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Abstract This paper formulates the quadratic penalty function for the dual problem of
the linear programming associated with the L1 constrained linear quantile regression
model. We prove that the solution of the original linear programming can be obtained
by minimizing the quadratic penalty function, with the formulas derived. The obtained
quadratic penalty function has no constraint, thus could be minimized efficiently by
a generalized Newton algorithm with Armijo step size. The resulting algorithm is
easy to implement, without requiring any sophisticated optimization package other
than a linear equation solver. The proposed approach can be generalized to the quan-
tile regression model in reproducing kernel Hilbert space with slight modification.
Extensive experiments on simulated data and real-world data show that, the proposed
Newton quantile regression algorithms can achieve performance comparable to state-
of-the-art.

Keywords Linear programming · Quadratic penalty function · Armijo step ·
L1 constrained model

1 Introduction

The classical least square regression aims to estimate the conditional expectation of
the response y given the predictor (vector) x, E(y|x). However, it is well known that
the mean value (or the conditional expectation) is sensitive to outliers of the data
set. Therefore, if the data is not homogeneously distributed, we would expect the
traditional least square regression to give us a poor prediction.
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1404 S. Zheng

A τ -th quantile is defined as the value such that there are 100τ % of the data smaller
than it, or a value such that there is 100τ % of mass on the left side of it. Compared to the
mean value, quantile values are more robust to outliers. Moreover, a series of quantile
values can describe the whole data distribution better than a single value (e.g., mean
value) does. For a random variable y, it was proved in Hunter and Lange (2000) that

Qτ = arg min
c

E [ρτ (y − c)] , (1)

where Qτ is the τ -th quantile of the random variable y; ρτ (r) is the so-called “check
function” which is defined as

ρτ (r) =
{

τr, if r > 0
−(1 − τ)r, otherwise

(2)

and here τ ∈ (0, 1) indicates the quantile of interest.
Similar to least square regression, quantile regression (Koenker 2005; Koenker and

Bassett 1978) aims at estimating the conditional quantiles of the response variable
given a predictor variable (or vector). Suppose we are given a set of training data
{(xi , yi ), i = 1, . . . , n}, with input xi ∈ R

p and output yi ∈ R, and the goal is
to recover the τ -th quantile of the response y given the predictor vector x. Assume
we denote the conditional quantile as f (x), which is called quantile regressor. In
accordance with the definition of quantile in Eq. (1), quantile regressor can be estimated
by

f̂ (·) = arg min
f ∈F

n∑
i=1

ρτ (yi − f (xi )) , (3)

where F is the space of all the permissible functions. We assume for the time being
that the space F contains all the linear functions of the predictors, i.e., we estimate the
τ -th quantile by f (x) = x′β + γ , where β ∈ R

p is the coefficient vector and γ ∈ R

is the intercept.
The linear quantile regression model in Eq. (3) can be solved by linear program-

ming algorithms (Koenker 2005; Koenker and Park 1996) or Majorize-Minimize algo-
rithm (Hunter and Lange 2000) which sequentially minimizes an upper bound of the
objective function in Eq. (3). Li et al. (2011) proposed a model for piecewise linear
quantile regression function. The idea of support vector regression was introduced
for fitting quantile regression model, yielding Support Vector Quantile Regression
(SV-QReg) (Hwang and Shim 2005; Li et al. 2007; Takeuchi et al. 2006), which was
applied in Sohn et. al (2008a, b) for microarray analysis. SV-QReg can also estimate
nonlinear quantile regression models or models in high dimensional spaces, but it is
computationally expensive because it needs to solve a quadratic programming prob-
lem. Regression forest was used to estimate the conditional quantiles in Meinshausen
(2006), but as a nonparametric model, the quantile regression forest is not easy to inter-
pret. Langford et al. (2006) proposed to use classification technique in estimating the
conditional quantile. For a given quantile value, their method trains a set of classifiers
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{ct } for a series of t ∈ [0, 1], and the testing stage calculates the average of the outputs
of the classifiers. Therefore, this method is time consuming. For linear models, it is
well known that an L1 constraint on the coefficient vector helps select informative
variables (Tibshirani 1996). Inspired by this idea, the L1-constrained linear quantile
regression (Li and Zhu 2008; Wu and Liu 2009) was proposed, and Li and Zhu (2008)
gives an algorithm which can produce the whole solution path.

To fit the linear quantile regression model, this paper studies the associated linear
programming, and formulates the quadratic penalty function of the dual of the linear
programming. We further prove that the solution to quantile regression model can
be obtained by minimizing the quadratic penalty function with no constraint, and the
explicit formulas are also derived. In order to minimize the quadratic penalty function, a
generalized Newton algorithm with Armijo step size is applied. The proposed Newton
algorithm can be implemented with a few lines of MATLAB code, without requiring
any sophisticated optimization software package other than a linear equation solver.
In addition, with slight modification, the proposed approach can be easily generalized
to fit nonlinear quantile regression model in reproducing kernel Hilbert space.

The proposed approach was tested on various simulated and real-world datasets, and
the results show that the proposed approach performs comparable to state-of-the-art.
Although the penalty function method has been successfully applied to train variants
of Support Vector Machines (Fung and Mangasarian 2004; Mangasarian 2006),1 to
the best of our knowledge, this is the first attempt to apply penalty function method for
fitting quantile regression model, and the resulting algorithms are easy to implement
with performance comparable to state-of-the-art.

The rest of this paper is organized as following: Sect. 1.1 briefly defines the nota-
tions used in this paper; Sect. 2 studies the linear programming associated with linear
quantile regression and formulates the quadratic penalty function of the dual, we
will prove that a linear quantile regression model can be obtained by minimizing
the quadratic penalty function with the explicit formulas derived; Sect. 3 proposes a
generalized Newton algorithm to minimize the quadratic penalty function; the gener-
alization of the proposed approach to kernel quantile regression model is presented
in Sect. 4; Sect. 5 compares the proposed approach to various alternatives via simu-
lated datasets, and Sect. 6 compares the performances of various algorithms on two
real-world datasets; finally, Sect. 7 summarizes this paper.

1.1 Notations

All scalars are represented by lower case letters. All vectors will be denoted by bold
lower case symbols, and all are column vectors unless transposed to a row vector by
a prime superscript ′. All matrices will be denoted by bold upper case symbols. For
two vectors a and b in the n-dimensional real space R

n, a ≥ b means ai ≥ bi for
each i = 1, . . . , n. For a vector x in R

n, ‖x‖ stands for the 2-norm of the vector,

1 The quadratic penalty function was called asymptotic exterior penalty function in Fung and Mangasarian
(2004) and Mangasarian (2006). However, we found that “quadratic penalty function” is a more standard
terminology, see Ruszczyński (2006, Sect. 6.2.2) and Bertsekas (1999, Sect. 4.2.1).
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that is, ‖x‖ =
√

x2
1 + · · · + x2

n . For a vector x in R
n , the plus function x+ is defined

as (x+)i = max{0, xi }, for i = 1, . . . , n. The subgradient of x+ is denoted by x∗,
which is a step function defined as (x∗)i = 1 if xi > 0, (x∗)i = 0 if xi < 0, and
(x∗)i ∈ [0, 1] if xi = 0, for i = 1, . . . , n. Thus, (x∗)i is any value in the interval [0, 1]
if xi = 0, and we typically take (x∗)i = 0.5 in this case.

