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ABSTRACT
In support vector regression (SVR) model, using the squared
�-insensitive loss function makes the objective function of the opti-
mization problem strictly convex and yields a more concise solution.
However, the formulation leads to a quadratic programing which is
expensive to solve. This paper reformulates the optimization prob-
lem by absorbing the constraints in the objective function, and the
new formulation shares similarity with weighted least square regres-
sion problem. Based on this formulation, we propose an iteratively
reweighted least square approach to train the L2-loss SVR, for both
linear and nonlinear models. The proposed approach is easy to
implement, without requiring any additional computing package
other than basic linear algebra operations. Numerical studies on real-
world datasets show that, compared to the alternatives, the pro-
posed approach can achieve similar prediction accuracy with sub-
stantially higher time efficiency.
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1. Introduction

Support vector regression (SVR) model (Smola and Sch€olkopf 2004; Vapnik 1998) is a
widely used regression technique, which is trained by minimizing the total �-insensitive
loss on the training set with a ridge penalty on the regression coefficients. Similar to the
introduction of squared hinge loss to support vector machine (SVM) classifier
(Mangasarian and Musicant 2001), squared �-insensitive loss function was introduced to
SVR (Balasundaram and Kapil 2010; Lee, Hsieh, and Huang 2005; Musicant and
Feinberg 2004), resulting in L2-SVR. It was shown (Balasundaram and Kapil 2010;
Musicant and Feinberg 2004) that compared to the SVR model with �-insensitive loss,
L2-SVR has a strictly convex objective function and more concise solution.
Same as the original SVR model, the formulation of L2-SVR leads to a quadratic pro-

graming, which can be solved by popular SVM toolboxes (Chang and Lin 2011; Gunn
1997; Joachims 1999). Although the decomposition techniques (Osuna, Freund, and
Girosi 1997a,b) or sequential minimization methods (Platt 1998) are employed to speed
up the quadratic programing solver, the computational complexity is about Oðn3Þ;
where n is the training set size. Thus, in general, training an SVR model is time
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consuming. Hence, it is highly desirable to develop a time-efficient yet accurate enough
training algorithm for SVR and L2-SVR.
In literature, there are various works (Balasundaram and Kapil 2010; Lee, Hsieh, and

Huang 2005; Musicant and Feinberg 2004) to speed up the training of L2-SVR model,
and this paper gives another attempt for this purpose. Toward this end, we first refor-
mulate the optimization problem for L2-SVR by absorbing the constraints in a single
objective function, which shares similarity with the formulation of weighted least square
regression, with the weights depending on the current estimation. This observation
inspires us to design an iteratively reweighted least square (IRLS) approach for training
the L2-SVR model, and the resulting algorithm is called IRLS-SVR. In this paper, we
give detailed derivation process and description of the algorithm, for both linear and
nonlinear L2-SVR models. The proposed approach is easy to implement, without requir-
ing any additional computing package other than basic linear algebra operations.
On several publicly available datasets, we compared the performances (in terms of

the prediction accuracy and training time) of the proposed IRLS-SVR to several alterna-
tives including the original quadratic programing based SVR (QP-SVR) (Gunn 1997),
Lagrangian SVR (LSVR) (Balasundaram and Kapil 2010), and the smoothly approxi-
mated SVR (SSVR) (Lee, Hsieh, and Huang 2005), all using the squared �-insensitive
loss function. The comparison shows that IRLS-SVR can achieve similar prediction
accuracy to the alternatives. However, in the training stage, IRLS-SVR is hundreds to
thousands of times faster than QP-SVR, and tens to hundreds of times faster than
LSVR and SSVR.
The rest of this paper is organized as follows: Sec. 2 briefly reviews the formulation

of SVR with squared �-insensitive loss function; Sec. 3 reformulates the L2-SVR opti-
mization problem as a single objective function and introduces the iteratively
reweighted least square regression approach to get a solution to the model; related
works are also discussed in Sec. 3; Sec. 4 compares the performance of the proposed
IRLS-SVR algorithm to some alternatives on several real-world datasets, in terms of pre-
diction error and training time; finally, Sec. 5 summarizes this paper and discusses
some future research directions.

2. L2 support vector regression

Assume the given training dataset is fðxi; yiÞ; i ¼ 1; :::; ng; with predictor vector xi 2 R
p

and output yi 2 R: In the case of linear regression model, we suppose the regression
function is

y ¼ w0x þ b; (1)

where w 2 R
p is the regression coefficient vector and b 2 R is the intercept. In the case

of nonlinear model, we first assume there is a map /ð�Þ which transfers the input pre-
dictor vector xi into a high dimensional space H; and the purpose is to fit a linear
model in H; i.e.,

y ¼ w0/ xð Þ þ b; (2)

where w 2 H is the regression coefficient vector and b 2 R is the intercept. Since the
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linear model is a special case of nonlinear model, we only discuss the nonlinear case in
this section.
Support vector regression (SVR) employs a loss function which is not activated if the

difference between the observation yi and the prediction (i.e., w0/ðxiÞ þ b) is less than a
certain predefined level �: This loss function is often called �-insensitive loss in litera-
ture. The SVR model is obtained by solving the following constrained minimization
problem

minw;b;n�;n
1
2
w0w þ C

Xn
i¼1

ni þ
Xn
i¼1

n�i

" #
;

s:t: yi � w0/ xið Þ � b � �þ ni;
w0/ xið Þ þ b � yi � �þ n�i ;
ni � 0 and n�i � 0; for i ¼ 1; 2; :::; n:

