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a b s t r a c t

Selecting a subset of genes with strong discriminative power is a very important step in classification

problems based on gene expression data. Lasso and Dantzig selector are known to have automatic

variable selection ability in linear regression analysis. This paper applies Lasso and Dantzig selector to

select the most informative genes for representing the probability of an example being positive as a

linear function of the gene expression data. The selected genes are further used to fit different classifiers

for cancer classification. Comparative experiments were conducted on six publicly available cancer

datasets, and the detailed comparison results show that in general, Lasso is more capable than Dantzig

selector at selecting informative genes for cancer classification.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Since cancer develops a cell’s genetic structure due to mutations
to cells with uncontrolled growth patterns, extensive research has
shown that we can identify cancer by looking at the genetic level
[1,2,13,18,23,24,26,27,32,34,35]. In a microarray study we usually
obtain the expression levels of different genes, based on which the
decision can be made regarding whether or not this is a patient with
cancer.

DNA microarray technique allows us to access the expression
profiles of thousands of genes. However, due to the high cost
of experiments, we usually have a limited number (50–100) of
examples. A classifier built on a small training set with very high
dimension is prone to overfitting. Fortunately, it is well-known
that most genes are irrelevant to the cancer classification problem
[38]. Thus, identifying the genes with strong discriminative power
is an important step to effective classification based on the gene
expression data.

Gene selection methods based on singular value decomposi-
tion [3] or principle component analysis [39] do not use class
label information, thus the selected genes might be less effective
for classification. To select genes with high discriminative power,
most commonly used methods employ class label information,
and assign each gene a score based on how well the expression of
this gene can discriminate different classes and then select the
ll rights reserved.
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genes with high scores. Popular score functions include correla-
tion coefficients [13], fold change [4,23], absolute expression level
[2,18,24,34], standard deviation [5,34], consistency in repeated
data [5,23], correlation coefficient with class labels [24,32],
t/F-statistics [12,21], Wilcoxon’s rank sum test statistics [7,8],
the ratio of between-group over within-group sum square [9],
partial least-squares [21], to name a few.

The aforementioned methods select genes one by one, and
thus share some disadvantages. First, redundant genes may be
selected because the mutual information between genes is not
considered. Second, the interactions between genes are omitted
[9,14]. In order to avoid selecting redundant genes, some methods
have been introduced which can select a set of genes simulta-
neously. For example, Guyon et al. [14] proposed Recursive Feature
Elimination method for Support Vector Machine, which recursively
eliminates irrelevant genes for classification so that the survived
genes are expected to have strong discriminative power.

In regression analysis, it is often very important to identify
informative variables in order to explain the obtained model. In
the ordinary least-square regression, if we impose L1 constraint
on the regression coefficients, some of the regression coefficients
in the model will shrink to zeros, thus we can automatically select
a set of informative variables simultaneously (i.e. the ones with
nonzero coefficients). This technique is called Lasso (least abso-
lute shrinkage and selection operator) [30]. Dantzig selector [6] is
a similar technique for linear regression model: instead of minimiz-
ing the squared error, it minimizes the L1 norm of the gradient
vector of the squared error function. With the L1 constraint on the
regression coefficients, the majority of the estimated regression
coefficients by Dantzig selector are exactly zeros. As such, Dantzig
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selector can also give a set of informative variables for a linear
regression model. The variable selection performances of Lasso and
Dantzig selector were compared in [11,20] for linear regression
model.

This paper conducts an experimental study to compare the
gene selection ability of Lasso and Dantzig selector for cancer
classification. We interpret the class label (0/1) as the probability of
this example being positive, then use Lasso and Dantzig selector to
regress this probability on the gene data, thus simultaneously select
informative genes for expressing the probability of being positive
with the gene expression data by a linear equation. We apply the
selected genes to three linear models: linear regression, linear
support vector machines, and logistic regression. On six publicly
available cancer datasets, we tested the classification performances
based on the selected genes, and the comparison shows that Lasso is
in general more powerful than Dantzig selector at selecting infor-
mative genes. When feeding the selected genes to nonlinear SVM
with Gaussian kernel, we observe the same pattern. Our result about
the gene selection performance of Lasso and Dantzig selector for
cancer classification is consistent with the conclusion in statistics
literature [11,20] for linear regression.
2. Lasso and Dantzig selector for variable selection

Suppose we have dataset fðxi,yiÞ, i¼ 1, . . . ,Ng, with the pre-
dictor xiARp and the response yiAR. Without loss of generality,
we assume the predictors and the response are centered, and the
predictors are standardized, that is

XN

i ¼ 1

yi ¼ 0,
XN

i ¼ 1

xij ¼ 0 and
XN

i ¼ 1

x2
ij ¼ 1: ð1Þ

Consider the linear regression model

y¼ x0bþe,

where b¼ ðb1, . . . ,bpÞ
0 is the vector of regression coefficients.