A column vector of ones (zeros) in k-dimensional space will be denoted by 1k (0k),
and the identity matrix of k-th order will be denoted by Ik . For matrices A ∈ R

m×n and
B ∈ R

n×k , the kernel K (A, B) is a function which maps R
m×n × R

n×k into R
m×k .

In particular, if x and y are column vectors in R
n , then K (x′, y) is a real number,

K (x′, A′) is a row vector in R
m and K (A, A′) is an m × m matrix.

If f is a real-valued function defined on R
n , the gradient of f at x is denoted

by ∇ f (x) which is a column vector in R
n , and the Hessian of f at x is denoted

by ∇2 f (x), which is an n × n matrix. For a piecewise quadratic function f (x) =
1
2‖(Ax − b)+‖2, where A ∈ R

m×n , the gradient vector is ∇ f (x) = A′(Ax − b)+,
which is not differentiable, thus the ordinary Hessian of f does not exist. However, we
can define its generalized Hessian which is the n ×n symmetric positive semi-definite
matrix

∂2 f (x) = A′diag(Ax − b)∗A,

where diag(Ax − b)∗ denotes an m × m diagonal matrix with diagonal elements
(Ai x − bi )∗, for i = 1, · · · , m, where Ai is the i-th row of matrix A. The generalized
Hessian has many of the properties of the regular Hessian in relation to f (x) (Hiriart-
Urruty et al. 1984).

2 Quadratic penalty function for linear quantile regression

Suppose we are given a set of training data {(xi , yi ), i = 1, . . . , n}, with predictor
xi ∈ R

p and response yi ∈ R. Assuming a linear quantile regression function

qτ (x) = x′β + γ,

the problem becomes estimating the regression coefficient vector β ∈ R
p and intercept

γ ∈ R from the training data. Recently, L1 quantile regression model (Li and Zhu 2008;
Wu and Liu 2009) was proposed which imposes an L1 constraint on the coefficient
vector β, i.e.,

min
β,γ

n∑
i=1

ρτ

(
yi − x′

iβ − γ
) + λ

p∑
j=1

|β j |, (4)

with regularization parameter λ ≥ 0. We note that if we set λ = 0 in Eq. (4), we will
recover the ordinary linear quantile regression problem in Eq. (3). Thus, it suffices to
study the problem in Eq. (4).
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The minimization problem in Eq. (4) can be formulated as a linear programming

⎧⎪⎨
⎪⎩

minξ ,ζ ,γ1,γ2,w1,w2 τ1′
nξ+(1 − τ)1′

nζ + λ1′
pw1+λ1′

pw2

s.t. yi −x′
i (w1−w2)−(γ1−γ2)=ξi −ζi for i =1, · · · , n

and ξ ≥ 0n, ζ ≥ 0n, γ1 ≥ 0, γ2 ≥ 0, w1 ≥ 0p, w2 ≥ 0p

(5)

In the formulation of Eq. (5), we decompose the coefficient vector β as

β = w1 − w2, with w1 ≥ 0p, w2 ≥ 0p,

and we also decompose the intercept γ as

γ = γ1 − γ2, with γ1 ≥ 0, γ2 ≥ 0.

To simplify the notations, we rewrite the optimization problem in Eq. (5) in matrix
form as

{
minx̄≥0 c′x̄
s. t. Ax̄ = y,

(6)

with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c =
[
τ1′

n, (1 − τ)1′
n, 0, 0, λ1′

p, λ1′
p

]′
,

x̄ = [
ξ ′, ζ ′, γ1, γ2, w′

1, w′
2

]′
,

A = [In,−In, 1n,−1n, X,−X] ,

y = [y1, . . . , yn]′ ,

where X is the data matrix of size n × p, that is, the i-th row of X is the i-th training
example x′

i .
The dual of the linear programming in Eq. (6) is

{
maxu y′u
s. t. u′A ≤ c′ (7)

where u is the vector of dual variables. We explicitly write the constraint in Eq. (7) as

u′[In,−In, 1n,−1n, X,−X] ≤
[
τ1′

n, (1 − τ)1′
n, 0, 0, λ1′

p, λ1′
p

]
,

in detail, we have

−(1 − τ)1n ≤ u ≤ τ1n, 1′
nu ≤ 0, −1′

nu ≤ 0, −λ1p ≤ X′u ≤ λ1p.
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For the linear programming in Eq. (7), the quadratic penalty function method2

(Ruszczyński 2006, Sect. 6.2.2) solves the following unconstrained minimization
problem

min
u

f (u)

where the quadratic penalty function is

f (u) = −εy′u + 1

2
‖(u − τ1n)+‖2 + 1

2
‖(−u − (1 − τ)1n)+‖2

+ 1

2
(1′

nu)2+ + 1

2
(−1′

nu)2+

+1

2
‖ (

X′u − λ1p
)
+ ‖2 + 1

2
‖ (−X′u − λ1p

)
+ ‖2, (8)

with ε > 0.
Similar to Proposition 2 in Mangasarian (2006), we prove the following property

of the quadratic penalty function:

Proposition 1 There is an ε̄ > 0, such that for any ε ∈ (0, ε̄], minimizing f (u) in
Eq. (8) provides a solution to the L1 constrained linear quantile regression model in
Eq. (6).

Proof Minimizing f (u) in Eq. (8) is equivalent to

min
u,z1,z2,z3,z4,z5,z6

−εy′u + 1

2

(
‖z1‖2 + ‖z2‖2 + z2

3 + z2
4 + ‖z5‖2 + ‖z6‖2

)
(9)

s. t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u + τ1n + z1 ≥ 0

u + (1 − τ)1n + z2 ≥ 0

−1′
nu + z3 ≥ 0

1′
nu + z4 ≥ 0

−X′u + λ1p + z5 ≥ 0

X′u + λ1p + z6 ≥ 0

(10)

The justification for this is that at the minimum of Eq. (9), the variables zi ’s are
nonnegative; otherwise, if any component of these variables is negative, the objective
function can be strictly decreased by setting that component to zero while maintaining
the constraints in Eq. (10) feasibility. Hence, at the minima, we clearly have

z1 = (u − τ1n)+, z2 = (−u − (1 − τ)1n)+ , z3 = (1′
nu)+, (11)

and

z4 = (−1′
nu)+, z5 = (

X′u − λ1p
)
+ , z6 = (−X′u − λ1p)+. (12)

2 The penalty function method in optimization explicitly absorbs the constraints, such that an unconstrained
optimization problem is obtained.
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Applying Lagrange multiplier method with nonnegative multipliers μ1, . . . ,μ6 for
the six constraints in Eq. (10), we have the Lagrange function

L(u, z1, . . . , z6,μ1, . . . ,μ6) = −εy′u+ 1

2

(
‖z1‖2+‖z2‖2+z2

3+z2
4+‖z5‖2+‖z6‖2

)

−μ′
1 (−u+τ1n +z1) − μ′

2 (u + (1 − τ)1n + z2)

−μ3
(−1′

nu + z3
) − μ4

(
1′

nu + z4
)

−μ′
5

(−X′u + λ1p + z5
) − μ′

6

(
X′u + λ1p + z6

)
.