8>>>>>><
>>>>>>:

(3)

In the above formulation, � is the tolerance of the error, n ¼ ðn1; n2; :::; nnÞ0 and n� ¼
ðn�1; n�2; :::; n�nÞ0; with ni and n�i being the nonnegative slack variables, which are the part
of error which exceeds the tolerance level �: As another way of understanding, ni and
n�i measure the effort we should pay in order to bring the prediction (i.e., w0/ðxiÞ þ b)
to an �-neighborhood of the given observation yi. Similar to support vector machine
(SVM) classifier (Vapnik 1998), the term 1

2w
0w in Eq. (3) measures the complexity of

the regression model, and the parameter C> 0 balances the model complexity and the
model errors.
In SVM literature, it was argued (Mangasarian and Musicant 2001) that using a

squared hinge loss function and penalizing on the bias will make the resulting optimiza-
tion problem strictly convex and result in simpler solutions. Similarly, the squared
�-insensitive loss function was introduced to SVR model, and a penalty was put on the
bias term (Balasundaram and Kapil 2010; Lee, Hsieh, and Huang 2005; Musicant and
Feinberg 2004). Furthermore, to make the model more general, we assume that the pen-
alty to the two situations (i.e., the prediction is above or below the observation) are dif-
ferent, that is, the optimization problem is

minw;b;n�;n
1
2
w0w þ 1

2
b2 þ C

2

Xn
i¼1

wpn
2
i þ

Xn
i¼1

wn n�i
� �2" #

s:t: yi � w0/ xið Þ � b � �þ ni and
w0/ xið Þ þ b � yi � �þ n�i ; for i ¼ 1; 2; :::; n;

8>>>><
>>>>:

(4)

where wp>0 and wn>0 are the weights, and could be different. By introducing the
weights wp and wn, Eq. (4) actually employs the asymmetric squared �-insensitive loss
function. Asymmetric loss functions have been considered in many regression and clas-
sification models, for example, quantile regression (Koenker 2005; Koenker and Bassett
1978), expectile regression (Efron 1991; Newey and Powell 1987), and asymmetric least
square SVM (Huang, Shi, and Suykens 2014). We further notice that if we let � ¼ 0 in
our model, we will recover the expectile regression model. Therefore, our model is a
generalization to expectile regression.
By using the asymmetric squared �-insensitive loss function, the objective function in

Eq. (4) becomes strictly convex because all the terms in the objective function are
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square terms, as opposed to the linear terms in Eq. (3). We further notice that Eq. (4)
does not have the non-negativity constraint on ni’s and n�i ’s, compared to Eq. (3).
Indeed, if any component of n is negative, say, nj<0; we can just set nj ¼ 0; which
makes the objective function in Eq. (4) decrease while still keeps the corresponding con-
straint valid. The same argument holds for n�: Thus, with the squared �-insensitive loss
function, not only is the objective function strictly convex, but also the constraints
are simpler.
The Lagrangian function of the problem in Eq. (4) is

L w; b; n; n�; a; a�ð Þ ¼ 1
2
w0w þ 1

2
b2 þ C

2

Xn
i¼1

wpn
2
i þ

Xn
i¼1

wn n�i
� �2" #

�
Xn
i¼1

ai �þ ni � yi þ w0/ xið Þ þ b
� � �Xn

i¼1

a�i �þ n�i þ yi � w0/ xið Þ � b
� �

;

where a ¼ ða1; :::; anÞ0 and a� ¼ ða�1; :::; a�nÞ0; with ai � 0 and a�i � 0 being the
Lagrangian multiplier for the i-th constraint. At the minimal point, we will have

@L
@w

¼ w�
Xn
i¼1

ai/ xið Þ þ
Xn
i¼1

a�i / xið Þ ¼ 0 ) w ¼
Xn
i¼1

ai � a�i
� �

/ xið Þ;
@L
@b

¼ bþ
Xn
i¼1

a�i � ai
� � ¼ 0 ) b ¼

Xn
i¼1

ai � a�i
� �

;

@L
@ni

¼ Cwpni � ai ¼ 0 ) ni ¼
ai
Cwp

;

and

@L
@n�i

¼ Cwnn
�
i�a�i ¼ 0 ) n�i ¼

a�i
Cwn

:

Substituting these results to the function Lðw; b; n; n�; a; a�Þ; we have

L ¼ � 1
2

Xn
i¼1

Xn
j¼1

ai � a�i
� �

/ xið Þ0/ xjð Þ aj�a�j
� �

� 1
2

Xn
i¼1

Xn
j¼1

ai � a�i
� �

aj � a�j
� �

þ
Xn
i¼1

ai � a�i
� �

yi � �
Xn
i¼1

ai þ a�i
� � � 1

2C

Xn
i¼1

a2i
wp

� 1
2C

Xn
i¼1

a�ið Þ2
wn

:

(5)

Let Kðu; vÞ ¼ /ðuÞ0/ðvÞ be the associated kernel function which satisfies Mercer’s
condition (Smola and Sch€olkopf 2004; Vapnik 1998). The dual problem is to maximize
function L defined in Eq. (5), or equivalently, to minimize – L, with constraints ai � 0
and a�i � 0 for i ¼ 1; 2; :::; n; that is

mina;a�
1
2

Xn
i¼1

Xn
j¼1

ai � a�i
� �

K xi; xjð Þ aj � a�j
� �

þ 1
2

Xn
i¼1

Xn
j¼1

ai � a�i
� �

aj � a�j
� �

�
Xn
i¼1

ai � a�i
� �

yi þ �
Xn
i¼1

ai þ a�i
� �þ 1

2Cwp

Xn
i¼1

a2i þ
1

2Cwn

Xn
i¼1

a�i
� �2

s:t: ai � 0 and a�i � 0 for i ¼ 1; 2; :::; n:

