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Abstract. This paper develops the probabilistic version of cascade al-
gorithm, specifically, Probabilistic AdaBoost Cascade (PABC). The pro-
posed PABC algorithm is further employed to learn the association po-
tential in the Discriminative Random Fields (DRF) model, resulting the
Probabilistic Cascade Random Fields (PCRF) model. PCRF model en-
joys the advantage of incorporating far more informative features than
the conventional DRF model. Moreover, compared to the original DRF
model, PCRF is less sensitive to the class imbalance problem. The pro-
posed PABC and PCRF were applied to the task of man-made structure
detection. We compared the performance of PABC with different set-
tings, the performance of the original DRF model and that of PCRF.
Detailed numerical analysis demonstrated that PABC improves the per-
formance with more AdaBoost nodes, and the interaction potential in
PCRF further improves the performance significantly.

1 Introduction

Traditional pattern classification methods assume that the class labels are inde-
pendent to each other. However, in real life data (e.g. sequences, images, videos),
the labels of the adjacent data points are correlated. This suggests us take ac-
count of the label dependencies in designing classifiers for real life data. For
example, Markov Random Fields (MRF) [6], Conditional Random Fields (CRF)
[4], and Discriminative Random Fields (DRF) [9], improve the performance of
an i.i.d. classification technique by taking into account the spatial dependencies.

In this paper, we are primarily interested in classifying elements (pixels or
regions) of a two-dimensional image. Let X be the observed data from an input
image, where X = {xi}i∈S with xi being the data from the ith image site, and
S is the set of all the image sites. Let the corresponding labels for the image be
Y = {yi}i∈S , where yi is the label for image site i.

MRF is usually used in the generative model framework which models the
joint distribution of the observed data and the labels. The posterior of the labels
given the data can be expressed by Bayes’ rule as

P (Y|X) ∝ P (X,Y) = P (X|Y)P (Y). (1)
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The prior distribution of the labels, P (Y), is modelled as MRF. However, the
likelihood term, P (X|Y), is usually very complicated, and it is a distribution in
a high-dimensional space (since the image data X is of high dimension). Thus,
it is usually very difficult, if not impossible, to find a good model for P (X|Y).

On the other hand, CRF and DRF are employed in the discriminative model
framework, in which we directly model the posterior distribution of the labels
given the data, P (Y|X). CRF was proposed in the context of segmentation and
labelling of 1D sequences, and DRF is generalized version of CRF for 2D image
data.

There are two components in DRF model, namely, the association potential
and the interaction potential (see Section 2 for details about DRF model). The
association potential models the local evidence which ignores the neighborhood
information. In [9], the association potential was modelled by a logistic regression
classifier, which can only incorporate a limited number of features, leading to
restricted classification capability.

AdaBoost [2] is a classification framework which has appealing theoretical
properties, and has shown impressive empirical results in a wide variety of tasks,
for example, face detection [15,16,17]. This paper takes the advantage of the
power of AdaBoost to incorporate more informative features for learning the as-
sociation potential in DRF, thus overcoming the limitations of logistic regression
model in [9]. In the learning stage, we face the problem of unbalanced training
set, i.e. far less positive examples than negative examples. AdaBoost cascade
[15,16,17] and WaldBoost [13] are usually used to solve this problem. However,
the aforementioned methods give a results in {−1, 1}, while we need a real num-
ber for the association potential, which is the logarithm of a probability value
as in [9]. To achieve this purpose, we develop Probabilistic version of AdaBoost
Cascade (PABC), which calculates the posterior probability of class label when
a testing example is presented. PABC is employed to learn the association po-
tential in DRF model, and the interaction potential is learned in the same way
as in the original DRF model [9]. The resulting model, Probabilistic Cascade
Random Fields (PCRF), enjoys the capability of incorporating far more infor-
mative features and a more powerful association potential than the conventional
DRF model.

The proposed PCRF was applied to man-made structure detection problem.
We compared the performance of PABC with different settings, the performance
of the original DRF model and the performance of PCRF. Detailed quantitative
measures demonstrate that with more AdaBoost nodes, the overall performance
of PABC improves, and with the information from interaction potential, PCRF
further removes some false positives and fills in some missing parts of the object.

