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Abstract The support vector regression (SVR) model is

usually fitted by solving a quadratic programming problem,

which is computationally expensive. To improve the

computational efficiency, we propose to directly minimize

the objective function in the primal form. However, the

loss function used by SVR is not differentiable, which

prevents the well-developed gradient based optimization

methods from being applicable. As such, we introduce a

smooth function to approximate the original loss function

in the primal form of SVR, which transforms the original

quadratic programming into a convex unconstrained min-

imization problem. The properties of the proposed

smoothed objective function are discussed and we prove

that the solution of the smoothly approximated model

converges to the original SVR solution. A conjugate gra-

dient algorithm is designed for minimizing the proposed

smoothly approximated objective function in a sequential

minimization manner. Extensive experiments on real-world

datasets show that, compared to the quadratic programming

based SVR, the proposed approach can achieve similar

prediction accuracy with significantly improved computa-

tional efficiency, specifically, it is hundreds of times faster

for linear SVR model and multiple times faster for non-

linear SVR model.

Keywords Support vector regression � Smooth

approximation � Quadratic programming � Conjugate

gradient � e-Insensitive loss function

List of symbols

x and y The predictor vector and the response

variable

w and b The weight vector and the intercept in

linear regression model

� and C The sensitive parameter and the

penalty parameter in SVR model

n and n* The slack variables in SVR model

a and a* The Lagrange multipliers in SVR

model

V�ð�Þ and S�;sð�Þ The original and the smoothed version

of loss function of SVR

s The smoothing parameter

UðwÞ and UsðwÞ The original and the smoothed version

of the objective function of SVR model

in primal form

ŵ and ŵs The minimum point of UðwÞ and

UsðwÞ, respectively

W The objective function of SVR model

in dual form

I and I� The identity matrix and the augmented

identity matrix with the first row and

first column being 0’s, and the rest is

the identity matrix

H The Hessian matrix of the smoothed

objective function UsðwÞ
Kð�; �Þ The kernel function

H Reproducing kernel Hilbert space

h�; �iH The inner product of two vectors in

reproducing kernel Hilbert space

kfkH The function norm associated with the

reproducing kernel Hilbert space

b The coefficients associated with the

kernel representation of a function in

reproducing kernel Hilbert space
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K The kernel matrix generated from the

training set

Kþ An (n ? 1) 9 n matrix with the first

row of all 1’s, and the rest is the kernel

matrix K

K� Augmented kernel matrix with the first

row and column being 0’s and the rest

is the kernel matrix K

A�i The i-th column of matrix A

1 Introduction

Support vector regression (SVR) [23, 26] is a widely used

regression technique. The popular SVR toolboxes [5, 9, 13]

train an SVR model by solving the dual problem of a

quadratic programming. Although the decomposition

techniques [19, 20] or sequential minimization methods

[21] are employed to speed up the training of SVR, the

training procedure has time complexity about O(n3), where

n is the training set size. As such, in general, training an

SVR model is time consuming, especially for large training

set. Therefore, it is highly desirable to develop time-effi-

cient yet accurate enough training algorithms for SVR.

Gradient based optimization methods [2, 27] are easy to

implement, and converge fast to at least a local optimum.

Thus, it is attempting to apply gradient base methods to train

an SVR model. However, the objective function of SVR is

not differentiable, which prevents gradient based optimi-

zation methods from being applicable. As such, we intro-

duce a smooth approximation to the original loss function of

SVR, and we verify that the smooth approximation con-

verges to the original loss function uniformly as we decrease

the controlling smoothing parameter. Further, we prove that

the minimum point of the smoothed objective function

converges to the solution of the original optimization

problem of SVR. To minimize the proposed smoothed

objective function, conjugate gradient method is employed,

in which we gradually decrease the smoothing parameter to

make the solution stable. The proposed model and algorithm

could be generalized to nonlinear SVR in reproducing ker-

nel Hilbert space with only slight modification.

Extensive experimental results on publicly available

datasets show that the proposed Conjugate Gradient based

Smooth SVR (CG-SSVR) often yields testing accuracy

very close to that of the traditional Quadratic Programming

based SVR (QP-SVR). However, CG-SSVR is far more

efficient than QP-SVR: for linear model, CG-SSVR is

often hundreds of times faster than QP-SVR, and for

nonlinear model, CG-SSVR is about 3–10 times faster than

QP-SVR, depending on the size of the training set. We also

observe that as the training set size gets larger, the speed

advantage of CG-SSVR over QP-SVR becomes greater.