8>>>>>><
>>>>>>:

(6)
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The dual optimization problem in Eq. (6) could be solved by quadratic programing
toolbox, and the final model could be obtained as

f xð Þ ¼
Xn
i¼1

ai � a�i
� �

/ xið Þ0/ xð Þ þ
Xn
i¼1

ai � a�i
� � ¼Xn

i¼1

ai � a�i
� �

K xi; xð Þ þ
Xn
i¼1

ai � a�i
� �

:

Although the quadratic programing in Eq. (6) can be solved by decomposition meth-
ods (Osuna, Freund, and Girosi 1997a,b) or sequential minimal optimization in (Platt
1998), they are computationally expensive with complexity about Oðn3Þ: Thus, as the
training set gets large, it is very expensive to train an L2-SVR model. As such, a fast
training algorithm for L2-SVR which can achieve similar accuracy as the alternative
methods is highly desired.

3. Iteratively reweighted least square for L2-SVR

In the following discussion, we denote V�ðxÞ as the asymmetric squared �-insensitive
loss function, which is defined as

V� xð Þ ¼
wp x��ð Þ2; if x>�;
0; if jxj<�;
wn x þ �ð Þ2; if x<��;

8<
: (7)

where wp and wn are defined in the same way as in Eq. (4).

3.1. Linear L2-SVR model

We first discuss the case of linear regression model, that is, the regression function is

f xð Þ ¼ x0w þ b:

To absorb the constraints in Eq. (4), we can rewrite the optimization problem in terms
of V�ð�Þ as

min
w;b

F w; bð Þ ¼ 1
2
jjwjj2 þ 1

2
b2 þ C

2

Xn
i¼1

V� yi � f xið Þ� �
¼ 1

2
jjwjj2 þ 1

2
b2 þ C

2

Xn
i¼1

yi � x0iw � b � ei
� �2

di;
(8)

where

di ¼
wp; if yi � x0iw � b>�;
0; if jyi � x0iw � bj � �;
wn; if yi � x0iw � b< � �;

8<
: (9)

and

ei ¼
�; if yi � x0iw � b>�;
0; if jyi � x0iw � bj � �;
� �; if yi � x0iw � b< � �:

8<
: (10)
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In the matrix form, the function Fðw; bÞ could be written compactly as

F w; bð Þ ¼ 1
2
w0w þ 1

2
b2 þ C

2
y�Xw�b1�eð Þ0D y�Xw�b1�eð Þ; (11)

where X is the n� p data matrix with each row being a data point, y ¼ ðy1; :::; ynÞ0; e ¼
ðe1; :::; enÞ0; 1 is the n� 1 vector with all elements being 1, and D is an n� n diagonal
matrix with di’s on the diagonal.
To minimize Fðw; bÞ in Eq. (11), we take gradient of Fðw; bÞ with respect to w and

set it to be zero vector, yielding

@F
@w

¼ w � CX0D y � Xw � b1 � eð Þ ¼ 0p;

where 0p is the zero vector in R
p: The above equation is equivalent to

I
C
þ X0DX

� �
w þ X0D1b ¼ X0D y � eð Þ; (12)

where I is identity matrix of order p. Similarly, we have

@F
@b

¼ b � C10D y � Xw � b1 � eð Þ ¼ 0;

or

10DXw þ 10D1þ 1
C

� �
b ¼ 10D y � eð Þ: (13)

We write Eqs. (12) and (13) in one equation compactly as

I
C
þ X0DX X0D1

10DX 10D1þ 1
C

0
BB@

1
CCA w

b

� �
¼ X0D y � eð Þ

10D y � eð Þ
� �

¼ X0

10

� �
D y � eð Þ: (14)

Unfortunately, since the matrix D and vector e both depend on the unknown quanti-
ties w and b, we cannot directly solve for w and b from Eq. (14). As such, we propose
an iterative scheme as below

Algorithm 1: Iterative Procedure for Linear L2-SVR

0. Initialization: choose a starting point w0 2 R
p and b0 2 R; set the tolerance

level e, the maximum iteration number M. Set the iteration number t¼ 0.
1. Using the current wt and bt, apply Eqs. (9) and (10) to calculate di and ei, and

form the matrix D and vector e.
2. Update w and b as

wtþ1

btþ1

� �
¼

I
C þ X0DX X0D1
10DX 10D1þ 1

C

� ��1
X0

10

� �
D y�eð Þ:

3. Stop if jjwtþ1�wtjj þ jbtþ1�btj<e or t ¼ M; otherwise, set t ¼ t þ 1 and go
back to step 1.
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4. Return the current w and b.

Algorithm 1 is to minimize the function Fðw; bÞ defined in Eq. (11), which is similar
to the objective function for weighted least square regression with ridge penalty, except
that the weight matrix D change in each iteration. Thus, we call Algorithm 1 as the
Iteratively Reweighted Least Square L2-SVR or IRLS-SVR for short.