2 Review of Discriminative Random Fields

Discriminative Random Fields (DRF) model [9] avoids the independence as-
sumption and seek to model the conditional joint distribution of the labels if the
data is given, i.e., P (Y|X). DRF model defines the conditional probability of
the labels Y as:
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P (Y|X) =
1
Z

exp

⎛
⎝∑

i∈S

Ai(yi,X) +
∑
i∈S

∑
j∈Ni

Iij(yi, yj ,X))

⎞
⎠ , (2)

where Ai is the association potential that models the dependencies between
the observations and the class labels, and Iij is the interaction potential which
models the dependencies between the labels of the adjacent elements (and the
observations), and Ni is a neighborhood of image site i. In this paper, we assume
the random field is homogeneous and isotropic, i.e., the functional forms of Ai

and Iij are independent of the locations i and j, hence we can simplify the
notations as A and I, respectively. This model alleviates the need to model
the observation data P (X|Y) (a necessary step in Bayesian statistics), and it
also allows the use of arbitrary attributes of the observations without explicitly
modelling them.

The association potential A(yi,X) reflects the local evidence of the label for
image site i. For two-class classification, yi ∈ {1,−1}, the association potential
is modelled as [9]:

A(yi,X) = log
(
σ(yiwT hi(X))

)
, (3)

where σ(·) is logistic regression function:

σ(yiwT hi(X)) = P (yi|X) =
1

1 + exp (−yiwT hi(X))
. (4)

In Eqn. (3) and (4), hi(X) is the feature vector extracted from the image data
for site i, and w is the weight vector. In principle, the feature vector hi(X) can
be any transformation of the image data. The association potential defined in
Eqn. (3) makes DRF equivalent to a logistic regression classifier if the interaction
potential is set to zero.

To model the interaction potential, let μij(X) be the pairwise feature vector
extracted from the image data X which reflects the property of the image site
pair (i, j). Similar to Eqn. (3), the pairwise discriminative term (a probability)
is defined as

P (yi, yj |X) = σ
(
yiyjvT μij(X)

)
, (5)

where v is the parameter vector. The interaction potential is modelled as a
convex combination of two terms, i.e.:

I(yi, yj,X) = β
{
Kyiyj + (1−K)

[
2σ

(
yiyjvT μij(X)

)− 1
]}

, (6)

where 0 ≤ K ≤ 1. When K = 1, the interaction potential boils down to the Ising
model, therefore the interaction potential can be thought of as a generalization
of the Ising model.

Note that both the association potential A(yi,X) and the interaction potential
I(yi, yj,X) depend on the whole image X, not only on the image data at site i
or site j. This is different from the traditional classification setting.
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The parameters θ = {w,v, β, K} can be obtained by maximizing the pseudo-
likelihood function:

θ̂ ≈ arg max
θ

M∏
m=1

∏
i∈S

P (ym
i |ym

Ni
,X, θ), (7)

where m indexes the training images and M is the total number of training
images, and

P (yi|yNi ,X, θ) =
1
Zi

exp

⎧⎨
⎩A(yi,X) +

∑
j∈Ni

I(yi, yj,X)

⎫⎬
⎭ , (8)

with Zi as the normalization factor. The pseudo-likelihood function given in
Eqn. (7) can be maximized by linear search method [9], Newton’s method, or
stochastic gradient method.

3 Probabilistic AdaBoost Cascade

As a classification algorithm, AdaBoost [2] combines a set of weak classifiers
(features) to form a strong classifier, and the obtained strong classifier is

H(x) = sign

{
T∑

t=1

αtht(x)

}
∈ {−1, 1}, (9)

where x is the input example, ht(x) ∈ {−1, 1} is the weak classifier (feature)
selected at the tth iteration with weight αt, and T is the total number of itera-
tions. It is well-known that there is a deep relation between AdaBoost and the
additive logistic regression model [3], i.e.,

p(y|x) =
exp

{
y

∑T
t=1 αtht(x)

}

exp
{∑T

t=1 αtht(x)
}

+ exp
{
−∑T

t=1 αtht(x)
} , with y ∈ {−1, 1}.

