion, 
so L -* M is a flat precover, hence, M has a flat cover. 

We now have 

Theorem 3.4. If R is right coherent then every module of finite flat dimension 
has a flat cover. 
Proof. By induction on the flat dimension of a module and the preceeding 
proposition. We only need note to start the induction that a very flat module 
trivially has a flat cover. 

Definition. If M is a left R-module, an exact sequence 
*. - F, -* Fo -* M ,* 0 

such that Fo -M, F -* ker(FO - M), and F1 -*ker(Fi- 1 F1-2) for i > 2 
are flat covers is called a minimal flat resolution of M. We have 

Proposition 3.5. If R is commutative noetherian and of finite Krull dimension 
then for an R-module M the following are equivalent: 

(a) M has a flat cover. 
(b) M has a minimal flat resolution. 
(c) For some n > 1 and some exact sequence 

0 - K -*Fn-1 ) O * M -* 
) o) 

with Fo, ...,Fn 1 flat, K has aflat cover. 
Proof. (b) = (c) is trivial. 

(c) = (a) by a repeated application of Proposition 3.3. 
(a) = (b) If Fo = F -, M is a flat cover with kernel K then K is cotorsion. 

As noted earlier, under our hypotheses on R, K has a flat cover. Continuing 
in this fashion we get a minimal flat resolution of M. 

Remark. If R is as in the previous proposition and 

...-- F2-) F , -o )O- M ,* 0 

is a minimal flat resolution of M then by Propositions 1.3 and 2.4, each of the 
Fi, i > 1, is cotorsion (and flat). But then by [3, Theorem p. 183], each Fi, 
i > 1, can be written uniquely up to isomorphism as a product Hl Tp (over 
all prime ideals P c R) where Tp is the completion of a free Rp-module. 
The cardinality of the bases of these free modules are invariants of the module 
M. If R is a complete local ring and M is finitely generated, the minimal 
projective resolution of M is a minimal flat resolution of M. For if P -, M 
is the projective cover of M, K = ker(F -- M) is finitely generated and hence 
Matlis reflexive. But any module of the form HomR(N, E) with E injective 
is pure injective and hence cotorsion. Hence K is cotorsion. So P -, M is a 
flat cover. 

If R = Z(p) for p E Z a prime, 

0 .ZP - ZP -* ZAp) -* 0 

is a minimal flat resolution of Z/(p) (see [5, Lemma 5]). 
Based on these and other examples, we conjecture that when M is finitely 

generated the invariants mentioned above are always finite. 
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