3.2. Nonlinear L2-SVR model

The idea of nonlinear SVR is to first map the predictor vector x by a nonlinear trans-
formation /ðxÞ to an associated high dimensional Hilbert space H; and then construct
a linear model in H of the form f ðxÞ ¼ w0/ðxÞ þ b: Let Kðu; vÞ ¼ /ðuÞ0/ðvÞ be the
associated kernel function which satisfies Mercer’s condition (Smola and Sch€olkopf
2004; Vapnik 1998). By the representation theorem (Kimeldorf and Wahba 1970), the
regression function could be written as a linear combination of kernel functions eval-
uated at the training examples, that is,

f xð Þ ¼
Xn
i¼1

biK x; xið Þ þ b ¼
Xn
i¼1

bi/ xið Þ0/ xð Þ þ b:

Hence, in the reproducing kernel Hilbert space, the regression coefficient vector is

w ¼
Xn
i¼1

bi/ xið Þ 2 H:

Therefore,

jjwjj2 ¼ w0w ¼
Xn
i¼1

Xn
j¼1

bibj/ xið Þ0/ xjð Þ ¼
Xn
i¼1

Xn
j¼1

bibjK xi; xjð Þ ¼ b0Kb;

where K is the n� n kernel matrix with Kij ¼ Kðxi; xjÞ; and b ¼ ðb1; :::; bnÞ0:
Similar to the linear model derived in Sec. 3.1, the optimization problem for asym-

metric nonlinear L2-SVR could be written as

min
b;b

F b; bð Þ ¼ 1
2
b0Kbþ 1

2
b2 þ C

2

Xn
i¼1

V� yi � f xið Þ� �
:

From the definition of V�ðxÞ; we can rewrite Fðb; bÞ as

F b; bð Þ ¼ 1
2
b0Kbþ 1

2
b2 þ C

2

Xn
i¼1

yi � Ki�b � b � eið Þ2di; (15)

where Ki� is the ith row of the kernel matrix K,

di ¼
wp; if yi � Ki�b � b>�;
0; if jyi � Ki�b � bj � �;
wn; if yi � Ki�b � b< � �;

8<
:

and
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ei ¼
�; if yi � Ki�b � b>�;
0; if jyi � Ki�b � bj � �;
� �; if yi � Ki�b � b< � �:

8<
:

In matrix form, Fðb; bÞ could be written as

F b; bð Þ ¼ 1
2
b0Kb þ 1

2
b2 þ C

2
y � Kb � b1 � eð Þ0D y � Kb � b1 � eð Þ; (16)

where 1, e, y, and D are defined in the same way as in Sec. 3.1.
To minimize Fðb; bÞ; we take gradient with respect to b and set it to be zero vector,

yielding

@F
@b

¼ Kb � CK0D y � Kb � b1 � eð Þ ¼ 0n;

where 0n is the zero vector in R
n: Since K is symmetric and invertible, we can simplify

the above equation as

I
C
þDK

� �
bþD1b ¼ D y � eð Þ; (17)

here I is the identify matrix of order n. Similarly, there is

@F
@b

¼ b � C10D y � Kb � b1 � eð Þ ¼ 0;

or

10DKbþ 10D1þ 1
C

� �
b ¼ 10D y � eð Þ: (18)

We write Eqs. (17) and (18) compactly as

I
C
þDK D1

10DK 10D1þ 1
C

0
BB@

1
CCA b

b

� �
¼ D y � eð Þ

10D y � eð Þ
� �

¼ I
10

� �
D y � eð Þ: (19)

Similar to the linear model, we can develop an iteratively reweighted least square
algorithm for asymmetric nonlinear L2-SVR. The resulting algorithm is only slightly dif-
ferent from Algorithm 1, thus we choose not to present it in detail.

3.3. Related works

There are some works in literature which applied the iteratively reweighted least square
(IRLS) strategy to SVM and related models. The most similar work to our method is
the one proposed in (P�erez-Cruz, Bouso~no-Calz�on, and Art�es-Rodr�ıguez 2005). Both
our paper and (P�erez-Cruz, Bouso~no-Calz�on, and Art�es-Rodr�ıguez 2005) write the
objective function as a quadratic function with the coefficients depending on the quanti-
ties of interest, thus there is no direct analytic solution, and the IRLS procedure was
invoked. The differences between our paper and (P�erez-Cruz, Bouso~no-Calz�on, and
Art�es-Rodr�ıguez 2005) are
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� The paper (P�erez-Cruz, Bouso~no-Calz�on, and Art�es-Rodr�ıguez 2005) deals with
the SVM classification model and the hinge loss function is used; while in our
paper, the model is for regression and the loss function is the asymmetric square
of e-insensitive function.

� The paper (P�erez-Cruz, Bouso~no-Calz�on, and Art�es-Rodr�ıguez 2005) approxi-
mates the hinge loss function by a new function that has an extra parameter K,
and this will introduce extra work in model selection stage. On the contrary, our
paper does not need any extra parameter.

� Our paper imposes the L2 penalty on the bias term b, which will make the
objective function strictly convex in b, while (P�erez-Cruz, Bouso~no-Calz�on, and
Art�es-Rodr�ıguez 2005) does not impose any constraint on b.

� To write the objective function in quadratic form, (P�erez-Cruz, Bouso~no-Calz�on,
and Art�es-Rodr�ıguez 2005) rewrites jxj as x2=jxj; and uses 1=jxj as the weight to
that term. However, if x is very close to zero, it will make the weight too big. To
prevent this situation from happening, (P�erez-Cruz, Bouso~no-Calz�on, and Art�es-
Rodr�ıguez 2005) uses a quadratic function to approximate hinge loss if x is close
to zero, but this introduces an extra parameter to the model. In our objective
function, the weights to the error terms are specified by the user, thus they will
not change in each iteration of the algorithm.