(10)

In applications, we usually have a limited number of positive examples, but abun-
dant negative examples, that is, the training set is highly unbalanced. AdaBoost
cascade [15,16], and its variant, Boosting Chain [17], are successfully used for
object detection with unbalanced training set. WaldBoost [13], using sequential
likelihood ratio test in decision making, implicitly builds cascade structure after
every weak classifier is added. In AdaBoost cascade, before training each Ad-
aBoost node, we can bootstrap negative examples in case there are not enough
negative examples, as shown in Fig. 1. A testing example will be classified as
positive if it can pass all the AdaBoost nodes; otherwise, it will be classified as
a negative example.
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Fig. 1. AdaBoost Cascade which can bootstrap negative examples at each stage

AdaBoost cascade, Boosting chain, and WaldBoost output a value in {−1, 1},
while in certain application scenarios, we prefer a probability value P (y = 1|x).
As such, we develop Probabilistic AdaBoost Cascade (PABC) which has the
same structure as the non-probabilistic version, see Fig. 1. The difference is that
for each testing example x, PABC outputs the probability P (y = 1|x) instead
of ±1.

The training process of PABC is very similar to that of AdaBoost cascade as
shown in Fig. 1, except that we use Eqn. (10) to calculate the probability value
when we split the training set. Ideally, we would like to keep all the positive exam-
ples in training the AdaBoost nodes, but inevitably we will make some mistakes
when splitting the training set. To keep as many positive examples as possible,
we put restriction on the false negative rate for each split by the AdaBoost nodes.
For each split, we also calculate the proportion of the positive examples among the
rejected examples. The detailed training process is given in Fig. 2.

Let x be a testing example, and y be the corresponding label. We regard each
of the subset rejected by the AdaBoost node SRJ as a classifier as well, and it
outputs the probability

P (y = 1|x) = P (y = 1|SRJ,x) = pn, (11)

that is, the proportion of positive examples in the subset SRJ. From Fig. 3, it is
easy to write out the posterior probability of y given the testing example x as:

P (y = 1|x) =
∑

y1∈{−1,1}
P (y = 1|y1,x)P (y1|x), (12)

and similarly, we have the following recursive formula:

P (y = 1|yn−1 = · · · = y1 = 1,x) =
∑

yn∈{−1,1}
P (y = 1|yn, yn−1 = · · · = y1 = 1,x)

×P (yn|yn−1 = · · · = y1 = 1,x),
(13)

where yi ∈ {−1, 1}, P (yn|yn−1 = · · · = y1 = 1,x) is the probability calculated by
the nth AdaBoost node using Eqn. (10); at a terminal node, P (y = 1|yn, yn−1 =
· · · = y1 = 1,x) is the output by the terminal node using Eqn. (11); if the
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– Input: An initial training set S = {(xi, yi) : i ∈ Λ}, where xi’s are feature
vectors, yi ∈ {−1, 1} is the label, and Λ indexes all the training examples. We
also have a set Sneg which contains a large number of negative examples. The
desired false negative rate for each cascade split fn is also given.

– For n = 1, · · · , N
1. Train a strong classifier by AdaBoost for node n using the current training

set S .
2. For each xi ∈ S , calculate the probability P (yi = 1|xi) using Eqn. (10).
3. Split the training set S into SRJ and Sgo, where SRJ and Sgo are the

subset classified by the current AdaBoost node as negative and positive
examples, respectively; when making this split, we adjust the threshold
such that the false negative rate is at least as small as the given value fn;
for SRJ, calculate the proportion of positive examples pn.

4. If there are not enough negative examples in Sgo, bootstrap negative ex-
amples from the given set Sneg; let S = Sgo.

– End For

Fig. 2. Training process of PABC with N AdaBoost nodes

current node is not a terminal node, then P (y = 1|yn, yn−1 = · · · = y1 = 1,x) is
calculated recursively by Eqn. (13). Using Eqn. (12) and the recursive relation
(13), we can calculate the output probability by PABC. Thus in the testing
stage, PABC integrates information from every node to make decision.