The rest of this paper is organized as follows: Sect. 2

briefly reviews the formulation of linear and nonlinear

SVR models; Sect. 3 introduces a smooth function to

approximate the �-insensitive loss function used by SVR,

and the properties of the smooth approximation are also

studied; Sect. 4 proposes the smoothly approximated SVR

for linear and nonlinear models, and the convergence

properties of the smoothed objective function are dis-

cussed; based on the smoothed objective function, Sect. 5

proposes a sequential minimization approach in which we

gradually decrease the smoothing parameter and minimize

the smoothed objective function by conjugate gradient

method; Sect. 6 compares the testing accuracy and training

time of the proposed CG-SSVR algorithm to those of the

traditional QP-SVR on three publicly available real-world

datasets; finally, Sect. 7 summarizes this paper and dis-

cusses some future research directions.

2 Support vector regression: a brief review

Given training data fðxi; yiÞ; i ¼ 1; . . .; ng, with input xi 2
Rp and output yi 2 R; suppose a linear regression function

is used

y ¼ w0xþ b; ð1Þ

where w 2 Rp is the regression coefficient vector and b 2
R is the intercept.

Support vector regression (SVR) model employs a loss

function which is not sensitive if the difference between the

observation (i.e., yi) and the prediction (i.e., w0xi þ b) is

less than a predefined level �: For the linear model in

Eq. (1), the SVR model can be obtained by solving the

following constrained minimization problem

minw;n�;n Uðw; n�; nÞ ¼ 1
2
w0wþ C

Pn
i¼1 ni þ

Pn
i¼1 n�i

� �

s.t. yi � w0xi � b� �þ n�i
w0xi þ b� yi� �þ ni

ni� 0 and n�i � 0

for i ¼ 1; . . .; n:

8
>>>><

>>>>:

ð2Þ

In the above formulation, � is the predefined error toler-

ance, n ¼ ðn1; . . .; nnÞ0 and n� ¼ ðn�1; . . .; n�nÞ
0
, where ni and

ni
* are the slack variables, which are the part of error which

exceeds the error tolerance �. Alternatively, ni and ni
* could

be understood as the effort we should spend in order to

bring the prediction (w0xi þ b) to an �-neighborhood of the

observation yi, if the distance between the prediction and

the observation is above the predefined error tolerance.

Similar to support vector machine (SVM), the term 1
2

w0w

156 Int. J. Mach. Learn. & Cyber. (2015) 6:155–166

123



in Eq. (2) measures the complexity of the regression model,

and the parameter C [ 0 balances the model complexity

and the error on the training set made by the model.

By using Lagrange multiplier method and the KKT

conditions, the above optimization can be solved through

its dual problem

maxa;a� Wða; a�Þ ¼ � 1
2

Pn
i¼1

Pn
j¼1ðai � a�i Þðaj � a�j Þx0ixj

��
Pn

i¼1ðai þ a�i Þ þ
Pn

i¼1ðai � a�i Þyi

s.t.
Pn

i¼1ðai � a�i Þ ¼ 0

0� ai�C and 0� a�i �C for i ¼ 1; . . .; n:

8
>>><

>>>:

ð3Þ

In Eq. (3), a ¼ ða1; . . .; anÞ0 and a� ¼ ða�1; . . .; a�nÞ
0
, with ai

and ai
* being the Lagrange multipliers for the

corresponding constraints in Eq. (2). Solving the dual

problem, which is a quadratic programming, we can get the

linear SVR model as

y ¼
Xn

i¼1

ðai � a�i Þx0ixþ b;

where the bias term b can be calculated from the set of

support vectors. Please refer to [23, 26] for more details.

The optimization problem given in Eq. (3) only depends

on the inner product of two vectors. For any kernel function

Kðu; vÞ which satisfies Mercer’s condition [23, 26], it could

be written as the inner product of two transformed feature

vectors in high dimensional reproducing kernel Hilbert

space. This enables us to fit nonlinear SVR by solving the

following optimization problem

maxa;a� Wða; a�Þ ¼ �1
2

Pn
i¼1

Pn
j¼1ðai � a�i Þðaj � a�j ÞKðxi; xjÞ

��
Pn

i¼1ðai þ a�i Þ þ
Pn

i¼1ðai � a�i Þyi

s.t.
Pn

i¼1ðai � a�i Þ ¼ 0

0� ai�C and 0� a�i �C for i ¼ 1; . . .; n:

8
>>><

>>>:

ð4Þ

The obtained nonlinear model is

y ¼
Xn

i¼1

ðai � a�i ÞKðxi; xÞ þ b:

Similarly, the bias term b could be calculated from support

vectors.