Another paper (Suykens et al. 2002) imposes weights to the errors in the least square
SVM for regression problems. The error function in (Suykens et al. 2002) is the square
of the prediction error, while in our paper the error function is the square of �-insensi-
tive function. Further, the weights to the errors in (Suykens et al. 2002) are determined
by some weight function, according to the sign and magnitude of the errors. Several
possible weight functions were compared in (De Brabanter et al. 2009). Although it is a
good property to automatically determine the weights, it is not the focus of the current
paper, hence we leave it as a part of future investigation.

4. Comparative studies

On two public regression datasets, we compare the performances of the proposed itera-
tively reweighted least square approach to several classical algorithms for L2-SVR in lit-
erature, in terms of predictive error and training time.

4.1. Experiment setup and performance measures

The considered algorithms include using a quadratic programing to solve Eq. (6), i.e.
QP-SVR, Lagrangian SVR (LSVR) (Balasundaram and Kapil 2010), and the smoothly
approximated L2-SVR (SSVR) (Lee, Hsieh, and Huang 2005).
The original LSVR (Balasundaram and Kapil 2010) only deals with symmetric

squared �-insensitive loss function, we generalize it to asymmetric squared �-insensitive
loss function as follows. Let matrix H be the matrix obtained by adding 1 to each elem-
ent of the kernel matrix K, that is
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H ¼ Kþ 110:

Define vectors r1 ¼ y � �1 and r2 ¼ � y � �1; and matrices

S ¼ Cwpwn
I
C þ wp þ wnð ÞH
� ��1 I

Cwp
þH

� �
;

P ¼ wp
I
C þ wp þ wnð ÞH
� ��1

Iþ CwnHð Þ;

and

R ¼ Q ¼ Cwpwn
I
C
þ wp þ wnð ÞH

� ��1

H:

Initialize u01 2 R
n and u02 2 R

n; then iteratively update u1 and u2 according to

utþ1
1 ¼ P r1 þ H ut1 � ut2

� �þ 1
Cwp

� c
� �

ut1 � r1

� �
þ

 !

þQ r2 þ �H ut1 � ut2
� �þ 1

Cwn
� c

� �
ut2 � r2

� �
þ

 !
;

and

utþ1
2 ¼ R r1 þ H ut1 � ut2

� �þ 1
Cwp

� c
� �

ut1 � r1

� �
þ

 !

þS r2 þ �H ut1 � ut2
� �þ 1

Cwn
� c

� �
ut2 � r2

� �
þ

 !
;

with 0<c< 2
maxfwp;wngC ; and the plus function ðxÞþ ¼ maxð0; xÞ: After convergence,

denote the solutions as u�1 ¼ ðu�1;1; u�1;2; :::; u�1;nÞ0 and u�2 ¼ ðu�2;1; u�2;2; :::; u�2;nÞ0; then the
finally obtained model is

f xð Þ ¼
Xn
i¼1

u�1;i � u�2;i
� �

K xi; xð Þ þ
Xn
i¼1

u�1;i � u�2;i
� �

:

In (Lee, Hsieh, and Huang 2005), the nondifferentiable function V�ðxÞ in L2-SVR was
smoothly approximated by a differentiable function

p2� x; sð Þ ¼ wp p x � �; sð Þð Þ2 þ wn p � x � �; sð Þð Þ2;
where

p x; sð Þ ¼ x þ 1
s
log 1þ e�sxð Þ;

and s>0 is called the smooth parameter. The objective function of L2-SVR optimization
problem for linear model could be approximated by

min
w;b

U�;s w; bð Þ ¼ 1
2

jjwjj2 þ b2
� �

þ C
2

Xn
i¼1

p2� yi � w0xi � b; s
� �

: (20)

For any s>0;U�;sðw; bÞ is twice differentiable, so it can be minimized by a Newton
algorithm. With s large enough, the solution to problem (20) will be a good
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approximation to the original linear L2-SVR model. This idea can be generalized to
nonlinear L2-SVR model.
In our experiments, all the involved algorithms were implemented in MATLAB, and

the core of QP-SVR was implemented based on the SVM toolbox of (Gunn 1997) with
the quadratic programing solver from the Cþþ version of LIBSVM (Chang and Lin
2011). All the experiments were conducted on a laptop computer with Interl(R)
Xeon(R) CPU with 2.00GHz and 8GB memory, with Windows 10 operating system
and MATLABVR R2015b as the platform. During all experiments that incorporated meas-
urement of running time, one core was used solely for the experiments, and the number
of other processes running on the system was minimized.
We compared all the algorithms with linear kernel and with the Gaussian kernel

K u; vð Þ ¼ exp � jju�vjj2
2r2

� 	

with r¼ 5. We set the parameter C¼ 100 and � ¼ 0:5 in the algorithms. In LSVR,
SSVR, and IRLS-SVR, the maximum number of iterations was set to be 1000, and the
tolerance level was set to be e ¼ 10�4: The smooth parameter in SSVR was set to be
s¼ 5 as suggested by (Lee, Hsieh, and Huang 2005). In the experiments, we set the
weight factors to be wp ¼ 2 and wn ¼ 1. The parameter setting in our experiment might
not be the optimal to achieve the smallest testing error. Nevertheless, our purpose is
not to achieve the optimal testing error, but to compare the performances of several L2-
SVR algorithms; therefore, the comparison is fair as long as the parameter settings are
the same for all the algorithms.
For each algorithm and each of the linear and nonlinear model, we partition the

whole dataset as training subset and testing subset, and use the average of asymmetric
squared �-insensitive error on the testing set as testing error, that is, we define

Error ¼ 1
Ntest

XNtest

i¼1

V� yi � f̂ xið Þ
� �

;

where V�ð�Þ is defined as in Eq. (7), f̂ ð�Þ is the fitted regression function, and Ntest is
the size of the testing set.