Fig. 3. Testing procedure of PABC. The boxes are the classifiers learned by AdaBoost,
and the circles are the terminal nodes of the cascade. yi is the decision result of the ith

AdaBoost node, and y is the output result. The probabilities are calculated according
to each AdaBoost node (Eqn. 10) or from the proportions at the terminal nodes (Eqn.
11).

Tu [14] proposed a Probabilistic Boosting Tree (PBT) algorithm, of which
PABC is a special case, since the chain structure in PABC is a special case
of the tree structure in PBT. However, as the depth of the tree increases, the
number of nodes in PBT increases exponentially, which will need much more time
in the training stage than PABC. Furthermore, a tree is much more complicated
than a chain, thus PBT is more likely to over-fit the data than PABC. In [18],
a learning procedure called Probabilistic Boosting Network (PBN) is presented,
which is implemented by means of an efficient graph structure. In [18], PBN
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was used to classify object and estimate pose parameters at the same time,
while in this paper, we are only focus on classification. In PBN, if there is no
pose parameter, the graph structure of PBN will boils down to the structure of
AdaBoost cascade.

4 Probabilistic Cascade Random Fields

The original DRF model [9] learns the association potential by a logistic regres-
sion model. However, the logistic regression model can only incorporate a small
number of features, and the classification capability of logistic regression model
is not strong. Moreover, logistic regression often does not estimate appropri-
ate parameters, and this is especially true for image data where feature vectors
may have a high number of dimensions and possibly there are high degree of
correlations among features.

Fortunately, the DRF framework allows a flexible choice of the association
potential. By making use of the strong classification ability of Support Vector
Machines (SVM), Lee et al. [5] proposed to use probabilistic version of SVM [11]
for learning the association potential. Although SVM has good classification
performance, it needs a large amount of training time when the feature number
and training set are large. More over, SVM does not have an explicit solution to
the problem of imbalanced training set which is common in applications.

This motivates us to apply the introduced PABC algorithm to learn the asso-
ciation potential since PABC can deal with a large number of features and a large
number of training examples. Due to the powerful feature selection mechanism
of AdaBoost, PABC will not select correlated features. Furthermore, PABC is
designed for imbalanced data, thus it is less sensitive to imbalanced training set
compared to SVM and AdaBoost.

The learned association potential by PABC algorithm is expressed as

A(yi,X) = log P (yi = 1|X), (14)

where P (yi = 1|X) is fitted by the procedure described in Fig. 2, and calculated
for a given sample by Eqn. (12) and Eqn. (13).

This work still adopts the interaction potential as in Eqn. (6), also see [9].
We maximize the pseudo-likelihood function to estimate the parameters θ =
(v, β, K) in the interaction potential, i.e.

(v̂, β̂, K̂) ≈ argmax
(v,β,K)

M∏
m=1

∏
i∈S

P (ym
i |ym

Ni
,X, θ). (15)

To ensure that the log-likelihood is convex and prevent over-smoothing due to
the pseudo-likelihood approximation, we assume a Gaussian prior on v and use
the penalized log pseudo-likelihood function [10]

l(v, β, K) =
M∑

m=1

∑
i∈S

⎧⎨
⎩A(yi,X) +

∑
j∈Ni

I(yi, yj ,X)− log Zi

⎫⎬
⎭−

1
2
vT v, (16)
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where I(yi, yj ,X) depends on the parameters (v, β, K) as defined in Eqn. (6), and
Zi is a normalization constant which also depends on the parameters (v, β, K).
Note that A(yi,X) is learned by PABC and calculated according to Eqn. (14),
therefore in the optimization procedure A(yi,X) can be ignored since they are
constants to (v, β, K). We use gradient ascent to maximize the penalized log
pseudo-likelihood function in Eqn. (16).