As implemented in popular toolboxes [5, 9, 13], the

quadratic programming problems in Eqs. (3) and (4) can be

solved by the decomposition methods [19, 20] or sequential

minimal optimization [21]. However, the aforementioned

algorithms are computationally expensive with time com-

plexity roughly O(n3). Thus, as the training set gets large, it

is very expensive to train an SVR model. As such, fast

training algorithms for SVR which can achieve similar

accuracy as the quadratic programming method are highly

appreciated.

3 Smooth approximation to the �-insensitive loss

function

To get rid of the constraints in the primal optimization

problem for linear SVR in Eq. (2), using implicit con-

straints, we rewrite the optimization problem as [10, chap.

12]

min
w;b

UðwÞ ¼ 1

2
w0wþ C

Xn

i¼1

V�ðw0xi þ b� yiÞ; ð5Þ

where V�ðxÞ is called as �-insensitive loss function which is

defined explicitly as

V�ðxÞ ¼
0; if jxj\�;

jxj � �; otherwise.

�

ð6Þ

The �-insensitive loss function V�ðxÞ employed by the SVR

model in Eq. (5) is not differentiable at points x ¼ ��. The

non-differentiability of �-insensitive loss function makes it

difficult to apply gradient based optimization methods for

fitting the SVR model, although gradient based methods

are usually time efficient, easy to implement, and yield at

least a local optimum.

Chen et al. [7] introduced a class of smooth functions

for nonlinear optimization problems and this idea was

applied to find an approximate solution to SVM [15, 29].

The idea of using a smooth function to approximate a non-

differentiable objective function was also applied to fitting

quantile regression model [30].

In [15, 29], the loss function of SVM is written as

ðxÞþ ¼
x; if x [ 0

0; otherwise

�

ð7Þ

and it is approximated by a smooth function

pðx; sÞ ¼ s log 1þ e
x
s

� �
; ð8Þ

where s is a small positive number. We notice that,

according to Eq. (7),

ðjxj � �Þþ ¼
jxj � �; if jxj[ �

0; otherwise

�

ð9Þ

which is exactly the expression of V�ðxÞ in Eq. (6).

Thus, in this paper, we propose the following smooth

function to approximate the �-insensitive loss function

for SVR

S�;sðxÞ ¼ s log 1þ e
jxj��

s

� �
; ð10Þ

where s[ 0 is called as the smoothing parameter.

The properties of function S�;sðxÞ can be summarized as

following:

Proposition 1 As a function of s[ 0; S�;sðxÞ is mono-

tonically increasing.
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Proof From the definition of S�;sðxÞ in Eq. (10), we cal-

culate its derivative with respect to s as

dS�;sðxÞ
ds

¼ log 1þ e
jxj��

s

� �
�

exp
jxj��

s

n o

1þ exp
jxj��

s

n o
jxj � �

s
: ð11Þ

If jxj\�, the derivative in Eq. (11) is clearly positive since

the first term is positive and the second term is negative. If

jxj[ �, we have

dS�;sðxÞ
ds

¼ log 1þ e
jxj��

s

� �
�

exp
jxj��

s

n o

1þ exp
jxj��

s

n o
jxj � �

s

[
jxj � �

s
�

exp
jxj��

s

n o

1þ exp
jxj��

s

n o
jxj � �

s

¼ 1

1þ exp
jxj��

s

n o
jxj � �

s
[ 0: ð12Þ

Thus, we always have
dS�;sðxÞ

ds [ 0; and the conclusion

follows. h

Proposition 2 For any s [ 0; S�;sðxÞ is a strictly convex

function in x.

Proof From the definition of S�;sðxÞ in Eq. (10), we cal-

culate that

dS�;sðxÞ
dx

¼ signðxÞ
1þ exp � jxj��s

n o ; ð13Þ

and

d2S�;sðxÞ
dx2

¼ 1

s

exp � jxj��s

n o

1þ exp � jxj��s

n o� �2
[ 0; ð14Þ

for any x 2 R since s[ 0, which shows that as a function

of x, S�;sðxÞ is strictly convex everywhere. h

Proposition 3 For any s[ 0 and any x 2 R,

0\S�;sðxÞ � V�ðxÞ� s log 2 ð15Þ

Furthermore, S�;sðxÞ converges uniformly to V�ðxÞ as

s! 0þ.