Table 1. The performance of the proposed IRLS-SVR, the quadratic programing based SVR (QP-SVR),
Smooth SVR (SSVR), and Lagrangian SVR (LSVR) on the house dataset. For different training set sizes
(Ntr), we list the mean values of the asymmetric squared �-insensitive error on testing set of 100
runs, with the standard deviations listed in parentheses. The best performance is marked in bold.
Ntr Kernel QP-SVR SSVR LSVR IRLS-SVR

100 Linear 0.6217 (0.0958) 0.5572 (0.1204) 0.1857 (0.0801) 0.7666 (0.1383)
Gaussian 0.1506 (0.0687) 0.1219 (0.0586) 0.1512 (0.0699) 0.1506 (0.0687)

200 Linear 0.2492 (0.0880) 0.2260 (0.0851) 0.1255 (0.0825) 0.2493 (0.0880)
Gaussian 0.0806 (0.0448) 0.0638 (0.0463) 0.0805 (0.0450) 0.0806 (0.0448)

300 Linear 0.1052 (0.0674) 0.0991 (0.0581) 0.1016 (0.0560) 0.1086 (0.0696)
Gaussian 0.0599 (0.0452) 0.0492 (0.0465) 0.0609 (0.0456) 0.0599 (0.0452)

400 Linear 0.0854 (0.0757) 0.0821 (0.0706) 0.0839 (0.0697) 0.0854 (0.0757)
Gaussian 0.0495 (0.0424) 0.0393 (0.0443) 0.0518 (0.0435) 0.0495 (0.0424)
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4.2. Boston house dataset

The Boston house dataset is available at http://lib.stat.cmu.edu/datasets/boston_cor-
rected.txt. This dataset concerns the median house price in suburb of Boston area with
506 observations, and there are 12 non-constant continuous predictor variables. We
normalize the predictor variables and the response variable to have zero mean and unit
standard deviation.
For different training set sizes (100, 200, 300, and 400), we randomly partition the

whole dataset into training set and testing set, and evaluate the performance of the
trained model on the testing set. The partition-training-testing process is repeated 100
times for each algorithm and each model.
Table 1 reports the testing accuracy for different models and different training set

sizes. We observe that for all the training set sizes, overall, SSVR has the best testing
accuracies, while the other three methods roughly have testing errors on the same level,
for either linear or nonlinear model. We also note that for each problem, the nonlinear
model has better testing accuracies. Table 2 presents the training time of each model,
and we clearly observe the speed advantage of the proposed IRLS-SVR, which is often
the most time-efficient in training, with hundreds to thousands of times faster than QP-
SVR and tens to hundreds of times faster than SSVR and LSVR.
To further investigate the convergence property of IRLS-SVR, for the 100 runs, we

calculate the average number of iterations needed to converge for both linear and non-
linear models with different training set sizes, and the results are given in Table 3. We
see that in general, the IRLS-SVR for linear model converges in 20 iterations, with only
one exception; for nonlinear model with Gaussian kernel, it needs about 10 iterations to
converge. For one run with linear model and training set size 200, the objective func-
tion values are (1787.53, 1036.95, 887.73, 862.63, 796.78, 795.39, 771.47, 762.24, 762.22,
762.22), calculated according to Eq. (8) or (11). Similarly, for one run with Gaussian
kernel and training set size 200, the objective function values are (430.29, 276.43,
205.83, 191.00, 112.72, 111.68, 111.48, 111.48), calculated from Eq. (15) or (16). These

Table 2. The average and standard deviation of the training time (in seconds) of 100 runs for differ-
ent training set sizes (Ntr), different models, and each of the considered algorithms. The best per-
formance is given in bold.
Ntr Kernel QP-SVR SSVR LSVR IRLS-SVR

100 Linear 2.9706 (0.0469) 0.0106 (0.0236) 0.1842 (0.0331) 0.0175 (0.2194)
Gaussian 2.9703 (0.0190) 1.5003 (0.0994) 0.1900 (0.0343) 0.0117 (0.0256)

200 Linear 23.5717 (0.1368) 0.0106 (0.0236) 0.3262 (0.0435) 0.0088 (0.0518)
Gaussian 23.9303 (0.1061) 4.4991 (0.3198) 0.3398 (0.0554) 0.0419 (0.0306)

300 Linear 80.8072 (0.3055) 0.0289 (0.0443) 0.5780 (0.0736) 0.0206 (0.1005)
Gaussian 82.2417 (0.3130) 10.6422 (0.5912) 0.5542 (0.0601) 0.0838 (0.0321)

400 Linear 196.7608 (0.4135) 0.0409 (0.0418) 1.5311 (0.0700) 0.0113 (0.0279)
Gaussian 200.5756 (0.5835) 27.3947 (0.8335) 1.5239 (0.0709) 0.2006 (0.0350)

Table 3. The average number of iterations needed for IRLS-SVR to converge on house dataset.
Ntr 100 200 300 400

Kernel Linear 122.45 10.57 18.65 13.41
Gaussian 7.35 8.74 9.48 10.19
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results indicate that indeed, the objective function decreases monotonically and becomes
stable at the end.

