A Generalized Alternating Harmonic Series

Songfeng Zheng
Department of Mathematics, Missouri State Universtiy

In college calculus, it is well known that the alternating harmonic series converges to $\ln 2$, that is

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\ln 2
$$

In this note, we consider a generalized version of the alternating harmonic series. For a positive integer k, we consider the series

$$
\begin{aligned}
S_{k} & =\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}\right)-\left(\frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{2 k}\right) \\
& +\left(\frac{1}{2 k+1}+\frac{1}{2 k+2}+\cdots+\frac{1}{3 k}\right)-\left(\frac{1}{3 k+1}+\frac{1}{3 k+2}+\cdots+\frac{1}{4 k}\right) \pm \cdots
\end{aligned}
$$

We will derive the analytic expression for S_{k}, and study its relationship to the Harmonic number

$$
H_{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}=\sum_{m=1}^{k} \frac{1}{m}
$$

1 Closed Form for S_{k}

By defining

$$
\begin{equation*}
a_{n}(k)=\frac{1}{(n-1) k+1}+\frac{1}{(n-1) k+2}+\cdots+\frac{1}{(n-1) k+k}=H_{n k}-H_{(n-1) k}, \tag{1}
\end{equation*}
$$

where we denote $H_{0}=0$, we have

$$
\begin{equation*}
S_{k}=\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}(k) \tag{2}
\end{equation*}
$$

Clearly $a_{n}(k)>0$ and decreases to 0 as n increases, thus S_{k} is well-defined.
We first note that the harmonic number has an integral expression

$$
\begin{aligned}
H_{n} & =1+\frac{1}{2}+\cdots+\frac{1}{n}=\int_{0}^{1} d x+\int_{0}^{1} x d x+\cdots+\int_{0}^{1} x^{n-1} d x \\
& =\int_{0}^{1}\left(1+x+\cdots+x^{n-1}\right) d x=\int_{0}^{1} \frac{1-x^{n}}{1-x} d x .
\end{aligned}
$$

Thus, $a_{n}(k)$ defined in Eq. (1) is

$$
\begin{aligned}
a_{n}(k) & =H_{n k}-H_{(n-1) k}=\int_{0}^{1} \frac{1-x^{n k}}{1-x} d x-\int_{0}^{1} \frac{1-x^{(n-1) k}}{1-x} d x \\
& =\int_{0}^{1} \frac{x^{(n-1) k}-x^{n k}}{1-x} d x=\int_{0}^{1} x^{(n-1) k} \frac{1-x^{k}}{1-x} d x
\end{aligned}
$$

By Eq. (2),

$$
\begin{align*}
S_{k} & =\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}(k)=\sum_{n=1}^{\infty}(-1)^{n-1} \int_{0}^{1} x^{(n-1) k} \frac{1-x^{k}}{1-x} d x \\
& =\sum_{n=1}^{\infty} \int_{0}^{1}\left(-x^{k}\right)^{n-1} \frac{1-x^{k}}{1-x} d x=\int_{0}^{1} \sum_{n=1}^{\infty}\left(-x^{k}\right)^{n-1} \frac{1-x^{k}}{1-x} d x \\
& =\int_{0}^{1} \frac{1}{1+x^{k}} \frac{1-x^{k}}{1-x} d x=\int_{0}^{1} \frac{1+x+\cdots+x^{k-1}}{1+x^{k}} d x . \tag{3}
\end{align*}
$$

Now, we need the following formula

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{m-1}+x^{k-m-1}}{1+x^{k}} d x=\frac{\pi}{k \sin \frac{m \pi}{k}} \quad \text { for } k>m>0 \tag{4}
\end{equation*}
$$

Eq. (4) is on page 323, formula 3.244 .1 in the book by I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Seventh Edition, Academic Press, 2007.

We can rewrite Eq. (3) as

$$
\begin{align*}
S_{k} & =\sum_{m=1}^{k-1} \int_{0}^{1} \frac{x^{m-1}}{1+x^{k}} d x+\int_{0}^{1} \frac{x^{k-1}}{1+x^{k}} d x=\sum_{m=1}^{k-1} \int_{0}^{1} \frac{x^{m-1}}{1+x^{k}} d x+\frac{1}{k} \ln 2 \\
& =\frac{1}{2} \sum_{m=1}^{k-1} \int_{0}^{1} \frac{x^{m-1}+x^{k-m-1}}{1+x^{k}} d x+\frac{1}{k} \ln 2 \tag{5}\\
& =\sum_{m=1}^{k-1} \frac{\pi}{2 k \sin \frac{m \pi}{k}}+\frac{1}{k} \ln 2 . \tag{6}
\end{align*}
$$

In summary, the closed form for S_{k} is given as

$$
\begin{equation*}
S_{k}=\sum_{m=1}^{k-1} \frac{\pi}{2 k \sin \frac{m \pi}{k}}+\frac{1}{k} \ln 2 . \tag{7}
\end{equation*}
$$