Proof Since the �-insensitive loss function V�ðxÞ and the

smoothed function S�;sðxÞ are both even functions, we only

need to prove Eq. (15) for x [ 0.

For 0\x� �, it is straightforward that

S�;sðxÞ � V�ðxÞ ¼ s log 1þ e
x��
s

� �
[ 0:

The difference function is clearly monotonically increasing

with maximum at x ¼ �. Therefore, in this case

S�;sðxÞ � V�ðxÞ� s log 2:

For x� �; we have

S�;sðxÞ � V�ðxÞ ¼ s log 1þ e
x��
s

� �
� ðx� �Þ

¼ s log 1þ e�
x��
s

� �
[ 0:

The above difference function is monotonically decreasing

in x, with the maximum at x ¼ �. Consequently, it follows

that

S�;sðxÞ � V�ðxÞ� s log 2:

Thus, Eq. (15) is proved.

It follows from Eq. (15) that for any e [ 0, we can make

s sufficiently small (independent of x) such that

jS�;sðxÞ � V�ðxÞj\e, and this completes the proof for

uniform convergence. h

Figure 1a shows the �-insensitive loss function with � ¼
1 and the corresponding smoothed versions with smoothing

parameter s = 0.4 and s = 0.5, respectively. Figure 1a

clearly demonstrates that the smoothed function is always

positive, smooth, convex, and dominates the original

�-insensitive loss function. Figure 1b gives the difference

between the smoothed and the original �-insensitive loss

function, and it is readily observed that the approximation
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Fig. 1 a The �-insensitive loss

function (with � ¼ 1) and the

smoothed approximations with

s = 0.4 and s = 0.5; b the

differences between the

smoothed and the original

�-insensitive loss function in a
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is better for small value of s Fig. 1b also shows that the

largest difference occurs at x = ±1, that is, x ¼ ��. These

observations are consistent with the properties studied in

Propositions 1–3.

4 Smoothly approximated support vector regression

This section first introduces a smoothly approximated

model to linear SVR, then generalizes to nonlinear SVR in

reproducing kernel Hilbert space.

4.1 Smoothed objective function for linear SVR

For the linear SVR model

y ¼ w0xþ b; ð16Þ

for convenience, we rewrite the primal optimization

problem given in Eq. (5) as

min
w

UðwÞ ¼ 1

2
w0wþ C

Xn

i¼1

V�ðw0xi þ b� yiÞ; ð17Þ

where V�ð�Þ is defined in Eq. (6). In order to incorporate the

bias term b, we augment the predictor vector by adding 1 as

the first component; correspondingly, we augment w by

adding b as the first component. To simplify the notation,

we still denote the augmented predictor and regression

coefficient vector as x and w, respectively. With these

considerations, the objective function in Eq. (17) can be

written as

UðwÞ ¼ 1

2
w0I�wþ C

Xn

i¼1

V�ðw0xi � yiÞ; ð18Þ

where I� is the augmented identity matrix with the first row

and first column being 0’s, and the rest is the n 9 n identity

matrix I.

The SVR model could be fitted by minimizing the primal

objective function in Eq. (18). However, as the �-insensitive

loss function in Eq. (18) is not differentiable, the gradient

based optimization methods cannot be applied. It is well

known that the gradient based methods are easy to imple-

ment and converge fast to at least a local optimal point. In

order to make use of the advantages of the gradient based

optimization methods, we replace the �-insensitive loss

function by its smoothed counterpart S�;sðxÞ defined in

Eq. (10), yielding the smoothed objective function

UsðwÞ ¼
1

2
w0I�wþ C

Xn

i¼1

S�;sðw0xi � yiÞ ð19Þ

We calculate the gradient vector of the smooth

approximation as

rUsðwÞ ¼ I�wþ C
Xn

i¼1

signðw0xi � yiÞ
1þ exp � jw0xi�yij��

s

n o xi; ð20Þ

and the Hessian matrix of the smooth approximation as

HðwÞ ¼ r2UsðwÞ

¼ I� þ C

s

Xn

i¼1

exp � jw
0xi�yij��

s

n o

1þ exp � jw0xi�yij��
s

n o� �2
xix
0
i ð21Þ

It is easy to see that the second term in Eq. (21) is positive

definite, thus the Hessian is positive definite. Consequently,

the smoothed objective function UsðwÞ is convex in w,

thus, it has a unique minimum point.

By Proposition 3 and the definitions of UðwÞ and UsðwÞ
in Eqs. (18) and (19), the following is evident.