4.3. The comp-activ dataset

The comp-activ dataset is a collection of a computer system activity measures, please
refer to http://www.cs.toronto.edu/	delve/data/comp-activ/compActivDetail.html for
detailed description of the dataset. The dataset contains 8192 data points and 25 numer-
ical attributes. Same as in Sec. 4.2, we normalize the predictors and response to have
zero mean and unit standard deviation.
We first implement the “cpuSmall Prototask” which involves using 12 attributes to

predict what fraction of a CPU’s processing time is devoted to a specific mode (“user
mode”). For different training set sizes (200, 400, 600, and 800), we repeat the experi-
ment in Sec. 4.2. Table 4 gives the average testing errors along with corresponding
standard deviations for each training set size. It is evident from Table 4 that for either
linear or nonlinear model, IRLS-SVR and QP-SVR have essentially the same testing
errors; IRLS-SVR sometimes has better performance than LSVR and sometimes has
worse performance, but the testing errors are on the same level; SSVR is not stable on
this problem in the sense that sometimes SSVR has very good performance while some-
times the performance is very poor. In general, we can say that IRLS-SVR has similar
testing errors as state-of-the-art algorithms on this task.
Table 5 shows the training time (in seconds) of the considered algorithms on the

“cpuSmall Prototask”, with the best marked in bold. As we have observed in Sec. 4.2,
IRLS-SVR is the most time efficient among the considered algorithms: it is often hun-
dreds to thousands of times faster than QP-SVR, and tens to hundreds of times faster

Table 4. Testing errors of different algorithms on “cpuSmall Prototask”. See the caption of Table 1
for more information.
Ntr Kernel QP-SVR SSVR LSVR IRLS-SVR

200 Linear 0.5513 (0.2770) 0.6240 (0.3100) 0.3761 (0.3241) 0.5487 (0.2657)
Gaussian 0.0415 (0.0165) 0.0416 (0.0207) 0.0417 (0.0161) 0.0415 (0.0165)

400 Linear 0.2598 (0.1828) 0.2622 (0.1583) 0.2408 (0.1281) 0.2598 (0.1828)
Gaussian 0.0270 (0.0101) 0.0285 (0.0102) 0.0283 (0.0112) 0.0270 (0.0101)

600 Linear 0.1421 (0.1262) 0.1509 (0.1453) 0.1397 (0.1197) 0.1421 (0.1262)
Gaussian 0.0180 (0.0054) 0.6315 (0.0113) 0.0208 (0.0069) 0.0180 (0.0054)

800 Linear 0.1197 (0.0664) 0.1261 (0.0771) 0.1188 (0.0641) 0.1197 (0.0664)
Gaussian 0.0147 (0.0055) 0.0183 (0.0067) 0.0198 (0.0083) 0.0147 (0.0055)

Table 5. Training time of different algorithms on “cpuSmall Prototask”. See the caption of Table 2
for more information.
Ntr Kernel QP-SVR SSVR LSVR IRLS-SVR

200 Linear 23.4870 (0.1831) 0.0094 (0.0224) 0.3284 (0.0485) 0.0073 (0.0289)
Gaussian 23.9792 (0.1019) 4.5348 (0.3599) 0.3231 (0.0445) 0.0372 (0.0313)

400 Linear 195.9945 (0.7452) 0.0323 (0.0467) 1.5802 (0.0849) 0.0056 (0.0180)
Gaussian 201.4255 (0.7670) 1405.0278 (6.6358) 1.5711 (0.0853) 0.2194 (0.0391)

600 Linear 660.6458 (3.4306) 0.0480 (0.0371) 5.1578 (0.1197) 0.0042 (0.0155)
Gaussian 682.1614 (4.6342) 2291.6955 (17.4476) 5.1494 (0.1295) 0.5444 (0.0798)

800 Linear 1591.5236 (7.3074) 0.0705 (0.0224) 8.9169 (0.1645) 0.0059 (0.0210)
Gaussian 1647.2656 (5.3049) 3834.8484 (388.1649) 8.8584 (0.1668) 1.0664 (0.1248)
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than LSVR or SSVR. We notice that SSVR sometimes spent extremely long time in
training, that is because in these situations, the program reports that “a matrix has very
small condition number”, such that the SSVR algorithm actually did not converge, and
this also explains the fluctuation of the testing errors given in Table 4. This problem
did not happen to LSVR or IRLS-SVR.
Table 6 lists the average number of iterations needed for IRLS-SVR to converge with

different training set sizes and different models on “cpuSmall Prototask”. We see that
the algorithm in general converges very fast, with about 10 iterations for linear model
and slightly more than 10 iterations for nonlinear model with Gaussian kernel. The evo-
lution of objective function shows similar pattern as in Sec. 4.2, we thus choose not to
list them out.
We repeat the same experiment on the “cpu Prototask” which involves using 21 pre-

dictors. Table 7 gives the prediction accuracies and Table 8 shows the average training
time for different algorithms and different training set sizes, along with corresponding
standard deviations. From Tables 7 and 8, we observe the same pattern as we observed

Table 6. The average number of iterations needed for IRLS-SVR to converge on
“cpuSmall Prototask”.
Ntr 200 400 600 800

Kernel Linear 8.59 7.79 7.74 7.46
Gaussian 9.95 10.72 11.34 11.43

Table 7. Testing errors of different algorithms on “cpu Prototask”. See the caption of Table 1 for
more information.
Ntr Kernel QP-SVR SSVR LSVR IRLS-SVR