2 Relationship between S_{k} and H_{k}

In Eq. (3), since $1<1+x^{k}<2$, we have

$$
S_{k}=\int_{0}^{1} \frac{1+x+\cdots+x^{k-1}}{1+x^{k}} d x<\int_{0}^{1}\left(1+x+\cdots+x^{k-1}\right) d x=H_{k}
$$

and

$$
S_{k}=\int_{0}^{1} \frac{1+x+\cdots+x^{k-1}}{1+x^{k}} d x>\frac{1}{2} \int_{0}^{1}\left(1+x+\cdots+x^{k-1}\right) d x=\frac{1}{2} H_{k}
$$

for all k. This is to say that we can bound S_{k} by H_{k} as

$$
\frac{1}{2} H_{k}<S_{k}<H_{k} .
$$

By our notations in Eq. (1) and (2), we have

$$
\begin{align*}
D_{k}=H_{k}-S_{k} & =H_{k}-\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}(k)=-\sum_{n=2}^{\infty}(-1)^{n-1} a_{n}(k)=\sum_{n=2}^{\infty}(-1)^{n} a_{n}(k) \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} a_{n+1}(k)=\sum_{n=1}^{\infty}(-1)^{n+1}\left[H_{(n+1) k}-H_{n k}\right] . \tag{8}
\end{align*}
$$

From part (a), D_{k} exist for every k.
If k is large, there is approximation to the harmonic number

$$
H_{n k} \approx \ln n k+\gamma \quad \text { and } \quad H_{(n+1) k} \approx \ln (n+1) k+\gamma
$$

where γ is the Euler-Mascheroni constant. Therefore

$$
H_{(n+1) k}-H_{n k} \approx \ln \frac{n+1}{n}
$$

Thus for large k, we have

$$
D_{k} \approx \sum_{n=1}^{\infty}(-1)^{n+1} \ln \frac{n+1}{n}=\prod_{m=1}^{\infty} \frac{(2 m)^{2}}{(2 m-1)(2 m+1)}=\ln \frac{\pi}{2},
$$

where we used the Wallis formula

$$
\frac{\pi}{2}=\prod_{n=1}^{\infty} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}
$$

Therefore, we would conjecture that $\lim _{k \rightarrow \infty}\left(H_{k}-S_{k}\right)=\ln \frac{\pi}{2}$. We will prove it is indeed so. For this purpose, consider the $2 m$ partial sum

$$
D_{2 m, k}=\sum_{n=1}^{2 m}(-1)^{n+1} a_{n+1}(k)=\sum_{n=1}^{2 m}(-1)^{n+1}\left[H_{(n+1) k}-H_{n k}\right] .
$$

From the discussion in part (a), we know that $D_{2 m, k}$ is increasing in m, and the limit $D_{k}>D_{2 m, k}$ for any m.

In the following, we will prove that for any $\epsilon>0,\left|D_{k}-\ln (\pi / 2)\right|<3 \epsilon$ for k larger than some K.

Step I: Note that

$$
\begin{aligned}
H_{(n+1) k}-H_{n k} & =\int_{0}^{1} \frac{1-x^{(n+1) k}}{1-x} d x-\int_{0}^{1} \frac{1-x^{n k}}{1-x} d x \\
& =\int_{0}^{1} \frac{x^{n k}-x^{(n+1) k}}{1-x} d x=\int_{0}^{1} x^{n k} \frac{1-x^{k}}{1-x} d x
\end{aligned}
$$

Then, the tail sum is

$$
\begin{aligned}
D_{k}-D_{2 m, k} & =\sum_{n=2 m+1}^{\infty}(-1)^{n+1}\left[H_{(n+1) k}-H_{n k}\right]=\sum_{n=2 m+1}^{\infty}(-1)^{n+1} \int_{0}^{1} x^{n k} \frac{1-x^{k}}{1-x} d x \\
& =-\sum_{n=2 m+1}^{\infty} \int_{0}^{1}\left(-x^{k}\right)^{n} \frac{1-x^{k}}{1-x} d x=-\int_{0}^{1} \sum_{n=2 m+1}^{\infty}\left(-x^{k}\right)^{n} \frac{1-x^{k}}{1-x} d x \\
& =\int_{0}^{1} \frac{x^{k(2 m+1)}}{1+x^{k}} \frac{1-x^{k}}{1-x} d x=\int_{0}^{1} x^{k(2 m+1)} \frac{1+x+\cdots+x^{k-1}}{1+x^{k}} d x \\
& <\int_{0}^{1} x^{k(2 m+1)} k d x=\frac{k}{k(2 m+1)+1}<\frac{1}{2 m+1} .
\end{aligned}
$$