Proposition 4 For any s[ 0, the smoothed objective

function UsðwÞ is an upper bound of the original objective

function UðwÞ, i.e., UsðwÞ[ UðwÞ, for any w.

We can prove that the smoothed objective function

approaches the original objective function as the smoothing

parameter decreases. More precisely, we have

Proposition 5 As s! 0þ, the smoothed objective

function UsðwÞ uniformly converges to the original

objective function UðwÞ.

Proof For any s[ 0, from the definitions of UðwÞ and

UsðwÞ, we have

jUsðwÞ �UðwÞj ¼C
Xn

i¼1

S�;sðw0xi� yiÞ �
Xn

i¼1

V�ðw0xi� yiÞ
	
	
	
	
	

	
	
	
	
	

�C
Xn

i¼1

S�;sðw0xi� yiÞ �V�ðw0xi� yiÞ
	
	

	
	

�Cns log 2; ð22Þ

where the last inequality follows from Eq. (15).

Thus, for any e [ 0, we can make s sufficiently small

(independent of w) such that jUsðwÞ � UðwÞj\e, and this

finishes the proof for the uniform convergence. h

We further prove that the minimal value of the

smoothed objective function UsðwÞ goes to that of the

original objective function UðwÞ as the smoothing param-

eter decreases. In detail, we have

Proposition 6 For any s[ 0, let

ŵs ¼ arg min
w

UsðwÞ and ŵ ¼ arg min
w

UðwÞ;

then

lim
s!0þ

UsðŵsÞ ¼ UðŵÞ:

Int. J. Mach. Learn. & Cyber. (2015) 6:155–166 159

123



Proof From the definitions of ŵs and ŵ, it follows that

UsðŵÞ�UsðŵsÞ and UðŵsÞ�UðŵÞ:

Applying the conclusion in Proposition 4, we have

UsðŵÞ�UsðŵsÞ�UðŵsÞ�UðŵÞ: ð23Þ

By Proposition 5, as a function of s; UsðŵÞ converges

uniformly to UðŵÞ, that is,

lim
s!0þ

UsðŵÞ ¼ UðŵÞ: ð24Þ

The conclusion of the Proposition follows by combining

Eqs. (24) and (23). h

Finally, we verify that the minimum point of the

smoothed objective function approaches to that of the

original objective function of linear SVR.

Proposition 7 With ŵs and ŵ defined in Proposition 6,

let ŵu
s and ŵu be the corresponding unaugmented parts

(i.e., with the bias term excluded), then

lim
s!0þ

ŵu
s ¼ ŵu:

Proof Since ŵs is the minimum point of UsðwÞ, by the

convexity of UsðwÞ, the gradient rUsðŵsÞ ¼ 0. Using the

second order Taylor approximation of UsðŵÞ at ŵs, there is

a h 2 ½0; 1�, such that

UsðŵÞ�UsðŵsÞ¼
1

2
ðŵ� ŵsÞ0Hðhŵþð1�hÞŵsÞÞðŵ� ŵsÞ

� 1

2
ðŵ� ŵsÞ0I�ðŵ� ŵsÞ¼

1

2
kŵu� ŵu

sk
2:

ð25Þ

The ‘‘ C ’’ in Eq. (25) holds because in the expression of

the Hessian matrix given by Eq. (21), the second term is

semi-positive definite.

From Eq. (25), it follows that

lim
s!0þ
kŵu � ŵu

sk
2� 2 lim

s!0þ
UsðŵÞ � UsðŵsÞ½ � ¼ 0; ð26Þ

since lims!0þ UsðŵsÞ ¼ UðŵÞ from Proposition 6 and

lims!0þ UsðŵÞ ¼ UðŵÞ from Proposition 5. Thus,

lims!0þ ŵu
s ¼ ŵu immediately follows from Eq. (26). h

4.2 Generalizing to nonlinear model

For a nonlinear SVR model associated with a kernel

function Kð�; �Þ which satisfies Mercer’s condition [22, 23,

26], let the associated reproducing kernel Hilbert space be

H, and let f be the SVR regression function. The regression

function could be obtained by minimizing the following

objective function in H [22, 23, 26]

kfk2
H þ C

Xn

i¼1

V�ðf ðxiÞ � yiÞ; ð27Þ

where kfk2
H is the function norm associated with the

reproducing kernel Hilbert space H, and it could be

understood as the model complexity, similar to the term

w0w=2 in the linear SVR model.