To fit the linear regression model, the ordinary least-square
(OLS) estimates are obtained by minimizing the residual squared
error, i.e.

b̂OLS ¼ argmin
b

XN

i ¼ 1

ðyi�x0ibÞ
2
¼ argmin

b

JY�XbJL2
,

where Y¼ ðy1, . . . ,yNÞ
0ARN is the response vector, XARN�p is the

design matrix, and J � JL2
represents the L2 norm, i.e., for vector

r¼ ðr1, . . . ,rnÞ
0,

JrJL2
¼
Xn

i ¼ 1

r2
i :

However, when the dimensionality p is large, the OLS estimate
b̂OLS has a large portion of non-zero components, making it
difficult to interpret the obtained model.

2.1. Lasso

Lasso [30] is a technique to fit the linear regression model
which minimizes the residual squared error with a constraint on
the sum of the absolute value of the regression coefficients, i.e.

b̂Lasso ¼ argmin
b

JY�XbJL2
s:t:

Xp

j ¼ 1

9bj9rt: ð2Þ

The Lasso penalty in Eq. (2) shrinks the fitted coefficients b̂

toward zero. If we make t in Eq. (2) small, some of the estimated
coefficients b̂j’s will be exactly zeros. Thus, by tuning the para-
meter t in Lasso, we can automatically select informative vari-
ables (i.e. the ones with nonzero regression coefficients).
Efron et al. [10] proposed Least Angle Regression (LARS) and
derived that Lasso is a special case of LARS with simple modifica-
tion. As analyzed in [10], when there are far more variables than
examples, i.e. pbN, LARS selects at most N variables with OðN3

Þ

operations assuming the training examples are not centralized,
otherwise LARS terminates with N�1 variables. In this paper, we
have far more genes than examples, thus pbN is our interested
scenario, and we will adopt LARS to find the Lasso solution.

2.2. Dantzig selector

The Dantzig selector [6] estimator of the regression coefficient
vector b is the solution to

min
bARp

Xp

j ¼ 1

9bj9 s:t: JX0ðY�XbÞJL1rs, ð3Þ

where J � JL1 represents the L1 norm, i.e., for vector r¼ ðr1, . . . ,rnÞ
0,

JrJL1 ¼ max
1r irn

9ri9:

The optimization in Eq. (3) can be recast as a linear programming
problem [6]:

min
bARp ,uARp

Xp

i ¼ 1

ui ð4Þ

s:t: �urbru and �s1rX0ðY�XbÞrs1, ð5Þ

where u¼ ðu1, . . . ,upÞ
0 with uiZ0, and 1 is a p-dimensional vector

of all ones. The above minimization problem produces a large part
of estimated coefficients to be exactly 0 in a similar fashion as
Lasso and hence can be used as a variable selection tool. Cand�es
and Tao [6] have provided strong theoretical justification for this
property, and the Dantzig selector has shown impressive empiri-
cal performance on simulated data and real world problems
involving large values of p [6,17].

The definition of Dantzig selector can be re-expressed as [11]

b̂DS ¼ argmin
b

JX0ðY�XbÞJL1 s:t:
Xp

j ¼ 1

9bj9rs: ð6Þ

Comparing the minimization problem for Lasso in Eq. (2) and that
for Dantzig selector in Eq. (6), we can see that with the bound on
the absolute sum of the coefficient vector b, Lasso minimizes the
squared error function while Dantzig selector minimizes the max-
imum component of the gradient of the squared error function. The
difference in the problem formulations makes Lasso and Dantzig
selector select different variables, and it is claimed in [11,20] that
Lasso has slight advantage over Dantzig selector on variable selec-
tion for linear regression model. The current paper attempts to
compare the two variable selection methods for pattern classifica-
tion problems.
3. Classifiers

Suppose we have a dataset fðxi,yiÞ, i¼ 1, . . . ,Ng, where xiARp

and yiAf0;1g. The purpose of supervised learning is to fit a
classifier from the training set and apply it to the unseen testing
set. In this paper, we consider three linear classifiers, which
include Linear Regression as Classifier, linear Support Vector
Machines (SVM), and Logistic Regression; we will also apply the
selected genes to nonlinear SVM with Gaussian kernel.