At the minimum of L , we must have

∂L

∂u
= 0 ⇒ −εy + μ1 − μ2 + μ31n − μ41n + Xμ5 − Xμ6 = 0, (13)

and

∂L

∂zi
= 0 ⇒ μi = zi ≥ 0, for i = 1, · · · , 6.

Substituting the above relations to L , we get the Wolfe dual function as

W = −(μ1 − μ2 + μ31n − μ41n + Xμ5 − Xμ6)
′u

+ 1

2

(
‖μ1‖2 + ‖μ2‖2 + μ2

3 + μ2
4 + ‖μ5‖2 + ‖μ6‖2

)

−μ′
1(−u + τ1n + μ1) − μ′

2(u + (1 − τ)1n + μ2)

−μ3
(−1′

nu + μ3
) − μ4

(
1′

nu + μ4
)

−μ′
5

(−X′u + λ1p + μ5
) − μ′

6

(
X′u + λ1p + μ6

)
= − 1

2

(
‖μ1‖2 + ‖μ2‖2 + μ2

3 + μ2
4 + ‖μ5‖2 + ‖μ6‖2

)

−
[
τ1′

nμ1 + (1 − τ)1′
nμ2 + 0 · μ3 + 0 · μ4 + λ1′

pμ5 + λ1′
pμ6

]
.

The Wolfe dual problem is to maximize W with respect to the nonnegative Lagrange
multipliers μi ’s with the constraint in Eq. (13), which is clearly equivalent to

min
μ1,...,μ6

1

2

(
‖μ1‖2 + ‖μ2‖2 + μ2

3 + μ2
4 + ‖μ5‖2 + ‖μ6‖2

)

+
[
τ1′

nμ1 + (1 − τ)1′
nμ2 + 0 · μ3 + 0 · μ4 + λ1′

pμ5 + λ1′
pμ6

]
(14)

s. t.

{
−εy + μ1 − μ2 + μ31n − μ41n + Xμ5 − Xμ6 = 0

μi ≥ 0 for i = 1, · · · , 6
(15)

Let

v = [
μ′

1,μ
′
2, μ3, μ4,μ

′
5,μ

′
6

]′
,
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1410 S. Zheng

and recall that

c =
[
τ1′

n, (1 − τ)1′
n, 0, 0, λ1′

p, λ1′
p

]′
and A = [In,−In, 1n,−1n, X,−X] .

With these notations, the minimization problem in Eqs. (14) and (15) can be rewritten
as

{
minv≥0

1
2‖v‖2 + c′v

s. t. Av = εy
(16)

Define w̄ = v/ε, then Eq. (16) becomes

{
minw̄≥0 c′w̄ + 1

2ε‖w̄‖2

s. t. Aw̄ = y
(17)

We notice that the minimization problem in Eq. (17) is the perturbed problem of
Eq. (6). By the perturbation theory of linear programming (Mangasarian and Meyer
1979), there exists ε̄ > 0, such that for ε ∈ (0, ε̄], the solution of the perturbed problem
in Eq. (17) is the solution of the original problem in Eq. (6).

From the above derivation, clearly, minimizing Eq. (8) results in u, which could
be used for calculating zi ’s by Eqs. (11) and (12). Further, μi = zi , which gives w̄, a
solution to the original L1 constrained linear quantile regression problem in Eq. (6).
Thus, the claim in the Proposition is established. 
�

Based on the conclusion of Proposition 1, and using the corresponding relationship
between components of w̄ (or v) in Eq. (17) and those of x̄ in Eq. (6), it is not difficult
to derive that, as ε small enough,

ξ = μ1/ε = (u − τ1n)+/ε, ζ = μ2/ε = (−u − (1 − τ)1n)+ /ε, (18)

γ1 = μ3/ε = (1′
nu)+/ε, γ2 = μ4/ε = (−1′

nu)+/ε, (19)

and

w1 = μ5/ε = (
X′u − λ1p

)
+ /ε, w2 = μ6/ε = (−X′u − λ1p

)
+ /ε. (20)

We summarize the above results as

Proposition 2 There is an ε̄ > 0, and let u be the solution to the quadratic penalty
function minimization problem in Eq. (8) for any ε ∈ (0, ε̄]. Then u provides a solution
to the L1 constrained linear quantile regression model with

β = w1 − w2 = (
X′u − λ1p

)
+ /ε − (−X′u − λ1p

)
+ /ε, (21)

and
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γ = γ1 − γ2 = (1′
nu)+/ε − (−1′

nu)+/ε = 1′
nu/ε. (22)

In Eq. (22), we used the relation3 (a)+ − (−a)+ = a for any a ∈ R.

3 The generalized Newton algorithm

As derived in Eqs. (21) and (22), the problem is summarized as solving for u by
minimizing the function f (u) defined in Eq. (8). For its simplicity, we choose to use
Newton’s method to minimize f (u). In each iteration, Newton’s algorithm searches
for the optimal point in the direction of −(∇2 f (u))−1∇ f (u).

It is easy to find the gradient vector of f (u) as

∇ f (u) = −εy + (u − τ1n)+ − (−u − (1 − τ)1n)+
+ 1n(1′

nu)+ − 1n(−1′
nu)+ + X(X′u − λ1p)+ − X

(−X′u − λ1p
)
+

= −εy + (u − τ1n)+ − (−u − (1 − τ)1n)+ + 1n(1′
nu)

+ X
[(

X′u − λ1p
)
+ − (−X′u − λ1p

)
+
]
. (23)

The regular Hessian of f (u) does not exist because the plus function in Eq. (23) is not
differentiable, but the generalized Hessian of f (u) is calculated as

∂2 f (u) = diag (u − τ1n)∗ + diag (−u − (1 − τ)1n)∗ + 1n1′
n

+ Xdiag(X′u − λ1p)∗X′ + Xdiag
(−X′u − λ1p

)
∗ X′

= diag(u − τ1n)∗ + diag (−u − (1 − τ)1n)∗ + 1n1′
n

+ X
[
diag

(|X′u| − λ1p
)
∗
]

X′, (24)

where Eq. (24) follows from Eq. (25) (Please refer to “Appendix” for the proof)

(a − λ)∗ + (−a − λ)∗ = (|a| − λ)∗, with λ ≥ 0 and any a ∈ R. (25)

Furthermore, we can prove

Proposition 3 The generalized Hessian defined in Eq. (24) is semi-positive definite.

Proof By definition, for any r ∈ R, (r)∗ ≥ 0. Therefore, the matrices diag(u −
τ1n)∗, diag(−u−(1−τ)1n)∗, and diag(|X′u|−λ1p)∗ all have non-negative elements
on the diagonal, thus all of them are semi-positive definite.