By the representer theorem [14, 22], the regression

function could be written as a linear combination of kernel

functions evaluated at the training examples. That is, the

solution is of the form

f ðxÞ ¼
Xn

j¼1

bjKðxj; xÞ þ b: ð28Þ

In the reproducing kernel Hilbert space, the model

complexity term is

kfk2
H ¼

Xn

i;j¼1

bibjhKðxi; �Þ;Kðxj; �ÞiH ¼
Xn

i;j¼1

bibjKðxi; xjÞ

¼ b0Kb;

where h�; �iH is the inner product of two vectors in spaceH;

according to the property of the reproducing space, the

inner product could be written as the kernel function; K

is the n 9 n kernel matrix with Kij ¼ Kðxi; xjÞ, and

b ¼ ðb1; � � � ; bnÞ
0
.

We write the estimated function value at xi as

f ðxiÞ ¼
Xn

j¼1

bjKðxj; xiÞ þ b ¼ bþ
0
Kþ�i ;

where Kþ is an (n ? 1) 9 n matrix with the first row of all

1’s, and the other part of Kþ is the original kernel matrix

K; we use the notation A�i to represent the i-th column of

matrix A; and bþ ¼ ðb; b1; � � � ; bnÞ0. Let K� be the aug-

mented kernel matrix of size (n ? 1) 9 (n ? 1), with the

first row and first column being 0’s, and the other part

being the original kernel matrix K. It is clear that

bþ
0
K�bþ ¼ b0Kb:

With these notations, the objective function of the pri-

mal problem in Eq. (27) for nonlinear SVR is

UðbþÞ ¼ 1

2
bþ
0
K�bþ þ C

Xn

i¼1

V�ðbþ0Kþ�i � yiÞ: ð29Þ

Introducing the smooth approximation to the �-insensitive

loss function, yielding the smoothed objective function for

nonlinear SVR as

UsðbþÞ ¼
1

2
bþ
0
K�bþ þ C

Xn

i¼1

S�;sðbþ0Kþ�i � yiÞ: ð30Þ

We calculate the gradient vector as

rUsðbþÞ ¼ K�bþ þ C
Xn

i¼1

signðbþ0Kþ�i � yiÞ
1þ exp � jb

þ0Kþ�i�yij��
s

n oKþ�i ;

ð31Þ

and the Hessian matrix is
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HðbþÞ ¼ r2UsðbþÞ

¼ K� þ C

s

Xn

i¼1

exp � jb
þ0Kþ�i�yij��

s

n o

1þ exp � jb
þ0Kþ�i�yij��

s

n o� �2
Kþ�i Kþ�i

0
:

ð32Þ

It is easy to verify that the Hessian matrix is positive

definite, thus the function UsðbþÞ is convex. Consequently,

UsðbþÞ has a unique minimum point.

Comparing the optimization problems in Eqs. (19) and

(30), we clearly observe that they share the same formu-

lation. Thus, the properties stated in Propositions 4–7 also

hold for UsðbþÞ. The similar formulations and properties of

the optimization problems shared by linear and nonlinear

smooth SVR models indicate that they can be solved by the

same algorithm with only slight modifications.

5 The conjugate gradient algorithm

In applying the idea of smoothly approximating a non-

smooth objective function, some works [6, 15] used the

Newton’s method to minimize the smoothed objective

function. However, the Newton’s method involves esti-

mating and inverting the Hessian matrix, which is time

consuming (with time complexity about O(n3)) and prone to

errors, especially in high dimensional spaces. Compared to

the Newton’s method, conjugate gradient method avoids

using the second order derivative information and inverting

a matrix, and it only has a simple formula to determine the

new search direction. This simplicity makes the method very

easy to implement, only slightly more complicated than

steepest descent. Other advantages of the conjugate gradient

method include its low memory requirements and its con-

vergence speed. Please refer to [2, chap. 1] for more details.

There are many choices of conjugate directions for

conjugate gradient methods, for example, Fletcher–Reeves,

Polak–Rbiere, and Hestenes–Stiefel. In our experiments,

we empirically found these methods perform similarly.

Algorithm 1 gives the Fletcher–Reeves conjugate gradient

method for minimizing a general function f over Rn.

Algorithm 1 Fletcher-Reeves Conjugate Gradient Method for

Minimizing aFunction f over Rn

In the 3rd step, the step-size ct could be chosen as

ct ¼ arg min
c [ 0

f ðxt�1 þ cdt�1Þ: ð33Þ

The minimization problem in Eq. (33) can be solved by

backtracking line search algorithms [3, chap. 9]. We

choose to use Armijo rule [1] for its simplicity, which is

given in Algorithm 2 for completeness.