3.1. Linear regression as classifier

In the binary classification problems, similar to [29], we treat
the class label yiAf0;1g as the probability of xi being a positive



Table 1
The information about the datasets.

Dataset DLBCL Leukemia Prostate Colon Lymphoma Estrogen

# of genes 6285 3571 5966 2000 4026 7129

# of positive 19 25 52 22 62 25

# of negative 58 47 50 40 34 24
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example, thus yi can take continuous values in ½0;1�. We then fit a
linear regression model to represent yi (the probability of being
positive) as a linear function of xi. In the testing stage, we apply
the threshold value 0.5 to the predicted value for obtaining the
class label.

We notice that [15] suggests name the class label as yiAf1,�1g
and treat it as continuous variable, and use the sign of the
predicted value as the class label. There is no difference between
the 0/1 labeling system and the 71 naming system in the final
results because there is a linear relation between them. However,
the probabilistic interpretation of the 0/1 labeling system is more
natural and easier to understand.

3.2. Support vector machines

In the formulation of Support Vector Machine (SVM), the class
label is named as yiAf1,�1g for convenience. SVM regards the
linear classifier signðx0wþbÞ as a hyperplane in the p-dimensional
space, and chooses the hyperplane so that the distance from it to the
nearest data point on each side is maximized. If such a hyperplane
exists, it is clearly of interest and is known as the maximum-margin
hyperplane. When the training set is not separable, SVM will choose
a hyperplane that splits the examples as cleanly as possible, while
still maximizing the distance to the nearest cleanly split examples.
The method introduces slack variable xi, which measures the degree
of misclassification of the datum xi. The optimization becomes a
trade-off between a large margin, and a small error penalty. If the
penalty function is linear, the optimization problem becomes

min
w,b,n

1

2
JwJ2

þC
XN

i ¼ 1

xi ð7Þ

s:t: yiðw
0xiþbÞZ1�xi for 1r irN, ð8Þ

where n¼ ðx1, . . . ,xNÞ
0, and C is a parameter to balance the margin

of the hyperplane and the errors made on the training set. The
optimization can be solved by the dual problem via quadratic
programming:

max
a

XN

i ¼ 1

ai�
1

2

XN

i ¼ 1

XN

j ¼ 1

aiajyiyjx
0
ixj ð9Þ

s:t:
XN

i ¼ 1

aiyi ¼ 0 and 0rairC for 1r irN, ð10Þ

where a¼ ða1, . . . ,aNÞ
0 with ai being the Lagrangian multiplier of the

ith constraint in Eq. (8). Finally, the coefficient vector of the linear
classifier can be calculated by

w¼
XN

i ¼ 1

aiyixi,

and b can be estimated from the set of support vectors (with aia0).
Linear SVM can be extended to nonlinear case by using the

kernel trick. Let FðxÞ be the mapped feature vector for x in the
reproducing kernel Hilbert space, and let kðxi,xjÞ ¼FðxiÞ

0FðxjÞ be
the kernel function. Nonlinear SVM is learned by fitting the
following maximization problem:

max
a

XN

i ¼ 1

ai�
1

2

XN

i ¼ 1

XN

j ¼ 1

aiajyiyjkðxi,xjÞ, ð11Þ

with the same constraints as in Eq. (10). The final nonlinear SVM
classifier has the form

ŷ ¼ sign
XN

i ¼ 1

aiyikðxi,xÞþb

 !
,

where ŷ is the predicted label for the testing object x.
3.3. Logistic regression

For a predictor/feature vector x, we can directly model the
posterior probability of the class label yAf0;1g as logistic response
function

pðy¼ 19xÞ ¼
expðw0þx0wÞ

1þexpðw0þx0wÞ
¼ pðx;w0,wÞ:

The log likelihood function of fðxi,yiÞ, i¼ 1, . . . ,Ng is

lðw0,wÞ ¼
XN

i ¼ 1

fyi log pðxi;w0,wÞþð1�yiÞlogð1�pðxi;w0,wÞÞg: ð12Þ

The parameter ðw0,wÞ can be obtained by maximizing the log
likelihood function lðw0,wÞ, and the prediction could be made by
looking at the sign of w0þx0w.
4. Experiments

This section applies Lasso and Dantzig selector to select the
most informative genes for the classifiers introduced in Section 3,
and reports the results on six public cancer datasets.