Given a testing image X, our goal is to find the most probable label configu-
ration Y∗ for X, i.e., solve a Maximum A Posteriori (MAP) problem:

Y∗ = argmax
Y

P (Y|X), (17)

where the probability P (Y|X) is evaluated according to Eqn. (2) with the learned
parameters. Since the probability distribution only contains unary and binary
terms, the MAP can be solved by max-flow/min-cut type of algorithms [7]. As
in [9], we choose to use iterated conditional modes (ICM) [1] for inference due to
its simplicity, and it yields a local maximum of the posterior probability. Given
an initial labelling, ICM iteratively maximizes the local conditional probability,
that is, for each image site, we update the label by

yi ← arg max
yi∈{−1,1}

P (yi|YNi ,X). (18)

5 Experiment

We test the proposed model on the task of man-made structure detection from
natural images. The training and testing sets contain 108 and 129 images, respec-
tively, each of size 256× 384 pixels. Each image is divided into non-overlapping
16× 16 image blocks, and each image block is an image site in our model. The
ground truth was generated by manually labelling every image site as building
and non-building. There are 5,203 building blocks and 36,269 non-building blocks
in the training set, and 6,372 building blocks and 43,164 non-building blocks in
the testing set1.

5.1 Features

For the man-made structure detection problem, we use the features described in
[8,9] as our first set of features, which are based on the weighted histogram of
the gradient orientation. Please refer to [8] for more details. We also use different
combinations (sum, difference, etc.) of features from [8].

We apply different filters (e.g. Gabor filters, Gaussian filters, Canny Edge de-
tectors) to the original image, and other features are extracted from the filter
responses. We notice that most building regions are relatively smooth with small
variance while most background regions have cluttered pattern with large vari-
ation. This observation inspires us to use mean and variance values of different
filter responses (include the original image) inside sub-windows as features.
1 The original image data and the labels are provided by [9].
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For each sub-window, we can also calculate the histograms from each filter
response, and use each bin of the histogram as a feature, and the entropy of the
histogram can be used as a feature as well to evaluate the regularity of the sub-
window. We also notice that man-made structures are primarily characterized
by straight lines with horizontal or vertical direction, and this motivates us to
extract features from the edge map. In canny edge map, we count the numbers
of horizontal and vertical edge points inside each sub-window, and use these
numbers as features. The regularity of the building region and the irregularity of
the background also make the orientation of the gradient a good discriminator,
therefore, we calculate the mean value of the orientation of the gradient inside
a sub-window and use it as a feature.

The largest sub-window has size 48× 48, and the smallest is of size 6× 6. We
design the sub-windows such that they must have at least 6×6 intersection with
the current image site (a 16× 16 window). By doing this, each feature contains
neighborhood information to classify the current image site. This feature design
strategy is consistent with our notation P (yi|X), i.e. the class label for image
site i depends on the whole image, not only xi itself. For each sub-window
in the image, the mean, variance, and histogram can be calculated efficiently
using integral image [15] and integral histogram [12]. Altogether, we have around
10,000 features for learning the association potential.

In learning the association potential by PABC, the first 4 features selected
by the first AdaBoost node are: Variance of the Gabor filter response inside the
sub-window at the relative location (-9, -16, 26, 26) to the top-left corner of the
current image site, with error rate 0.189; the sum of the first and 21st features
from [8], with error rate 0.298; the difference of the second and 17th features
from [8], with error rate 0.349; the average number of vertical edge points in the
sub-window at the relative location (-16, -9, 19, 26) to the top-left corner of the
current image site, with error rate 0.386.

To learn the interaction potential, we use features μij(X) as those used in [9],
that is, the difference of two vectors from [8] at image sites i and j, such that
the feature vector μij(X) encodes the difference between image sites i and j.

5.2 Results

When applying PABC2 to learn the association potential for PCRF, we use 5
AdaBoost nodes, and for each of them, we select 120 features. We feed all the
positive examples to the first AdaBoost node, and each AdaBoost is learned
with 10,000 negative examples. When splitting the training set, the false neg-
ative rate is set to be 0.015, and we bootstrap negative examples if necessary.
Learning the association potential by PABC needs about 2 hours, and learning
the interaction potential by maximizing pseudo-likelihood needs about 5 minutes
with 40 iterations to converge. In the testing stage, for each input image, the
computer needs about 20 seconds to output the detection result. The computer
has a 2GHz CPU and 3.25G Bytes memory.