For any vector a ∈ R
n ,

a′1n1′
na = (a′1n)2 ≥ 0

3 This relation is easy to check: if a > 0, (a)+ = a while (−a)+ = 0; if a < 0, (a)+ = 0 and
(−a)+ = −a. Therefore, for any a ∈ R, we always have (a)+ − (−a)+ = a.
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and

a′X
[
diag(|X′u| − λ1p)∗

]
X′a = (a′X)

[
diag(|X′u| − λ1p)∗

]
(a′X)′ ≥ 0

since the matrix diag(|X′u| − λ1p)∗ is semi-positive definite.
This completes the proof. 
�

Since the generalized Hessian has similar properties as the regular Hessian (Hiriart-
Urruty et al. 1984), in the proposed algorithm, we update the solution in the direction of
−(∂2 f (u)+δIn)−1∇ f (u), and we call the resulting algorithm as generalized Newton
algorithm. Here δ is a small positive number and In is n × n identity matrix. The term
δIn is added to the generalized Hessian to make the resulting matrix invertible.

The generalized Hessian ∂2 f (u) is an n × n matrix, where n is the number of
training examples. Let p stand for the dimensionality of the data. If n � p, inverting
∂2 f (u) + δIn is prune to error due to the finite precision of floating-point numbers,
and it is time consuming since the inverting operation has time complexity of O(n3).
In this case, we can employ the Sherman–Morrison–Woodbury identity4 as follows,
define

E2 = diag
(|X′u| − λ1p

)
∗ ,

H = [XE, 1n] ,

and

F = diag (u − τ1n)∗ + diag (−u − (1 − τ)1n)∗ + δIn .

It follows that

∂2 f (u) + δIn = HH′ + F.

Applying the Sherman–Morrison–Woodbury identity, yields

(∂2 f (u) + δIn)−1 = (HH′ + F)−1

= F−1 − F−1H(Ip+1 + H′F−1H)−1H′F−1. (26)

Note that inverting the n × n matrix F is trivial since F is diagonal; and the matrix
Ip+1 + H′F−1H is a (p + 1) × (p + 1) matrix, whose inverse is easier to calculate
since n � p.

4 The matrix identity is (A + UCV)−1 = A−1 −A−1U
(

C−1 + VA−1U
)−1

VA−1, where A, U, C, and

V denote matrices of appropriate sizes. If A−1 is easy to calculate and C has a much smaller dimension
than A, using this formula is more efficient than inverting A + UCV directly. See Higham (2002) for more
details.
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We summarize the generalized Newton algorithm for fitting linear quantile regres-
sion model as following:5

Algorithm 1: Generalized Newton Algorithm for Linear Quantile Regression

0. Given the training data {(xi , yi ), i = 1, · · · , n} with xi ∈ R
p and yi ∈ R, the desired quantile value

τ , and the regularization parameter λ; reformulate the data matrix X and the response vector y.
1. Set the parameters ε, δ, error tolerance tol, and the maximum number of iteration M .
2. Define function f (u) as in Eq. (8), and its gradient vector and generalized Hessian matrix as in Eq.

(23) and Eq. (24), respectively.
3. Initialize any u0 ∈ R

n

4. for i = 1 to M do:

5. Calculate the Newton direction di = −
(
∂2 f (ui−1) + δIn

)−1  f (ui−1).

6. Update the vector u by ui = ui−1 + ηi di , where ηi is the step size at the i-th iteration.
7. Stop if ‖ui − ui−1‖ ≤ tol.
8. end for
9. Define the estimated quantile regression function by Eqs. (21) and (22).

In the 5th step of Algorithm 1, when n � p, the Sherman–Morrison–Woodbury
identity in Eq. (26) is invoked for more efficient computation. In the 6th step, the step
size ηi could be chosen as

ηi = arg min
η>0

f
(

ui−1 + ηdi
)
. (27)

The minimization problem in Eq. (27) can be solved by backtracking line search
algorithms (Boyd and Vandenberghe 2004, Chap. 9). We choose to use Armijo rule
(Armijo 1966) for its simplicity, which is given in Algorithm 2 for completeness.

Algorithm 2: Armijo Rule to Determine a Step Size

0. Given the objective function f (u), its gradient ∇ f (u), the current estimation uc, and the search
direction d.

1. Initialize η = 1.
2. Calculate D = f (uc + ηd) − f (uc).
3. If D ≤ η

4 ∇ f (uc)
′d, return the current η as the step size; otherwise, set η = η/2, and go back to step

2.

About the convergence of Algorithm 1, we have

Remark 1 Let tol = 0, M = ∞, and ε > 0 sufficiently small. By the results of
penalty function method (Bertsekas 1999; Ruszczyński 2006), each accumulation
point ū of the sequence {ui } generated by the generalized Newton algorithm in Algo-
rithm 1 is a solution to the quadratic penalty problem.

5 Algorithm 1 is similar in spirit to an algorithm for Support Vector Machine studied in Fung and Man-
gasarian (2004), which is for pattern recognition problem, while our proposed algorithm is for regression
problem.
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The following remark is with regard to the parameter setting in Algorithm 1:

Remark 2 Theoretically, it is not an easy task to determine the size of ε such that the
solution u of minimizing Eq. (8) yields a satisfactory linear quantile regression model.
However, computationally, this does not seem to be critical. As we observed in our
experiments, the testing errors are very close if ε is less than 0.01. The parameter tol
in Algorithm 1 was usually set as 10−3 in our experiments. We can set the iteration
number M as a large number, but we observed empirically that the algorithm usually
converges in 50 iterations.

4 Generalize to kernel quantile regression

Suppose that the quantile regression function lies in a reproducing kernel Hilbert space,
then according to the representation theorem (Kimeldorf and Wahba 1971), it could
be written as

qτ (x) = γ +
n∑

i=1

βi K (x′, xi ), (28)

where K (·, ·) is the kernel function. In Hwang and Shim (2005), a method based on
support vector regression was introduced to fit the kernel quantile regression model.
This method is easy to implement based on the readily available SVM toolboxes6

(Chang and Lin 2011; Gunn 1997; Joachims 1999). However, Hwang and Shim (2005)
actually did not impose any constraint on the regression coefficients. While Li et al.
(2007) proposed a kernel quantile regression model with the ridge constraint on the
regression coefficients in the reproducing kernel Hilbert space.

The basic idea of kernel machine (e.g., support vector machine, support vector
regression) is to achieve sparsity in the sample space, that is, we want a large part of
the coefficients βi ’s in Eq. (28) to be 0. As such, we impose an L1 constraint on the
coefficients βi ’s in Eq. (28). Thus, a sparse quantile regression model in reproducing
kernel Hilbert space can be obtained by solving the following optimization problem

min
β,γ

n∑
i=1

ρτ

⎛
⎝yi −

n∑
j=1

β j K (x′
i , x j ) − γ

⎞
⎠ + λ

n∑
i=1

|βi |, (29)

where λ ≥ 0 is a regularization parameter.
Comparing Eqs. (4) and (29), it is clear that the optimization problem for kernel

quantile regression in Eq. (29) can be obtained by replacing the vector xi in Eq. (4)
by the n × 1 vector

(
K (x′

i , x1), K (x′
i , x2), . . . , K (x′

i , xn)
)′

.

6 In our implementation, which is based on the toolbox from Gunn (1997), we assign a very large value
(e.g., 5,000) to the penalty parameter C in support vector regression.
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This clearly indicates that we can fit the kernel quantile regression model by the method
developed in Sects. 2 and 3 with only slight modification. Explicitly, we just make the
following replacement in the definition of function f (u) in Eq. (8):

X → K (X, X′).

We also notice that if we set λ = 0, we will get a kernel quantile regression model
without any constraint, which is similar to the model given by Hwang and Shim (2005).

Computationally, the methods in Hwang and Shim (2005) and Li et al. (2007) need
to solve a quadratic programming problem, while the proposed method only needs to
solve a linear equation in each iteration (refer to the detailed algorithm in Sect. 3).
Thus, the proposed kernel quantile regression is expected to be more computationally
efficient.

5 Simulation studies

This section compares the proposed algorithms to alternatives on various simulated
datasets. The tested algorithms include the quantile regression algorithm implemented
based on an interior point method (IP-QReg) (Koenker 2005; Koenker and Park 1996),
Majorize-Minimize based quantile regression (MM-QReg) (Hunter and Lange 2000),
the support vector quantile regression (SV-QReg) (Hwang and Shim 2005) with linear
kernel, the quantile regression forest (QReg Forest) (Meinshausen 2006), and the
proposed Newton quantile regression (N-QReg). We also compare the performance
of the proposed Newton kernel QReg to the kernel QReg model in Li et al. (2007). In
N-QReg, the parameter ε is fixed at 0.01.

As a comparison to state-of-the-art, we also test the performance of the quan-
tile regression function rq in the R package “quantreg”; for the L1 con-
strained model, we use function rq with option method=“lasso”, please refer
to the document at http://stuff.mit.edu/afs/athena/software/r_v2.14.1/lib/R/library/
quantreg/html/rq.fit.lasso.html for more details and examples. The L1 constrained
quantile regression model was initially proposed in Li and Zhu (2008), and their
method produces the whole solution path, that is, the solutions for all possible λ.
Since our method fits the model for a particular λ, it is not fair to compare to Li and
Zhu (2008). As such, we choose to compare to the function in the R package.

All the experiments presented in Sects. 5 and 6 were performed on a personal
computer with Pentium IV CPU 3.00 GHz and 1.00 GB memory, with WinXP operat-
ing system. The IP-QReg and MM-QReg were implemented based on the MATLAB
code downloaded from http://www.stat.psu.edu/~dhunter/code/qrmatlab/. The SV-
QReg was implemented based on the MATLAB SVM toolbox of Gunn (1997) with
the quadratic programming solver from the C++ version of LIBSVM (Chang and Lin
2011). QReg Forest was implemented based on the R package“quantregForest”.
The proposed N-QReg and L1 N-QReg were implemented using MATLAB, without
particular code optimization. In our experiments, we used MATLAB� R2007b and
R 2.10.1.
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Let the true τ -th quantile function be qτ (x) and the estimated τ -th quantile func-
tion be q̂τ (x). The performance of the fitted model on the testing set {(xi , yi ), i =
1, . . . , Ntest} is evaluated by the mean absolute deviation which is defined as

Mean Absolute Deviation = 1

Ntest

Ntest∑
i=1

|qτ (xi ) − q̂τ (xi )|. (30)

To select the parameter λ in all the L1 constrained models (i.e., the proposed method
and the R function), we pretend that the true quantile function is not available in
the simulations, and select the model parameter which minimizes the average of the
“check loss” on the validation set {(xi , yi ), i = 1, · · · , Nval}, which is defined as

L(τ, λ) = 1

Nval

Nval∑
i=1

ρτ

(
yi − q̂τ,λ(xi )

)
, (31)

and select

λ̂ = arg min
λ>0

L(τ, λ). (32)

We first compare the prediction accuracy of the proposed algorithms to those of
alternative methods by Simulation 1; the second simulation studies the variable selec-
tion ability of the proposed method in the case of high dimension but small sample
size; in Simulation 3, we study the performance of various algorithms in the case of
heteroscedastic error terms; finally, Simulation 4 compares the performance of differ-
ent kernel quantile regression models. For every algorithm, in each iteration, we used
the same training set, the same validation set (if necessary), and the same testing set,
in order to make the comparison fair.

Simulation 1 (Comparing the prediction accuracy of various methods) We generate
data according to the model

y = x′b + σε, (33)

with b = (3, 1.5, 0, 0, 2, 0, 0, 0)′ and x ∼ N (0,�8×8). The pairwise correlation
between xi and x j is given by r |i− j | with r = 0.5. The error term ε follows standard
normal distribution. We choose σ = 2, resulting the signal-to-noise (S/N) ratio about
5. The S/N ratio is defined as var(b′x)/var(σε). This model was considered in many
works, for example, in Li and Zhu (2008) and Wu and Liu (2009), among others.

We generate 100 training examples and 10,000 testing examples from the model
in Eq. (33). The performance of the fitted model on the testing set is evaluated by the
mean absolute deviation defined in Eq. (30). Under the assumption of Eq. (33), the
true τ -th quantile function can be written out explicitly as

qτ (x) = x′b + σ QNorm
τ ,
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Table 1 The performances of QReg Forest, IP-QReg, SV-QReg, MM-QReg, the QReg function in the R
package, and the proposed N-QReg models

Method QReg Forest IP-QReg SV-QReg MM-QReg QReg R N-QReg

τ = .25 1.801 (.169) .642 (.166) .642 (.166) .640 (.163) .642 (.166) .628 (.161)

τ = .50 1.604 (.149) .612 (.128) .612 (.128) .609 (.127) .612 (.128) .596 (.123)

τ = .75 1.747 (.172) .632 (.178) .632 (.178) .632 (.177) .632 (.178) .623 (.174)

Listed are the mean values of the Mean Absolute Deviation of the 100 runs, and the standard deviations are
listed in parentheses. The best performance is marked in bold

Table 2 The performances of L1 Newton QReg and the L1 QReg function in R package on the data in
Simulation 1

τ Method Test error # of trimmed variables

Correct Wrong

.25 L1 N-QReg .556 (.150) 4.79 (0.43) 0.00 (0.00)

L1 QReg (R) .506 (.143) 4.74 (0.50) 0.00 (0.00)

.50 L1 N-QReg .500 (.136) 4.83 (0.40) 0.00 (0.00)

L1 QReg (R) .487 (.128) 4.78 (0.44) 0.00 (0.00)

.75 L1 N-QReg .552 (.153) 4.79 (0.43) 0.00 (0.00)

L1 QReg (R) .489 (.149) 4.73 (0.47) 0.00 (0.00)

For three τ values, the mean values of the Mean Absolute Deviation of the 100 runs are shown with the
standard deviations listed in parentheses. The means and standard deviations of the number of correctly
and mistakenly trimmed variables are listed as measures of variable selection performance

where QNorm
τ is the τ -th quantile of the standard normal distribution.

We use the considered methods (except for QReg Forest) to fit a linear model for
three τ values (0.25, 0.50, and 0.75). The generating-training-testing procedure was
repeated 100 times. For every τ and each algorithm, we report the average and standard
deviation of the obtained 100 mean absolute deviations in Table 1.

From Table 1, we observe that, QReg Forest performs the worst because the under-
lying true model is linear. SV-QReg, IP-QReg, MM-QReg, and the QReg function in
R package perform similarly in terms of mean absolute deviation, while Newton QReg
without L1 constraint yields slightly smaller mean testing error with smaller standard
deviations.

To test the performance of the L1 constrained models, we generate an independent
validation set of size 10,000 from the model in Eq. (33), and select the parameter λ

which minimizes the check loss function on the validation set. L1 constrained model is
known for being able to select informative variables (Tibshirani 1996). In the obtained
linear model, we calculate the sum of the absolute values of all the estimated coeffi-
cients. If the absolute value of the estimated coefficient of a predictor is less than 1 %
of the total sum, that means the contribution of this variable to the model is small, thus
it could be trimmed out. We calculate the average numbers of correctly and mistakenly
deleted predictors to measure the variable selection performance.
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We test the performance of the developed L1 Newton QReg and the L1 QReg
function in the R package, and list the testing errors and variable selection measure
in Table 2. By comparing to the testing errors in Table 1, we observe that the L1 con-
strained models achieve more precise prediction. The reason is that the L1 constraint
helps remove the effect from the noisy predictors by utilizing information from the
(large) validation set. Table 2 shows that, compared to the function from the R pack-
age, the L1 Newton QReg has slightly worse performance in testing accuracy while
slightly better performance in variable selection, we thus can say that overall, they
perform on the same level.

Simulation 2 (Dimensionality larger than the sample size) In this simulation, we
generate data from the model given in Eq. (33), and augment the predictor vector with
92 noisy variables x9, x10, . . . , x100, each of which is generated independently from
standard normal distribution. The training set consists of 50 examples, in this way, the
dimensionality of the data is much larger than the training sample size, which makes the
estimation more difficult. For the purpose of parameter selection in the L1 constrained
model, we generate an independent validation set of size 10,000 from the same model.
In the L1 constrained linear quantile regression model, the regularization parameter λ

is selected by minimizing the check loss on the validation set. The testing set consists
of 10,000 examples. In this experiment, most of the predictors have no contribution
to the response, therefore, it is desirable to identify the informative predictors (i.e.,
x1, x2, and x5) and suppress the noisy ones. In order to make the estimation possible,
we set the parameter σ in Eq. (33) as σ = 1. We adopt the same variable selection
rule and performance measure as in Simulation 1.

For three τ values (0.25, 0.5, and 0.75), the experiment was repeated 100 times,
for several considered alternative quantile regression algorithms.7 Table 3 presents the
performance measures. It is not clear how to identify noninformative predictors by the
QReg Forest, thus the variable selection result of QReg Forest is not reported.

From Table 3, we notice that SV-QReg and Newton QReg without L1 constraint
only delete about 60 % of the 97 noisy variables in all the situations. We would expect
that the undeleted noisy variables degrade the performance of the models, as shown
in Table 3 that the prediction accuracies are very poor. With L1 constraint, Newton
QReg deletes about 93 % of the noninformative variables in average, which is the
best in the considered methods. We also notice that the L1 constraint also prevents us
from deleting the informative predictors, as the average number of mistakenly deleted
variables is 0. The variable selection ability of the L1 constrained models enable us
to yield far better prediction accuracy, as shown in Table 3. We finally observe that on
this dataset, the proposed method performs better than the R function in terms of both
prediction accuracy and the variable selection ability.

7 In IP-QReg and MM-QReg algorithms, there is a step which needs to invert a p × p matrix, whose rank is
at most n, where p is the dimensionality of the data, and n is the training set size. When the dimensionality
is greater than the sample size (p > n), the matrix is not invertible, thus the downloaded software package
for IP-QReg and MM-QReg gives error message. Therefore, the performances of IP-QReg and MM-QReg
are not provided.
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Table 3 The performance of
several algorithms on datasets
with dimensionality larger than
the sample size

The best performance is marked
in bold

τ Method Test error # of trimmed variables

Correct Wrong

.25 QReg Forest 2.986 (0.255) NA NA

SV-QReg 2.318 (0.190) 55.27 (2.86) 0.98 (0.82)

N-QReg 2.283 (0.177) 56.91 (2.93) 0.86 (0.79)

L1 N-QReg 0.540 (0.163) 91.09 (2.57) 0.00 (0.00)

L1 QReg (R) 0.785 (0.138) 83.07 (2.72) 0.00 (0.00)

.50 QReg Forest 2.345 (0.259) NA NA

SV-QReg 2.254 (0.181) 63.55 (3.06) 0.00 (0.00)

N-QReg 2.218 (0.177) 63.80 (3.16) 0.00 (0.00)

L1 N-QReg 0.504 (0.111) 89.40 (2.64) 0.00 (0.00)

L1 QReg (R) 0.807 (0.125) 79.85 (2.59) 0.00 (0.00)

.75 QReg Forest 2.861 (0.259) NA NA

SV-QReg 2.319 (0.197) 55.76 (2.61) 0.75 (0.64)

N-QReg 2.285 (0.177) 56.88 (3.06) 0.62 (0.60)

L1 N-QReg 0.536 (0.131) 90.76 (2.84) 0.00 (0.00)

L1 QReg (R) 0.775 (0.111) 82.93 (2.38) 0.00 (0.00)

Simulation 3 (Heteroscedastic random errors) This experiment considers the case of
heteroscedastic random errors to check the robustness of our method. Following Wu
and Liu (2009), we generate data from the model

y = 1 + x1 + x2 + x3 + (1 + x3)ε, (34)

where x1 and x3 are respectively generated from the standard normal distribution and
the uniform distribution on [0, 1], x2 = x1 + x3 + z with z being standard normal,
and ε ∼ N (0, 1). The variables x1, x3, z, and ε are mutually independent. To study
the effect of variable selection, we include five more standard normal noisy variables,
x4, . . . , x8, independent of each other.

The generating-training-testing process was repeated 100 times with training set
size 100, validation set size 10,000, and testing set size 10,000. Table 4 shows the
testing accuracy of several considered methods, measured in terms of mean absolute
deviation. The results once again indicate that the proposed Newton Qreg algorithm
yields similar performance to several alternatives.

We also compared the performances of the L1 Newton QReg and the L1 constrained
QReg function in R package, in terms of prediction accuracy and variable selection
ability. We adopt a strategy similar to Simulation 1 for variable selection, and the
results are given in Table 5. First of all, by comparing Tables 4 and 5, we clearly
observe that the L1 constraint has helped improve the prediction accuracy signifi-
cantly due to suppressing the noisy predictors. Table 5 shows that, compared to the L1
QReg function in R package, the proposed L1 Newton QReg achieves slightly greater
testing errors; however, it correctly deletes more uninformative variables. Thus, we
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Table 4 The testing error of QReg Forest, IP-QReg, SV-QReg, MM-QReg, the proposed Newton QReg,
and the QReg function in R package on the dataset with heteroscedastic error terms

Method QReg Forest IP-QReg SV-QReg MM-QReg N-QReg QReg R

τ = .25 .699 (.091) .496 (.124) .496 (.124) .493 (.120) .489 (.117) .496 (.124)

τ = .50 .683 (.089) .460 (.126) .460 (.126) .457 (.126) .452 (.125) .460 (.126)

τ = .75 .768 (.102) .502 (.126) .502 (.126) .502 (.126) .494 (.129) .502 (.126)

Table 5 The performances of
L1 Newton QReg and the L1
QReg in R package on the data
in Simulation 3

τ Method Test error # of trimmed variables

Correct Wrong

.25 L1 N-QReg .411 (.139) 2.08 (1.14) 0.53 (0.50)

L1 QReg (R) .362 (.114) 1.93 (0.98) 0.59 (0.49)

.50 L1 N-QReg .405 (.114) 2.01 (1.16) 0.34 (0.48)

L1 QReg (R) .376 (.110) 1.77 (1.12) 0.22 (0.41)

.75 L1 N-QReg .458 (.130) 1.98 (1.24) 0.20 (0.40)

L1 QReg (R) .421 (.126) 1.63 (1.18) 0.05 (0.22)

can say that the two L1 constrained models have similar overall performances. In this
simulation, both of the algorithms produce more wrong zero coefficients in the final
model, compared to Simulation 2. A possible reason is that x2 is highly correlated
with x1 and x3 through x2 = x1 + x3 + z. Nevertheless, it is clear that the L1 con-
strained algorithm can result in a sparse model and improve the prediction accuracy
significantly.

Simulation 4 (Kernel quantile regression models) In order to test the performances
of various kernel quantile regression models, we generate data according to

y = 40 exp
[
8
(
(x1 − 0.5)2 + (x2 − 0.5)2

)]

×
(

exp
[
8
(
(x1 − 0.2)2 + (x2 − 0.7)2

)]

+ exp
[
8
(
(x1 − 0.7)2 + (x2 − 0.2)2

)])−1 + ε, (35)

where x1 and x2 are generated from uniform distribution over (0, 1); we consider two
different distributions for the error term ε: standard normal distribution and standard
Laplace distribution (i.e., double exponential distribution). The model in Eq. (35) was
given in Yuan (2006) and was also studied in Li et al. (2007).

With the model in Eq. (35), we generate 200 training examples associated with
each error distribution, along with 10,000 observations for validation and 10,000 for
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Table 6 Under different error terms, the performances of the SV-QReg, kernel QReg of Li et al. (2007),
and the proposed Newton kernel QReg with and without L1 constraint

Method Newton L1
K-QReg

Newton
K-QReg

SV-QReg Li et al. (2007)

Normal τ = .1 .366 (.060) .506 (.073) .816 (.075) .478 (.072)

τ = .3 .309 (.048) .354 (.047) .685 (.079) .368 (.052)

τ = .5 .295 (.046) .331 (.040) .655 (.079) .348 (.048)

Laplace τ = .1 .418 (.069) .482 (.064) .842 (.082) .672 (.114)

τ = .3 .261 (.039) .289 (.040) .609 (.076) .423 (.061)

τ = .5 .228 (.035) .263 (.036) .555 (.068) .355 (.060)

Listed are the mean values of the Mean Absolute Deviation of the 100 runs, and the standard deviations are
listed in parentheses

Table 7 Under Normal error and Laplace error, the sparsity of the model obtained by the Newton kernel
QReg with L1 constraint

Error term τ = 0.1 τ = 0.3 τ = 0.5

Normal 168.31 (17.88) 168.15 (25.19) 168.09 (24.70)

Laplace 171.81 (6.90) 167.15 (18.08) 163.95 (29.77)

For each of the tested τ value, we list the average number of zero coefficients in model (28) with the standard
deviation listed in parentheses

testing purpose. In all the algorithms, we used the radial basis kernel

K (u, v) = exp

{
−‖u − v‖2

2σ 2

}

with σ = 0.2, which is with the same setting as in Li et al. (2007).
For each of the two error distributions, we compare the performance of our proposed

Newton kernel QReg with and without L1 constraint, the SV-QReg of Hwang and Shim
(2005), and the kernel QReg of Li et al. (2007). Similar to Li et al. (2007), we consider
three different values for τ : 0.1, 0.3, and 0.5. For the models with L1 constraint, we
select the parameter λ that minimizes the check loss on the validation set.

As before, the process of generating-training-testing was repeated 100 times. Table 6
shows the testing accuracies of different models under the two error distributions,
where the results of kernel QReg of Li et al. (2007) were obtained directly from Li et
al. (2007). It is easily observed that, without the L1 constraint, the SV-QReg model
of Hwang and Shim (2005) performs significantly worse than the Newton kernel QReg
without L1; the model in Li et al. (2007) performs significantly worse than the proposed
Newton kernel QReg with L1 constraint, in terms of mean absolute deviation error.

In the obtained model from the proposed L1 Newton kernel QReg, if the absolute
value of any coefficient βi in Eq. (28) is less than 10−6, it could be counted as zero. We
use the number of zeros as a sparsity measure for the obtained model. Table 7 shows
the average number of zero coefficients in Eq. (28) for each error distribution and each
tested τ value. Recall that the total number of coefficients is the training set size, which
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is 200 in this simulation. We easily observe that, with the L1 constraint, more than 80 %
of the obtained coefficients are actually zero. On the contrary, without the L1 constraint,
after applying the same rule, the obtained model is dense (the results are not listed).

In our simulations, we used the average check loss on the validation set as the
parameter selection criterion. It is also possible to use other selection criteria such
as the Schwarz information criterion (Schwarz 1978; Koenker et al. 1994) (SIC) and
the generalized approximate cross-validation criterion (Yuan 2006) (GACV), which
are also used in Li et al. (2007) and Li and Zhu (2008). We notice that the criterion
we used (i.e., average check loss) was called gold standard in Li et al. (2007) and Li
and Zhu (2008). We also ran the simulations with SIC and GACV criteria, and we
observed the similar performance as reported in this section. Due to the space limit,
we choose not to present the results with SIC and GACV criteria.

6 Results on real-world data

This section compares the performance of the proposed Newton quantile regression
algorithm to alternative quantile regression algorithms on two real-world datasets
from UCI Machine Learning Repository. The parameter setting of the algorithms is
the same as in Sect. 5. On the real datasets, although the relevant variables are not
known to us, a sparse model is easy to understand and interpret, thus we still prefer a
model which can delete more variables. In this section, we adopt the same strategy as
in Simulation 1 of Sect. 5 for variable selection. The considered algorithms include
QReg Forest, IP-QReg, MM-QReg, SV-QReg with linear kernel, the QReg function
in R package with and without the L1 constraint, and the proposed Newton QReg with
and without L1 constraint. For every algorithm, in each iteration, we used the same
training set, the same validation set (if necessary), and the same testing set, in order
to make the comparison fair.

