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In college calculus, it is well known that the alternating harmonic series converges to ln 2,
that is
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In this note, we consider a generalized version of the alternating harmonic series. For a
positive integer k, we consider the series
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We will derive the analytic expression for Sk, and study its relationship to the Harmonic
number
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1 Closed Form for Sk

By defining

an(k) =
1

(n− 1)k + 1
+

1

(n− 1)k + 2
+ · · ·+ 1

(n− 1)k + k
= Hnk −H(n−1)k, (1)

where we denote H0 = 0, we have

Sk =
∞∑
n=1

(−1)n−1an(k). (2)

Clearly an(k) > 0 and decreases to 0 as n increases, thus Sk is well-defined.
We first note that the harmonic number has an integral expression
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Thus, an(k) defined in Eq. (1) is

an(k) = Hnk −H(n−1)k =
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By Eq. (2),
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Now, we need the following formula∫ 1
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k

for k > m > 0. (4)

Eq. (4) is on page 323, formula 3.244.1 in the book by I.S. Gradshteyn and I.M. Ryzhik,
Table of Integrals, Series, and Products, Seventh Edition, Academic Press, 2007.

We can rewrite Eq. (3) as
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In summary, the closed form for Sk is given as

Sk =
k−1∑
m=1

π

2k sin mπ
k

+
1

k
ln 2. (7)

2 Relationship between Sk and Hk

In Eq. (3), since 1 < 1 + xk < 2, we have

Sk =

∫ 1

0

1 + x+ · · ·+ xk−1

1 + xk
dx <
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0

(1 + x+ · · ·+ xk−1)dx = Hk
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and

Sk =

∫ 1

0

1 + x+ · · ·+ xk−1

1 + xk
dx >

1

2

∫ 1

0

(1 + x+ · · ·+ xk−1)dx =
1

2
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for all k. This is to say that we can bound Sk by Hk as

1

2
Hk < Sk < Hk.

By our notations in Eq. (1) and (2), we have

Dk = Hk − Sk = Hk −
∞∑
n=1

(−1)n−1an(k) = −
∞∑
n=2

(−1)n−1an(k) =
∞∑
n=2

(−1)nan(k)

=
∞∑
n=1

(−1)n+1an+1(k) =
∞∑
n=1

(−1)n+1[H(n+1)k −Hnk]. (8)

From part (a), Dk exist for every k.
If k is large, there is approximation to the harmonic number

Hnk ≈ lnnk + γ and H(n+1)k ≈ ln(n+ 1)k + γ,

where γ is the Euler-Mascheroni constant. Therefore

H(n+1)k −Hnk ≈ ln
n+ 1

n
.

Thus for large k, we have

Dk ≈
∞∑
n=1

(−1)n+1 ln
n+ 1

n
=

∞∏
m=1

(2m)2

(2m− 1)(2m+ 1)
= ln

π

2
,

where we used the Wallis formula

π

2
=

∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
.

Therefore, we would conjecture that limk→∞(Hk − Sk) = ln π
2
. We will prove it is indeed

so. For this purpose, consider the 2m partial sum

D2m,k =
2m∑
n=1

(−1)n+1an+1(k) =
2m∑
n=1

(−1)n+1[H(n+1)k −Hnk].

From the discussion in part (a), we know that D2m,k is increasing in m, and the limit
Dk > D2m,k for any m.

In the following, we will prove that for any ϵ > 0, |Dk − ln(π/2)| < 3ϵ for k larger than
some K.

3



Step I: Note that

H(n+1)k −Hnk =

∫ 1

0

1− x(n+1)k
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dx−

∫ 1

0
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=

∫ 1
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0
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Then, the tail sum is

Dk −D2m,k =
∞∑

n=2m+1

(−1)n+1[H(n+1)k −Hnk] =
∞∑

n=2m+1

(−1)n+1

∫ 1

0

xnk 1− xk

1− x
dx

= −
∞∑

n=2m+1

∫ 1

0

(
−xk

)n 1− xk

1− x
dx = −

∫ 1

0

∞∑
n=2m+1

(
−xk

)n 1− xk

1− x
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=

∫ 1

0

xk(2m+1)

1 + xk

1− xk

1− x
dx =

∫ 1

0

xk(2m+1)1 + x+ · · ·+ xk−1

1 + xk
dx

<

∫ 1

0

xk(2m+1)kdx =
k

k(2m+ 1) + 1
<

1

2m+ 1
.