2 The PABC is implemented based on the source code provided by [16].
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From Eqn. (2), when the interaction potential is set to zero, the PCRF model
is reduced to a classification model learned by PABC. In this case, given the ob-
served image data X, the optimal label configuration Y∗ is found by maximizing
the class posterior. In another word, the optimal label for the ith site is

y∗
i = argmax

yi∈{−1,1}
P (yi|X). (19)

(a) (b) (c)

(d) (e) (f)

Fig. 4. The experimental result on man-made structure detection, the detected building
blocks are marked in red boundary: (a) shows the input image in gray scale; (b) and
(c) are the detection results from PABC with 1 and 5 AdaBoost nodes, respectively;
(d) and (e) are the detection results from PCRF and the original DRF, respectively;
(f) is the the manually labelled result. Please view in color for better visual effect.

Fig. 4 shows the detection result on a testing image. As can be seen from
(b), initially, with one AdaBoost node, PABC can detect almost all the building
blocks, i.e., it has high detection rate, but it also has high false positive rate.
With more AdaBoost nodes, PABC can remove some false positives, as seen from
(c). (d) is the result obtained by PCRF, which shows that the interaction po-
tential further removes the false positives, although there are still false positives
compared to the manually labelled result in (f). (e) shows the result obtained by
the original DRF model3, from which we can see that the original DRF model
has fewer false positives, but it has more false negatives.

Table 1 presents the performance measures of the model with different set-
tings. As we can see, with more AdaBoost nodes, the detection rate decreases,
but the false positive rate also decreases, as a result, the site-wise classifica-
tion error rate decreases monotonically. This is expected because PABC aims
3 The MATLAB toolbox of DRF model for man-made structure detection was down-

loaded from http://www.cs.ubc.ca/∼murphyk/Software/CRF/crf.html
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at minimizing the error rate. The table shows that with the information from
the interaction potential, the PCRF improves the detection rate slightly, but the
false positive rate drops significantly.

Table 1. The numerical evaluation result on 129 testing images: PABC n stands for
PABC with n AdaBoost nodes

Performance Measures PABC 1 PABC 2 PABC 3 PABC 4 PABC 5 PCRF

Detection Rate 94.27% 89.01% 83.33% 77.56% 72.18% 72.64%

False Positive Rate 25.37% 16.18% 11.58% 8.37% 6.23% 3.94%

Site-wise Error Rate 22.84% 15.52% 12.24% 10.18% 9.01% 6.95%

Our final result has better detection rate than that reported in [9], but slightly
worse false positive rate. The reason is that in [9], the parameters for the asso-
ciation potential and for the interaction potential are estimated simultaneously,
while the PCRF model learns the model parameters separately, which might
be a suboptimal strategy. Pursuing learning methods which can estimate the
parameters simultaneously needs more investigation.

6 Conclusions and Future Works

This paper develops the probabilistic version of AdaBoost cascade (PABC),
which outputs a probability value instead of -1/1 value. We use PABC to learn
the association potential in the DRF model, resulting the Probabilistic Cascade
Random Fields (PCRF) model. We applied the proposed model to the task of
man-made structure detection, and compared the performance of PABC with
different settings, the performance of the original DRF model, and the per-
formance of PCRF. Detailed qualitative and quantitative analysis showed that
PABC improves the overall performance with more AdaBoost nodes. With the
information from interaction potential, PCRF further removes some false posi-
tives and fills in some missing parts of the object of interest. Our final result is
comparable to that reported literature.

In this paper, only the association potential is learned by PABC, while the
interaction potential is learned by a simple logistic regression model. Therefore,
the current PCRF model still has limited ability to combine more informative
features in the interaction potential. Our next step is using PABC to learn the
interaction potential. Also, it is desirable to test the proposed approach to other
applications and compare to state-of-the-art results, e.g. face detection [15].
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