4.1. The datasets

We perform binary classification on six datasets which include
DLBCL, Leukemia, Prostate, Colon, Lymphoma, and Estrogen. Table 1
summarizes the basic information about the datasets, and we provide
the descriptions of the datasets and the preprocessing procedures as
follows:

DLBCL: The DLBCL dataset [26] contains in total 77 examples in
two classes, diffuse large B-cell lymphomas (DLBCL) and follicular
lymphoma (FL) which have 58 and 19 examples, respectively. The
original dataset contains 7129 genes. We thresholded the inten-
sities at 20 and 16,000 units, then we filtered out genes with
max=minr3 or max�minr100. After preprocessing, we obtained
a dataset with 77 examples and 6285 genes.

Leukemia: This dataset was first presented in [13], which
contains gene expression levels of 72 patients of which 47 with
acute lymphoblastic leukemia (ALL) and 25 with acute myeloid
leukemia (AML). Following the preprocessing strategy in [9], we
processed them by thresholding, filtering, a logarithm transfor-
mation, and standardizing each tissue example to have zero mean
and unit variance across the genes. The processed data finally
contain the expression values of 3571 genes.

Prostate: The Prostate dataset [27] contains in total 102 examples
in two classes, i.e. tumor and normal, which have 52 and 50
examples, respectively. The original dataset contains 12,600 genes.
In our experiment, intensities were thresholded at 100 and 16,000
units. Then we filtered out the genes with max=minr5 or
max�minr50. After preprocessing, we obtained a dataset with
102 examples and 5966 genes. The DLBCL, Leukemia, and Prostate
datasets are available in MATLAB format at http://www.biomedcen
tral.com/1471-2105/7/228/additional/.

Colon: In this dataset, expression levels of 40 tumors and 22
normal colon tissues for 6500 genes were measured using the
Affymetrix gene chip technique. A subset of 2000 genes with

http://www.biomedcentral.com/1471-2105/7/228/additional/
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highest minimal intensity across the examples has been selected
in [2], and the selected subset can be downloaded from http://
microarray.princeton.edu/oncology/affydata/index.html. We further
process the data as in [8]: applying a logarithm transformation and
standardizing each tissue example to have zero mean and unit
variance across the genes.

Lymphoma: The Lymphoma dataset [1] contains 62 malignant
and 34 normal examples, and each example consists of 4026 gene
expression measures. The data are preprocessed to give each
0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of selected genes

Av
er

ag
e 

E
rr

or
 R

at
e

DLBCL dataset, Linear Regression

Lasso
Dantzig Selector

0 10 20
0.05

0.1

0.15

0.2

0.25

0.3

Number of 

Av
er

ag
e 

E
rr

or
 R

at
e

DLBCL d

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of selected genes

Av
er

ag
e 

E
rr

or
 R

at
e

Leukemia dataset, Linear Regression

Lasso
Dantzig Selector

0 10 20
0.05

0.1

0.15

0.2

0.25

0.3

Number of s

Av
er

ag
e 

E
rr

or
 R

at
e

Leukemia 

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of selected genes

Av
er

ag
e 

E
rr

or
 R

at
e

Prostate dataset, Linear Regression

Lasso
Dantzig Selector

0 20
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of s

Av
er

ag
e 

E
rr

or
 R

at
e

Prostate d

0 10 20 30 40 50
0.1

0.15

0.2

0.25

0.3

0.35

Number of selected genes

Av
er

ag
e 

E
rr

or
 R

at
e

Colon dataset, Linear Regression

Lasso
Dantzig Selector

0 10 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of 

Av
er

ag
e 

E
rr

or
 R

at
e

Colon da

Fig. 1. Average testing error curves with the number of selected
feature mean zero and unit standard deviation. This dataset is
made publicly available in MATLAB format by [36] at http://www.
kyb.tuebingen.mpg.de/bs/people/weston/l0/.

Estrogen: The Estrogen dataset was first presented in [35], and
is available at http://data.cgt.duke.edu/west.php. The dataset
contains 7129 gene expression values obtained by applying the
Affymetrix gene chip technique to 49 breast tumor examples. We
thresholded the raw data with a floor of 100 and a ceiling of
16,000 and then applied a logarithm transformation. Finally, each
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genes on the DLBCL, Leukemia, Prostate, and Colon datasets.
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tissue example was standardized to have zero mean and unit
variance across the genes. The response variable describes the
status of the estrogen receptor (ER), and 25 examples are ERþ ,
whereas the remaining 24 examples are ER� .