Algorithm 2 Armijo Rule to Determine a Step-size

When applying the conjugate gradient method to mini-

mize the objective function in Eq. (19) or Eq. (30),

according to the properties of the smooth approximation,

we should have a small s value. However, as studied in

[29], if we start with a very small s, the algorithm will be

unstable. Starting from a relatively large s and decreasing it

gradually will stablize the solution. In practice, we do not

decrease s after each conjugate gradient step, because we

should let the conjugate gradient algorithm run several

iterations to fully utilize its power in minimizing the

objective function at the current s value. As such, we adopt

a sequential minimization strategy for solving the smoothly

approximated SVR. Algorithm 3 sketches the procedure for

minimizing the objective function of the smoothly

approximated linear SVR presented in Eq. (19). The cor-

responding algorithm for the smoothly approximated non-

linear SVR could be developed similarly, which is omitted.

Algorithm 3 Conjugate Gradient Method for Smoothly Approxi-

mated LinearSVR

According to Proposition 3, when s = 0.04, the differ-

ence between the smoothed �-insensitive loss function and

the original version is less than 0.028, which is small

enough for most applications. As such, in the above algo-

rithm, we set the outer iteration number M to be 25 for

linear model, and set M to be 30 for nonlinear model. In

our experiments, we set the inner iteration number m to be

20 for linear model, and set m to be 25 for nonlinear model.

Thus, the algorithm will run totally 500 iterations of con-

jugate gradient for linear model, and will run 750 iterations
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for nonlinear model. Of course, setting the parameters

M and m to be larger values will make the algorithm more

precise but the algorithm will spend more time as well.

6 Experimental results

On three publicly available datasets, this section compares

the performance of the proposed algorithm, Conjugate

Gradient based Smooth SVR (CG-SSVR), to that of the

Quadratic Programming based SVR (QP-SVR). The CG-

SSVR algorithm is developed using MATLAB1, without

particular code optimization; QP-SVR was implemented

based on the MATLAB SVM toolbox of [9] with the

quadratic programming solver from the C?? version of

LIBSVM [5]. All the experiments were conducted on a

personal computer with Pentium IV CPU 3.00 GHz and

3.25 GB memory, with WinXP operating system and

MATLAB� R2007b as the platform.

We compared CG-SSVR and QP-SVR with linear ker-

nel and with the Gaussian kernel

Kðu; vÞ ¼ exp �ku� vk2

2r2

( )

with r = 5. We set the SVR parameters C = 2,000 and

� ¼ 0:5 in the algorithms. The parameter setting in our

experiment might not be the optimal to achieve the

smallest testing error. However, our purpose is not to

achieve the optimal testing error, but to compare the per-

formances of CG-SSVR and QP-SVR; therefore, the

comparison is fair as long as the parameter settings are the

same for the two algorithms.

For each algorithm and each of the linear and nonlinear

models, we partition the whole dataset as training subset

and testing subset, and use the average of �-insensitive

error on the testing set to evaluate the prediction accuracy,

that is

Error ¼ 1

Ntest

XNtest

i¼1

V�ðyi � f ðxiÞÞ; ð34Þ

where V�ð�Þ is defined as in Eq. (6), f ð�Þ is the fitted

function, and Ntest is the size of testing set. We use the

training time as the measure of time complexity for each

algorithm.

6.1 The comp-activ dataset

The comp-activ dataset is a collection of a computer sys-

tem’s activity measures, please refer to http://www.cs.

toronto.edu/%7Edelve/data/comp-activ/compActivDetail.

html for detailed description about this dataset. The dataset

contains 8,192 data points and 25 numerical attributes. We

normalize the predictors and response to have zero mean

and unit standard deviations.

We first implement the ‘‘cpuSmall Prototask’’ which

involves using 12 of the attributes to predict what fraction

of a CPU’s processing time is devoted to a specific mode

(‘‘user mode’’). For different training set sizes (300, 600,

and 900), we randomly partition the whole dataset into

training set and testing set, and evaluate the prediction

accuracy of the trained model on the testing set. The par-

tition-training-evaluating process is repeated 100 times for

each algorithm. Table 1 gives the average testing errors

and the average training time for different algorithms and

models along with corresponding standard deviations. It is

evident from Table 1 that when using linear kernel, the

CG-SSVR algorithm and QP-SVR have essentially the

same testing errors; when using the Gaussian kernel, CG-

SSVR only has slightly larger testing errors (by about

0.005 in average).