Thus, for any ϵ > 0, there is an N1 such that for all n > N1,

Dk −D2n,k < Dk −D2N1,k < ϵ (9)

for any k, where the first inequality follows from the increasing property of D2m,k.
Step II: Recall that the product of positive real numbers

∏∞
n=1 an converges to a nonzero

real number if and only if the sum
∑∞

n=1 ln an converges. That is, for any ϵ > 0, there is an
N2 such that ∣∣∣∣∣ln ∏

n>N2

an

∣∣∣∣∣ =
∣∣∣∣∣∑
n>N2

ln an

∣∣∣∣∣ < ϵ.

Applying this principle to Wallis formula

π

2
=

∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
,

we have the conclusion that, for any ϵ > 0, there is an N2, such that∣∣∣∣∣ln ∏
n>N2

(2n)2

(2n− 1)(2n+ 1)

∣∣∣∣∣ < ϵ. (10)
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Step III: Fix N = max{N1, N2}. We now consider the 2N partial sum of Eq. (8),

D2N,k =
2N∑
n=1

(−1)n+1[H(n+1)k −Hnk]

= (H2k −Hk)− (H3k −H2k) + (H4k −H3k)− (H5k −H4k)

+ · · ·+ (H2Nk −H(2N−1)k)− (H(2N+1)k −H2Nk)

=
N∑

n=1

[(H2nk −H(2n−1)k)− (H(2n+1)k −H2nk)]

Since Hn − lnn → γ as n → ∞, where γ is the Euler-Mascheroni constant, for any given ϵ,
there is a K, such that for all k > K, (recall that N is fixed)

ln k + γ − ϵ/(4N) < Hk < ln k + γ + ϵ/(4N).

In particular, for any n ≥ 1,

ln(2n) + ln k + γ − ϵ/(4N) < H2nk < ln(2n) + ln k + γ + ϵ/(4N),

ln(2n− 1) + ln k + γ − ϵ/(4N) < H(2n−1)k < ln(2n− 1) + ln k + γ + ϵ/(4N),

and

ln(2n+ 1) + ln k + γ − ϵ/(4N) < H(2n+1)k < ln(2n+ 1) + ln k + γ + ϵ/(4N).

Therefore,

ln
2n

2n− 1
− ϵ/(2N) < H2nk −H(2n−1)k < ln

2n

2n− 1
+ ϵ/(2N),

and

ln
2n+ 1

2n
− ϵ/(2N) < H(2n+1)k −H2nk < ln

2n+ 1

2n
+ ϵ/(2N).

Consequently,

ln
(2n)2

(2n− 1)(2n+ 1)
+ϵ/N < (H2nk−H(2n−1)k)−(H(2n+1)k−H2nk) < ln

(2n)2

(2n− 1)(2n+ 1)
+ϵ/N

that is

−ϵ/N < [(H2nk −H(2n−1)k)− (H(2n+1)k −H2nk)]− ln
(2n)2

(2n− 1)(2n+ 1)
< ϵ/N. (11)

Summing up Eq. (11), we have

−ϵ < D2N,k − ln
N∏

n=1

(2n)2

(2n− 1)(2n+ 1)
< ϵ,
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or ∣∣∣∣∣D2N,k − ln
N∏

n=1

(2n)2

(2n− 1)(2n+ 1)

∣∣∣∣∣ < ϵ. (12)

Finally, combining Eqs. (9), (10), (12), we have that for any ϵ > 0, there is a K, such
that for k > K,

∣∣∣Dk − ln
π

2

∣∣∣ = ∣∣∣∣∣Dk −D2N,k +D2N,k − ln
N∏

n=1

(2n)2

(2n− 1)(2n+ 1)
− ln

∏
n>N

(2n)2

(2n− 1)(2n+ 1)

∣∣∣∣∣
≤ |Dk −D2N,k|+

∣∣∣∣∣D2N,k − ln
N∏

n=1

(2n)2

(2n− 1)(2n+ 1)

∣∣∣∣∣+
∣∣∣∣∣ln ∏

n>N

(2n)2

(2n− 1)(2n+ 1)

∣∣∣∣∣
< 3ϵ, (13)

which proves that

lim
k→∞

(Hk − Sk) = lim
k→∞

Dk = ln
π

2
.

6