4.2. Results of linear classifiers

For each dataset, we randomly select 80% of the examples as
training set, and the remaining 20% are used for the testing purpose.
In the gene selection stage, we let the response yi¼1 if the ith
patient has cancer, and yi¼0 otherwise. As discussed in Section 3.1
(also refer to [29]), we understand the response yi as the probability
of the ith example being cancerous. On the training set, we apply
Lasso and Dantzig selector to regress yi on the gene data, which
allow us to select informative genes for expressing the probability of
being cancerous with the gene expression data by a linear equation.
We then feed the expression values of the selected genes to the
training algorithms of the three linear classifiers introduced in
Section 3. In the testing stage, only the expression levels of the
selected genes are used for decision making. The partition-selection-
training-testing process is repeated 100 times.

If Lasso and Dantzig selector pick the same set of genes, the
performances of a specific classifier on the gene set selected by
Lasso and that selected by Dantzig selector are expected to be the
same. In the case of Lasso and Dantzig selector select different
sets of genes, this paper studies which gene set can give us better
classification result, thus compares the gene selection ability of
Lasso and Dantzig selector. To ensure a fair comparison, it is
reasonable to fix free parameters in each classifier, rather than
tuning the parameters to yield the best result on each dataset. In
this paper, we fix the parameter C in SVM as C¼15.

Changing the parameter t for Lasso in Eq. (2) or the parameter
s for Dantzig selector in Eq. (6) can yield different values of the
coefficient vectors, thus enables us to observe the evolution of the
regression coefficients, which is called the solution path [11,20] of
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Fig. 2. Continuing Fig. 1: average testing error curves on the Ly
Lasso or Dantzig selector. Starting with t¼0 or s¼0, i.e., no gene is
selected, we gradually increase the parameters. The continuity of
the solution paths of Lasso and Dantzig Selector [11,20] indicates
that the number of selected genes increases gradually. That is, if
the number of selected genes is fixed, tuning the parameter might
improve the performance of the regression, but cannot change the
selected genes, thus has no effect on the final classification result
because the classifiers are trained on the selected gene set. As
such, it is not necessary to tune the parameter (s or t) as long as
the number of selected genes by Lasso or Dantzig selector is fixed.

For each number of selected genes, we calculate the average
testing error rate for every classifier on each of the six datasets.
Figs. 1 and 2 show the average testing error rate curves of the 100
runs for every classifier on the six datasets. From the figures, we
observe that on particular datasets (e.g. Colon), for particular
classifiers, Dantzig selector has advantage when the number of
selected genes is in a certain range, while in all other cases, Lasso
based classifiers have better performance in terms of average
testing error rate. This shows that in general, compared to Dantzig
selector, Lasso is more efficient at picking informative genes for
linear classifier.
4.3. Results of nonlinear support vector machines

We also ran the experiment in Section 4.2 with nonlinear SVM
with Gaussian kernel function

kðxi,xjÞ ¼ exp �
Jxi�xjJ

2

2s2

 !
,

with s¼ 1. As in the experiments in Section 4.2, we fix the
penalty parameter C¼15 in the nonlinear SVM for a fair compar-
ison to linear SVM. Fig. 3 shows the average testing error curves of
the 100 runs with different number of selected genes. From Fig. 3,
we observe that, same as for linear classifiers, in general, the
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Fig. 3. Average testing error curves of the nonlinear SVM with the number of selected genes on the six datasets.

S. Zheng, W. Liu / Computers in Biology and Medicine 41 (2011) 1033–10401038
genes selected by Lasso are more informative than those selected
by Dantzig selector for nonlinear SVM.

Comparing the testing error curves of nonlinear SVM in Fig. 3
to those of linear SVM in Figs. 1 and 2, we see that for the same
set of selected genes by Lasso or Dantzig selector, on Leukemia
dataset, nonlinear SVM has slightly better performance than
linear SVM, but on other datasets, the performances of the two
types of classifiers are similar.

In summary, from the performance curves on six public datasets
with three linear classifiers and nonlinear SVM, we conclude that in
general, the genes selected by Lasso are more informative than those
selected by Dantzig selector for cancer classification.