We repeat the same experiment on the ‘‘cpu Prototask’’

which involves using 21 predictors. Table 2 gives the

average testing error and the average training time for

Table 1 The performance of the proposed CG-SSVR and the quadratic programming based SVR (QP-SVR) on the ‘‘cpuSmall Prototask’’ using

comp-activ dataset

Ntr Kernel Testing Error Training Time

CG-SSVR QP-SVR CG-SSVR QP-SVR

300 Linear 0.0779 (0.0114) 0.0785 (0.0111) 0.6955 (0.0157) 84.4166 (1.7787)

Gaussian 0.0393 (0.0071) 0.0350 (0.0074) 10.9986 (0.0350) 84.6061 (0.9189)

600 Linear 0.0723 (0.0062) 0.0723 (0.0060) 2.0186 (0.0366) 664.2234 (9.9379)

Gaussian 0.0331 (0.0047) 0.0276 (0.0053) 68.3052 (0.8401) 668.6166 (6.4621)

900 Linear 0.0701 (0.0036) 0.0700 (0.0035) 4.422 (0.0619) 2305 (26.44)

Gaussian 0.0310 (0.0026) 0.0264 (0.0035) 230.8 (0.7892) 2317 (23.47)

For different training set sizes (Ntr), we list the mean values of the �-insensitive testing errors of 100 runs with the standard deviations listed in

parentheses. The average training time and standard deviation (in seconds) for different algorithms and models are also given

1 The source code is available upon request.
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different algorithms and different training set sizes, along

with the corresponding standard deviation. From Table 2,

we observe that, when using linear kernel, the proposed

CG-SSVR yields slightly smaller testing error than QP-

SVR, although they are on the same level; for the model

with Gaussian kernel, the testing error of CG-SSVR is only

slightly larger (by about 0.002 in average) than that of QP-

SVR.

In order to clearly illustrate the speed advantage of

CG-SSVR, we calculate the ratio between the training

time of QP-SVR and that of CG-SSVR for different

models and different training set sizes, and list the results

in Table 3. On the two experiments, we observe that CG-

SSVR with linear kernel runs hundreds of times faster

than the corresponding QP-SVR, and CG-SSVR with

Gaussian kernel runs about 8–10 times faster, depending

on the training set size. For linear model, the number of

parameters which CG-SSVR needs to estimate is the same

as the dimensionality of the data, as indicated by the

expression of the fitted model given in Eq. (16). Since the

‘‘cpuSmall Prototask’’ uses fewer predictors than the ‘‘cpu

Prototask’’, the speed advantage of CG-SSVR on ‘‘cpu-

Small Prototask’’ would be more significant, as observed

from the first row of Table 3. On the other hand, for

nonlinear model, the speed advantage of CG-SSVR is not

sensitive to the dimensionality of data, only depending on

the training set size, as indicated by the second row of

Table 3. This is because for nonlinear model, the number

of parameters that CG-SSVR needs to estimate is the

same as the training set size, as seen from the expression

of the desired function given by Eq. (28). It is also clear

that as the training set size grows, the speed advantage of

CG-SSVR increases, and this pattern is especially prom-

inent for linear model. More importantly, we should

mention that in our implementation, the core quadratic

programming code for QP-SVR was developed in C??

which is much more computationally efficient than

MATLAB, in which CG-SSVR was implemented. Tak-

ing this factor into account, the proposed CG-SSVR

would be far more efficient than QP-SVR, if they were

implemented in the same programming language and ran

on the same platform.

For one of the 100 runs of the algorithms on ‘‘cpuSmall

Prototask’’, Fig. 2 presents the evolution of the objective

functions (calculated according to Eq. (19) or Eq. (30)), the

training and testing errors (calculated as in Eq. (34)) for CG-

SSVR. Figure 2a and b also plot the final objective function

values of QP-SVR (evaluated by Eq. (18) or Eq. (29)).

Figure 2a shows that with linear model, the CG-SSVR

algorithm converges in about 300 iterations; while Fig. 2b

indicates that with nonlinear kernel, CG-SSVR needs about

600 iterations to converge due to a larger number of

parameters to estimate. Figure 2c and d demonstrate that as

the training proceeds, both the training error and testing error

monotonically decrease, and the nonlinear model has lower

training/testing error, compared to the linear model.

6.2 Concrete compressive strength data

Concrete is the most important material in civil engineer-

ing. The concrete compressive strength is a function of Age

(1–365 days) and certain ingredients, which include

Cement, Blast Furnace Slag, Fly Ash, Water, Superplasti-

cizer, