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ABSTRACT
This paper gives an improvement to Bennett’s inequality for tail prob-
ability of sum of independent random variables, without imposing any
additional condition. The improved version has a closed form expres-
sion. Using a refined arithmetic-geometric mean inequality, we further
improve the obtained inequality. Numerical comparisons show that the
proposed inequalities often improve the upper bound significantly in
the far tail area, and these improvements get more prominent for larger
sample size.

1. Introduction

Bennett’s inequality (Bennett 1962) provides an upper bound on the probability that the sum
of independent random variables deviates from its expected value. For convenience of refer-
ence, we give the full statement of Bennett’s inequality and the sketched proof below.

Theorem 1 (Bennett). Assume X1, . . . ,Xn are independent random variables, and E(Xi) = 0,
E(X2

i ) = σ 2
i , |Xi| < M almost surely. Then, for any 0 ≤ t < nM,

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−nσ 2

M2 h
(
tM
nσ 2

))
� BO(t ) (1)

where h(x) = (1 + x) log(1 + x) − x and nσ 2 = ∑n
i=1 σ 2

i .

Proof. Since X1, . . . ,Xn are independent, by exponential Markov’s inequality, for any λ > 0,
there is

P

(
n∑

i=1

Xi ≥ t

)
≤ E

(
exp

(∑n
i=1 λXi

))
eλt

= E
(∏n

i=1 exp(λXi)
)

eλt
=
∏n

i=1 E(exp(λXi))

eλt

where

E(exp(λXi)) = E

( ∞∑
k=0

λkXk
i

k!

)
= 1 +

∞∑
k=2

λkE(X2
i X

k−2
i )

k!
≤ 1 +

∞∑
k=2

λkσ 2
i Mk−2

k!

= 1 + σ 2
i

M2

∞∑
k=2

λkMk

k!
= 1 + σ 2

i

M2 (eλM − 1 − λM) (2)
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≤ exp
(

σ 2
i

M2 (eλM − 1 − λM)

)
(3)

Then, we have

P

(
n∑

i=1

Xi ≥ t

)
≤ e−λt

n∏
i=1

E(exp(λXi)) (4)

≤ e−λt
n∏

i=1

exp
(

σ 2
i

M2 (eλM − 1 − λM)

)
(5)

= e−λt exp
(
nσ 2

M2 (eλM − 1 − λM)

)
(6)

The proof then proceeds by minimizing bound (6) with respect to all λ > 0. �

There are some efforts trying to refine the Bennett’s inequality. In (Fan, Grama, and Liu
2015a), a missing factor of order 1/t is added to Bennett’s inequality under the Bernstein’s
condition; in (Pinelis 2014), under the condition imposed to the third order moments, the
author developed a sharp improvement to Bennett’s inequality. However, they did not con-
sider the differences among the variances of the random variables.

This paper derives an improved version to Equation (1), under the same conditions. The
derived improvement has a closed form expression. Using a refined arithmetic-geometric
mean inequality, we further improve the derived bound. We will compare the derived new
bounds to the original Bennett’s inequality by graphical plots.

2. Improved Bennett’s inequality

We first present a lemma which will be used in this paper

Lemma 2. For a < 0 and b > 1, there is a unique positive solution to the equation et = at + b,
which is given by

t = −W
(

−1
a
exp(−b/a)

)
− b/a

whereW (·) is the LambertW function (Corless et al. 1996).

Proof. Let f (t ) = et − at − b, then f (0) = 1 − b < 0 since b > 1, and as t → ∞, f (t ) →
∞ > 0. The derivative f ′(t ) = et − a > 0 because a < 0. Thus, f (t ) is a monotonically
increasing function. By the intermediate value theorem, there is a unique positive solution
to the equation f (t ) = et − at − b = 0.

The given equation is

et = at + b = a
(
t + b

a

)

that is

exp
(
t + b

a

)
= a exp

(
b
a

)(
t + b

a

)
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or equivalently,

−
[
t + b

a

]
exp

(
−
[
t + b

a

])
= −1

a
exp

(
−b
a

)

By the definition of LambertW function (Corless et al. 1996)

−
[
t + b

a

]
= W

(
−1
a
exp

(
−b
a

))

Consequently, the solution is

t = −W
(

−1
a
exp

(
−b
a

))
− b

a

We have to show that the solution is positive, that is

−W
(

−1
a
exp

(
−b
a

))
>

b
a

(7)

Since the LambertW functionW (x) is increasing when x > 0, a < 0 and b > 1, there is

W
(

−1
a
exp

(
−b
a

))
< W

(
−b
a
exp

(
−b
a

))
= −b

a
(8)

where the equality follows from the identityW (xex) = x. Clearly, Equations (8) and (7) are
equivalent. �

In the proof of Bennett’s inequality sketched in Sec. 1, we used the inequality 1 + x ≤ ex

to get Equation (3), which is often a loose relaxation. Instead, we can proceed directly with
Equation (2), that is,

E(exp(λXi)) ≤ 1 + σ 2
i

M2 (eλM − 1 − λM) (9)

and this will give us a tighter bound. We have the following theorem.

Theorem 3. With the same assumptions as in Theorem 1, let

A = M2

σ 2 + nM
t

− 1 and B = nM
t

− 1

and � = A −W (BeA), whereW (·) is the LambertW function. Then, for any 0 ≤ t < nM,

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−�t/M + n log

[
1 + σ 2

M2 (e� − 1 − �)

])
� BI(t ) (10)

Proof. As in the proof of Theorem 1, we can get Equation (4), and applying Equation (9),
there is

P

(
n∑

i=1

Xi ≥ t

)
≤ e−λt

n∏
i=1

E(exp(λXi))

≤ e−λt
n∏

i=1

[
1 + σ 2

i

M2 (eλM − 1 − λM)

]
(11)

≤ e−λt
[
1 + σ 2

M2 (eλM − 1 − λM)

]n
(12)
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= exp
(

−λt + n log
[
1 + σ 2

M2 (eλM − 1 − λM)

])
(13)

where Equation (12) follows from the arithmetic-geometricmean inequality which states that
for positive x1, x2, . . . , xn,

1
n

n∑
i=1

xi ≥
(

n∏
i=1

xi

)1/n

(14)

By the elementary inequality 1 + x ≤ ex, there is[
1 + σ 2

M2 (eλM − 1 − λM)

]n
≤ exp

(
nσ 2

M2 (eλM − 1 − λM)

)

Thus, comparing Equations (12) to (6), (12) provides a better bound. Consequently, we could
get a tighter upper bound for the tail probability by minimizing the bound (12) or (13) with
respect to λ > 0.

Letting

g(λ) = −λt + n log
[
1 + σ 2

M2 (eλM − 1 − λM)

]

Equation (13) becomes

P

(
n∑

i=1

Xi ≥ t

)
≤ exp(g(λ))

To get a tight bound, we need to minimize the function g(λ) with respect to λ > 0. For this
purpose, calculating

g′(λ) = −t + nσ 2

M2

MeλM − M
1 + σ 2

M2 (eλM − 1 − λM)

and setting g′(λ) = 0, there is

nσ 2

M2 (MeλM − M) = t + tσ 2

M2 (eλM − 1 − λM)

or

σ 2

M2 (nM − t )eλM = −tσ 2

M2 λM + σ 2

M2 (nM − t ) + t (15)

Since t < nM, we let

a = −
tσ 2

M2

σ 2

M2 (nM − t )
= − t

nM − t
< 0

and

b =
σ 2

M2 (nM − t ) + t
σ 2

M2 (nM − t )
= 1 + M2

σ 2

t
nM − t

> 1

Using the defined a and b, Equation (15) could be written as

eλM = aλM + b
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By Lemma 2, we have

λM = −W
(

−1
a
exp

(
−b
a

))
− b

a

= M2

σ 2 + nM
t

− 1 −W
((

nM
t

− 1
)
exp

(
M2

σ 2 + nM
t

− 1
))

= A −W (BeA) (16)

where

A = M2

σ 2 + nM
t

− 1 and B = nM
t

− 1

We let � = A −W (BeA). Finally, substituting λM (i.e., �) to Equation (13), we obtain the
upper bound for the tail probability as

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−�t/M + n log

[
1 + σ 2

M2 (e� − 1 − �)

])

which is what to be proved. �

3. Further improvement

In the proof of Theorem 3, the arithmetic-geometric mean inequality in Equation (14) was
used as a major ingredient. There is a refined version of the arithmetic-geometric mean
inequality (Cartwright and Field 1978) which makes it possible to further improve the result
in Theorem 3.
Lemma 4 (Refined Arithmetic-Geometric mean inequality Cartwright and Field 1978).
Suppose that xk ∈ [a, b] with a > 0, pk ≥ 0 for k = 1, 2, . . . , n, and further assume that∑n

k=1 pk = 1. Let x̄ = ∑n
k=1 pkxk. We have

1
2b

n∑
k=1

pk(xk − x̄)2 ≤ x̄ −
n∏

k=1

xpkk ≤ 1
2a

n∑
k=1

pk(xk − x̄)2 (17)

The proof of Lemma 4 is given in (Cartwright and Field 1978).We are interested in a special
case in which each pk = 1/n, then

n∑
k=1

pk(xk − x̄)2 = 1
n

n∑
k=1

(xk − x̄)2 = var(x)

where x = (x1, x2, . . . , xn), and var(x)denotes the variance1 of the array x = (x1, x2, . . . , xn).
Thus, for this special case, there is

1
2b

var(x) ≤ 1
n

n∑
i=1

xi −
(

n∏
k=1

xk

)1/n

≤ 1
2a

var(x)

and consequently
n∏

k=1

xk ≤
(
1
n

n∑
i=1

xi − 1
2b

var(x)

)n

(18)

 Although it is not exactly the variance, calling it as variance simplifies our notation greatly.
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By comparing Equation (14) and Equation (18), clearly, Equation (18) provides a tighter
bound for the product of the given numbers by incorporating the variance information.

We obtain Equations (12) from (11) by applying the arithmetic-geometric mean inequality
in Equation (14). By applying the refined arithmetic-geometric mean inequality in Equation
(18), it is possible to further improve the bound.

Let σ 2
M = max(σ 2

1 , . . . , σ
2
n ) andV = ∑n

i=1(σ
2
i − σ 2)2/n. We have, for any 1 ≤ i ≤ n,

1 + σ 2
i

M2 (eλM − 1 − λM) ≤ 1 + σ 2
M

M2 (eλM − 1 − λM) � Mλ

Applying Equation (18), there is
n∏

i=1

[
1 + σ 2

i

M2 (eλM − 1 − λM)

]
≤
[
1 + σ 2

M2 (eλM − 1 − λM) − (eλM − 1 − λM)2V
2M4Mλ

]n
(19)

Substituting Equation (19) into Equation (11) in the proof of Theorem 3, for any λ > 0, there
is

P

(
n∑

i=1

Xi ≥ t

)
≤ e−λt

n∏
i=1

[
1 + σ 2

i

M2 (eλM − 1 − λM)

]

≤ e−λt
[
1 + σ 2

M2 (eλM − 1 − λM) − (eλM − 1 − λM)2V
2M4Mλ

]n
(20)

Ideally, to find the best upper bound, we would like to choose a value for λ to minimize the
right hand side of Equation (20), which would yield a high order equation that is not easy to
solve. We note that Equation (20) holds for any λ > 0, thus, we can just choose the λ which
minimizes Equation (12), that is, the λ which is defined in Equation (16). We summarize our
discussion as in

Theorem 5. With the same assumptions and notations as in Theorems 1 and 3, let σ 2
M =

max(σ 2
1 , . . . , σ

2
n ) and V = ∑n

i=1(σ
2
i − σ 2)2/n, and

M� = 1 + σ 2
M

M2 (e� − 1 − �)

For any 0 ≤ t < nM, there is

P

(
n∑

i=1

Xi ≥ t

)
≤ e−�t/M

[
1 + σ 2

M2 (e� − 1 − �) − (e� − 1 − �)2V
2M4M�

]n
� BF (t ) (21)

It is straightforward to verify that the improved Bennett’s inequality in Equation (10) can
be obtained from Equation (21) by settingV = 0, that is, ignoring the variance of σ 2

i ’s. In this
sense, we see that Equation (10) wastes part of the information contained in σ 2

i ’s. We also
observe from Equation (21) that largerV could lead to tighter bound.

4. Comparisons

In this section, we numerically compare the original Bennett’s inequality BO(t ) given in
Equation (1) and its enhanced versions BI(t ) and BF (t ) given in Equations (10) and (21),
respectively. Without loss of generality, we assumeM = 1, and let t = pnM with 0 < p < 1.
We assume that the variance σ 2

i = i/n, for i = 1, 2, . . . , n.
For n = 30, and for p equally spaced between 0.1 and 0.8, we calculate the ratioBO(t )/BI(t )

and BO(t )/BF (t ). We show the curves of the ratios in Figure 1a, and Figure 1b demonstrates
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Figure . The ratio between the original Bennett bound BO(t ) and the improved versions BI(t ) and BF (t ).
Solid curve is the ratio BO(t )/BF (t ), while the dashed curve is BO(t )/BI(t ).

the ratios when 0.1 < p < 0.5 for more details. We observe that at the far tail area (p large),
the bound in Equation (21) improves the original Bennett bound by 3–20 times, while the
bound in Equation (10) improves 2–10 times; for small p (that is, in the near tail area), the
improvements are minor.

We then choose n = 50 and n = 80, and the corresponding curves are given in Figure 1c–f.
We observe the same trend as in Figure 1a and 1b, that is, Equation (21) gives better bound
than Equation (10), which is expected because Equation (21) incorporates more information.
For both improved versions, the improvement is more significant at the far tail area (i.e., for
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p large). Comparing the curves for different n, we see that for large n, the improvement is
more prominent.

5. Conclusion and future work

In the proof of Bennett’s inequality, we employ a tighter upper bound for the moment gen-
erating function, and this enables us to obtain a new bound for tail probability for sum of
independent random variables, without imposing additional condition. This paper further
improves the obtained upper bound by using a refined arithmetic-geometric mean inequal-
ity, which incorporates more variance information of the random variables. We compare the
original Bennett’s upper bound and the improved versions by plotting the curves of the ratios
between different upper bounds, and the results show that the proposed upper bounds often
improve the original Bennett’s bound significantly in the far tail area, and this improvement
becomes more significant for large sample size.

Under the following Bernstein’s condition: for a positive constant ε,

E
(
Xk
i

) ≤ 1
2
k!εk−2E

(
Xk
i

)
for all k ≥ 2 and all i ∈ [1, n]

it was proved in (Fan, Grama, and Liu 2015b) that for all x > 0,

P

(
n∑

i=1

Xi ≥ x

)
≤ exp

{
−λ̄x + n log

(
1 + λ̄2σ 2

2(1 − λ̄ε)

)}
(22)

where

σ 2 = 1
n

n∑
i=1

E
(
X2
i

)
and λ̄ = 2x/v2

2xε/v2 + 1 +√
1 + 2xε/v2

Equation (22) can be regarded as a counterpart of Theorem 3 under the Bernstein’s condition.
Similar to Equation (22), it would be interesting to develop a counterpart for Theorem5 under
the Bernstein’s condition and this is our next step of work.
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