200 Linear 0.6130 (0.0741) 0.6997 (0.0905) 0.4104 (0.0831) 0.6133 (0.0742)
Gaussian 0.0764 (0.0206) 0.6319 (0.0056) 0.0763 (0.0206) 0.0764 (0.0206)

400 Linear 0.2330 (0.0310) 0.2593 (0.0374) 0.2096 (0.0255) 0.2330 (0.0310)
Gaussian 0.0530 (0.0091) 0.6324 (0.0075) 0.0559 (0.0119) 0.0530 (0.0091)

600 Linear 0.1604 (0.1518) 0.1736 (0.0792) 0.1498 (0.1263) 0.1604 (0.1518)
Gaussian 0.0433 (0.0062) 0.6322 (0.0084) 0.0479 (0.0102) 0.0433 (0.0062)

800 Linear 0.1413 (0.1163) 0.1528 (0.1402) 0.1374 (0.1074) 0.1413 (0.1163)
Gaussian 0.0377 (0.0064) 0.6342 (0.0107) 0.0433 (0.0099) 0.0377 (0.0064)

Table 8. Training time of different algorithms on “cpu Prototask”. See the caption of Table 2 for
more information.
Ntr Kernel QP-SVR SSVR LSVR IRLS-SVR

200 Linear 23.5217 (0.1881) 0.0150 (0.0268) 0.3564 (0.0482) 0.0131 (0.0481)
Gaussian 23.9583 (0.0603) 359.2459 (3.0075) 0.3327 (0.0435) 0.0408 (0.0355)

400 Linear 196.4898 (1.5512) 0.0331 (0.0401) 1.5527 (0.0927) 0.0063 (0.0221)
Gaussian 201.7123 (1.4944) 1377.9845 (13.2132) 1.5317 (0.1058) 0.2252 (0.0463)

600 Linear 661.3625 (3.0038) 0.0597 (0.0333) 5.1422 (0.2089) 0.0072 (0.0225)
Gaussian 681.6570 (1.4053) 2295.7286 (9.1175) 5.0747 (0.0983) 0.5344 (0.0638)

800 Linear 1594.4356 (8.0163) 0.0883 (0.0336) 8.8941 (0.1566) 0.0094 (0.0267)
Gaussian 1649.2527 (14.1445) 3899.5744 (27.3398) 8.8919 (0.1556) 1.0731 (0.1214)

Table 9. The average number of iterations needed for IRLS-SVR to converge on “CPU Prototask”.
Ntr 200 400 600 800

Kernel Linear 21.68 8.19 7.69 7.57
Gaussian 9.95 11.02 11.45 11.80
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from the experiments on the Boston house data and “cpuSmall prototask”, that is, the
proposed IRLS-SVR has similar prediction accuracy as the alternatives in literature,
while it is much faster in training. Table 9 lists the average number of iterations needed
for IRLS-SVR to converge with different training set sizes and different models. We see
that the algorithm in general converges with about 10 iterations for linear model and
slightly more than 10 iterations for nonlinear model with Gaussian kernel.
In summary, our comparisons show that the proposed IRLS-SVR achieves testing

errors comparable to the state-of-the-arts, although not always the best. However,
compared to alternatives, IRLS-SVR is always the most time-efficient algorithm in
training. On the tested datasets, IRLS-SVR is often several hundreds to thousands of
times faster than QP-SVR in training; compared to SSVR and LSVR, IRLS-SVR is
often tens to hundreds of times faster for nonlinear model and several times faster for
linear model.

5. Conclusions and future works

The introduction of squared �-insensitive loss function to support vector regression
(SVR) makes the optimization problem strictly convex with simpler constraints.
However, the model formulation leads to a quadratic programing, which is computa-
tionally expensive to solve. This paper gives an attempt to train the L2-SVR model by
directly minimizing the primal form of the optimization problem. We reformulate the
problem as a weighted least square regression, with the weights determined by the cur-
rent estimated parameter. Based on this new formulation, an iteratively reweighted least
square (IRLS) based L2-SVR algorithm was proposed.
Experiments were conducted on several publicly available datasets, and we compared

the performance of the proposed IRLS-SVR to that of the quadratic programing based
SVR (QP-SVR), Lagrangian SVR (LSVR), and Smoothed SVR (SSVR), in terms of test-
ing accuracy and the training time. Our results show that IRLS-SVR has very similar
testing error as the state-of-the-arts, for either linear or nonlinear model. However,
compared to alternative methods, IRLS-SVR is much faster in training. Specifically,
IRLS-SVR is hundreds to thousands of times faster than QP-SVR for both linear and
nonlinear models, and compared to SSVR and LSVR, IRLS-SVR is tens to hundreds of
times faster for nonlinear model and several times faster for linear model.
There are several aspects of the proposed algorithm which deserve further investiga-

tion. Firstly, in this paper, we experimentally verified that the proposed IRLS-SVR algo-
rithm converges quickly, however, there is a need to investigate the convergence
property theoretically. Secondly, the proposed approach can be easily generalized to
SVR models with different weights for each data point (Han and Clemmensen 2014),
and it could also be generalized such that the weight for each data point is automatic-
ally determined, similar to the works in (De Brabanter et al. 2009; Suykens et al. 2002).
Due to the limitation of the available computing resource, we did not test the proposed
IRLS-SVR on very large datasets. Hence, thirdly, we would like to test IRLS-SVR on
some large datasets as used in (Ho and Lin 2012), and compare the performance with
the alternatives (Ho and Lin 2012; Mangasarian and Musicant 2002).
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