The two datasets are related to red and white variants of the Portuguese “Vinho
Verde” wine. Due to privacy and logistic issues, only physicochemical (inputs) and
sensory (the output) variables are available (e.g., there is no data about grape types,
wine brand, wine selling price, etc.). For more details, please refer to Cortez et al.
(2009). There are 11 predictor variables, which are fixed acidity, volatile acidity, citric
acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH
value, sulphates, and alcohol. We normalize each of these variables to have mean 0
and unit standard deviation, and augment the predictors by including the squares of
the standardized variables, resulting in 22 predictors in total. The response variable
is the wine quality which is a score between 0 and 10. We standardized it to have
mean 0 and unit standard deviation. There are 1,599 instances for red wine and 4,898
instances for white wine. To numerically evaluate the performances, in lack of the true
quantile functions for the datasets, we adopt the average of the “check loss” on the
testing set as the error measure, which is defined as

L(τ ) = 1

Ntest

Ntest∑
i=1

ρτ

(
yi − q̂τ (xi )

)
, (36)
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Table 8 The performances of QReg Forest, IP-QReg, SV-QReg, MM-QReg, Newton QReg, and the QReg
function in R package on the red wine quality data

Method QReg Forest IP-QReg SV-QReg MM-QReg N-QReg QReg R

τ = .25 .2204 (.0092) .2535 (.0054) .2549 (.0058) .2549 (.0062) .2532 (.0051) .2537 (.0057)

τ = .50 .2619 (.0101) .3129 (.0054) .3134 (.0068) .3136 (.0063) .3114 (.0064) .3127 (.0054)

τ = .75 .2283 (.0120) .2558 (.0069) .2553 (.0070) .2563 (.0070) .2548 (.0061) .2567 (.0085)

Listed are the mean values of the “check loss” of the 100 runs, and the standard deviations are listed in
parentheses

Table 9 The performances of the considered algorithms on the white wine quality data

Method QReg Forest IP-QReg SV-QReg MM-QReg N-QReg QReg R

τ = .25 .2162 (.0039) .2582 (.0030) .2580 (.0027) .2584 (.0024) .2576 (.0026) .2575 (.0023)

τ = .50 .2829 (0066) .3264 (.0032) .3262 (.0029) .3266 (.0028) .3256 (.0032) .3259 (.0029)

τ = .75 .2412 (0.0077) .2572 (.0026) .2570 (.0026) .2567 (.0026) .2565 (.0026) .2572 (.0028)

See the caption of Table 8

where Ntest is the size of the testing set, and q̂τ (xi ) is the estimated τ -th quantile at xi .
By the definition of quantile, the smaller the value of L(τ ), the closer the estimated
quantile to the true quantile.

To train the model on the red wine dataset, we randomly select 500 observations,
and the rest are used as testing set; on the white wine dataset, the training set size
is 1,500 and the rest is for testing. That is, we use about 30 % of the whole dataset
for training, and about 70 % for testing. For three τ values (0.25, 0.50, and 0.75),
the partition-training-testing process is repeated 100 times for each algorithm. The
mean and standard deviation of the 100 check losses are calculated. Tables 8 and 9
show the performances of the considered quantile regression algorithms on the red
wine data and white wine data, respectively. We observe that, on both datasets, the
quantile regression forest yields the best prediction accuracy. This shows that as a
nonparametric model, the regression forest model provides flexibility in model fitting.
Compared to alternative parametric methods, the proposed Newton QReg algorithm
can achieve smaller testing errors with often smaller standard deviations, although the
advantage is not dominating.

We also compared the performance (testing error and noisy predictor suppression)
of the proposed L1 constrained Newton quantile regression to the corresponding func-
tion in the R package. In the L1 constrained models, we need a validation set to select
the regularization parameter λ. A validation set of the same size as the training set
(i.e., for red wine, it is 500, and 1,500 for the white wine data) is selected randomly.
The parameter λ which minimizes the check loss on the validation set is selected. We
calculate the average number of trimmed predictors to measure the variable selection
performance. Table 10 shows the testing errors and the variable selection performances
of the considered algorithms. Compared to the L1 QReg function in the R package,
the proposed Newton L1 QReg algorithm can achieve smaller testing errors with often
smaller standard deviations. We also observe that the Newton L1 QReg can remove
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Table 10 Comparison of the L1 constrained Newton QReg and the function in the R package

τ Method Red wine White wine

Check error # D. V. Check error # D. V.

.25 Newton .2462 (.0096) 7.49 (1.73) .2562 (.0042) 6.88 (1.19)

R package .2497 (.0101) 6.84 (1.66) .2573 (.0048) 6.72 (1.70)

.50 Newton .3049 (.0093) 7.56 (1.78) .3238 (.0043) 7.18 (1.51)

R package .3097 (.0109) 7.19 (1.83) .3253 (.0051) 6.58 (1.73)

.75 Newton .2462 (.0073) 8.01 (1.75) .2554 (.0039) 6.10 (1.37)

R package .2520 (.0094) 7.00 (1.72) .2565 (.0047) 5.97 (1.75)

For three τ values, the mean values of the “check loss” of the 100 runs are shown with the standard deviations
listed in parentheses. The means and standard deviations of the number of deleted variables (# D. V.) are
listed as a measure of variable selection performance

more predictors in average (with a smaller standard deviation), resulting in sparser
models.

7 Conclusions

This paper studies the linear programming associated with linear quantile regression
model, and formulates the quadratic penalty function for its dual. We proved that a
quantile regression model can be obtained by minimizing the quadratic penalty func-
tion without constraint, and derived the explicit formulas. The proposed algorithms
are easy to implement, without requiring any additional sophisticated optimization
software package other than a linear equation solver. A generalized Newton algorithm
with Armijo step size is proposed to minimize the quadratic penalty function. With
slight modification, the proposed approach can be generalized to fit quantile regression
model in reproducing kernel Hilbert space. Extensive experiments on simulated data
and real-world data show that, the proposed Newton quantile regression algorithms
can achieve performance comparable to state-of-the-art.

In this paper, we used the quadratic penalty function to absorb the constraints in the
linear programming for the linear quantile regression model. In literature, there are
other methods to convert a constrained optimization problem to an unconstrained one,
for example, the exponential method of multipliers (Bertsekas 1999, Sect. 4.2.5), and
the logarithm barrier method (Ruszczyński 2006, Sect. 6.6). It would be interesting to
compare different methods from the theoretical and practical aspects.
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Appendix: The proof of Eq. (25)

If a > λ > 0, then

a − λ > 0, −a − λ < 0, and |a| − λ > 0,
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thus, from the definition of (·)∗,

(a − λ)∗ + (−a − λ)∗ = 1 = (|a| − λ)∗.

If a < −λ < 0, we have

a − λ < 0, −a − λ > 0, and |a| − λ > 0,

thus,

(a − λ)∗ + (−a − λ)∗ = 1 = (|a| − λ)∗.

If −λ < a < λ, it implies that

a − λ < 0, −a − λ < 0, and |a| − λ < 0,

thus,

(a − λ)∗ + (−a − λ)∗ = 0 = (|a| − λ)∗.

In summary, it is checked for all the cases that (a − λ)∗ + (−a − λ)∗ = (|a| − λ)∗.
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