4.4. Comparing Lasso and Dantzig selector to elastic net

There are variable selection methods closely related to Lasso,
for example, fused Lasso [31], adaptive Lasso [40], and Elastic net
[41]. Under the assumption in Eq. (1) and assuming the linear
model, these methods could be respectively summarized as

b̂fused ¼ argmin
b

JY�XbJL2
þl1

Xp

j ¼ 1

9bj9þl2

Xp

j ¼ 2

9bj�bj�19, ð13Þ

b̂ada ¼ argmin
b

JY�XbJL2
þl

Xp

j ¼ 1

wj9bj9 ð14Þ

and

b̂Enet ¼ argmin
b

JY�XbJL2
þl1

Xp

j ¼ 1

9bj9þl2

Xp

j ¼ 1

b2
j : ð15Þ

However, it is discussed in [31] that the computational speed of
fused Lasso is a practical difficulty, especially when the parameters
in fused Lasso are determined by 5 or 10-fold cross validation. In the
adaptive Lasso, the weights wj are determined from the ordinary
least-square (OLS) regression [40], however, the OLS might be
unstable in the case of high dimensional data. By using a data
augmentation technique, Elastic net can be solved efficiently in the
framework of LARS [41]. A variation of the Elastic net was proposed
in [19] for genomic data analysis. As such, we experimentally
compare the performance of Elastic net in gene selection.

In the Elastic net formulation Eq. (15), there are two tuning
parameters, l1 and l2. For each fixed l2, we solve an augmented
L1 constrained regression problem using LARS. In our work,
similar to [19], l2 is selected from f0:001,0:01,0:1,1;10,100g by
10-fold cross validation on the training set, and the chosen l2 is
the one giving the smallest cross validation error. For the chosen
l2, we repeat the experiments in Sections 4.2 and 4.3. For
illustration purpose, we performed the experiments on the DLBCL
and Prostate datasets.

Fig. 4 shows the average testing error rate curves of the 100
runs for every linear classifier using the genes selected by Lasso,
Dantzig selector, and Elastic net. From Fig. 4, we observe that in
most cases, Dantzig selector performs worse than Lasso and
Elastic net at picking discriminative genes for linear classifiers,
and the Elastic net performs very similar to Lasso. For Gaussian
kernel SVM, Fig. 5 shows the average testing error curves of the
100 runs with different number of selected genes. For nonlinear
SVM, we observe that, same as for linear classifiers, in general,
Lasso and Elastic net have similar gene selection ability, and both
are more effective than Dantzig selector.

Although Elastic net can be solved by using the time-efficient
LARS algorithm, the optimization problem has a large size due to the
use of augmented data, thus Elastic net takes more time than Lasso.
Furthermore, Elastic net has two parameters, and we employed
cross validation to select l2, which consumes extra time. Overall,
compared to Lasso, Elastic net is more time expensive although they
have the similar gene selection performance.
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Fig. 4. Average testing error curves with the number of selected genes on the DLBCL and Prostate datasets.
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Fig. 5. Average testing error curves with the number of selected genes on the DLBCL and Prostate datasets.
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5. Conclusion and discussion

In linear regression models, Lasso and Dantzig selector impose
upper bound on the L1-norm of the regression coefficients, such that
a part of the regression coefficients are shrunk to zeros, therefore
Lasso and Dantzig selector implicitly perform variable selection. This
paper applies Lasso and Dantzig selector to regress the class label
(which is interpreted as the probability of being positive example)
on the gene expression data, thus selecting informative genes. The
selected genes are further used by different classifiers for the purpose
of cancer classification. On six public cancer datasets, we conducted a
comparative study on the gene selection ability of Lasso and Dantzig
selector. For three linear classifiers and nonlinear SVM, the testing
error rate curves demonstrate that, in general, Lasso is more capable
at selecting informative genes than Dantzig selector.

The result presented in this paper is consistent with the conclu-
sion in the statistics literature [11,20]. However, the researches in
[11,20] study the variable selection performance of Lasso and Dantzig
selector for linear regression model, while this paper compares the
feature selection ability of Lasso and Dantzig selector for pattern

classification problems.
The proposed approach has two distinct stages, i.e., gene selection

then classification. There are strategies which combine feature (gene)
selection and classification in a unified framework by adding the
L1 [22,28,25,33,37] or L1 constraint [16] directly to the classification
models such as logistic regression or support vector machines. By this
way, the classification performance might be improved because the
selected genes the most suited for the specified classifier (e.g., SVM,
logistic regression). This paper chose the two-stage strategy because
we intend to compare the gene selection ability of Lasso and Dantzig
selector in general, not for a particular classifier. Moreover, the two-
stage method is easy to understand and implement. Nevertheless, it
is instructive to compare classification performances of the two-stage
strategy and the unified strategy, and it is part of our future project.
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