Thus, for any $\epsilon>0$, there is an N_{1} such that for all $n>N_{1}$,

$$
\begin{equation*}
D_{k}-D_{2 n, k}<D_{k}-D_{2 N_{1}, k}<\epsilon \tag{9}
\end{equation*}
$$

for any k, where the first inequality follows from the increasing property of $D_{2 m, k}$.
Step II: Recall that the product of positive real numbers $\prod_{n=1}^{\infty} a_{n}$ converges to a nonzero real number if and only if the sum $\sum_{n=1}^{\infty} \ln a_{n}$ converges. That is, for any $\epsilon>0$, there is an N_{2} such that

$$
\left|\ln \prod_{n>N_{2}} a_{n}\right|=\left|\sum_{n>N_{2}} \ln a_{n}\right|<\epsilon .
$$

Applying this principle to Wallis formula

$$
\frac{\pi}{2}=\prod_{n=1}^{\infty} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}
$$

we have the conclusion that, for any $\epsilon>0$, there is an N_{2}, such that

$$
\begin{equation*}
\left|\ln \prod_{n>N_{2}} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}\right|<\epsilon \tag{10}
\end{equation*}
$$

Step III: Fix $N=\max \left\{N_{1}, N_{2}\right\}$. We now consider the $2 N$ partial sum of Eq. (8),

$$
\begin{aligned}
D_{2 N, k} & =\sum_{n=1}^{2 N}(-1)^{n+1}\left[H_{(n+1) k}-H_{n k}\right] \\
& =\left(H_{2 k}-H_{k}\right)-\left(H_{3 k}-H_{2 k}\right)+\left(H_{4 k}-H_{3 k}\right)-\left(H_{5 k}-H_{4 k}\right) \\
& +\cdots+\left(H_{2 N k}-H_{(2 N-1) k}\right)-\left(H_{(2 N+1) k}-H_{2 N k}\right) \\
& =\sum_{n=1}^{N}\left[\left(H_{2 n k}-H_{(2 n-1) k}\right)-\left(H_{(2 n+1) k}-H_{2 n k}\right)\right]
\end{aligned}
$$

Since $H_{n}-\ln n \rightarrow \gamma$ as $n \rightarrow \infty$, where γ is the Euler-Mascheroni constant, for any given ϵ, there is a K, such that for all $k>K$, (recall that N is fixed)

$$
\ln k+\gamma-\epsilon /(4 N)<H_{k}<\ln k+\gamma+\epsilon /(4 N) .
$$

In particular, for any $n \geq 1$,

$$
\begin{gathered}
\ln (2 n)+\ln k+\gamma-\epsilon /(4 N)<H_{2 n k}<\ln (2 n)+\ln k+\gamma+\epsilon /(4 N) \\
\ln (2 n-1)+\ln k+\gamma-\epsilon /(4 N)<H_{(2 n-1) k}<\ln (2 n-1)+\ln k+\gamma+\epsilon /(4 N)
\end{gathered}
$$

and

$$
\ln (2 n+1)+\ln k+\gamma-\epsilon /(4 N)<H_{(2 n+1) k}<\ln (2 n+1)+\ln k+\gamma+\epsilon /(4 N) .
$$

Therefore,

$$
\ln \frac{2 n}{2 n-1}-\epsilon /(2 N)<H_{2 n k}-H_{(2 n-1) k}<\ln \frac{2 n}{2 n-1}+\epsilon /(2 N)
$$

and

$$
\ln \frac{2 n+1}{2 n}-\epsilon /(2 N)<H_{(2 n+1) k}-H_{2 n k}<\ln \frac{2 n+1}{2 n}+\epsilon /(2 N) .
$$

Consequently,
$\ln \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}+\epsilon / N<\left(H_{2 n k}-H_{(2 n-1) k}\right)-\left(H_{(2 n+1) k}-H_{2 n k}\right)<\ln \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}+\epsilon / N$
that is

$$
\begin{equation*}
-\epsilon / N<\left[\left(H_{2 n k}-H_{(2 n-1) k}\right)-\left(H_{(2 n+1) k}-H_{2 n k}\right)\right]-\ln \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}<\epsilon / N . \tag{11}
\end{equation*}
$$

Summing up Eq. (11), we have

$$
-\epsilon<D_{2 N, k}-\ln \prod_{n=1}^{N} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}<\epsilon,
$$

or

$$
\begin{equation*}
\left|D_{2 N, k}-\ln \prod_{n=1}^{N} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}\right|<\epsilon . \tag{12}
\end{equation*}
$$

Finally, combining Eqs. (9), (10), (12), we have that for any $\epsilon>0$, there is a K, such that for $k>K$,

$$
\begin{align*}
\left|D_{k}-\ln \frac{\pi}{2}\right| & =\left|D_{k}-D_{2 N, k}+D_{2 N, k}-\ln \prod_{n=1}^{N} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}-\ln \prod_{n>N} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}\right| \\
& \leq\left|D_{k}-D_{2 N, k}\right|+\left|D_{2 N, k}-\ln \prod_{n=1}^{N} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}\right|+\left|\ln \prod_{n>N} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}\right| \\
& <3 \epsilon, \tag{13}
\end{align*}
$$

which proves that

$$
\lim _{k \rightarrow \infty}\left(H_{k}-S_{k}\right)=\lim _{k \rightarrow \infty} D_{k}=\ln \frac{\pi}{2} .
$$

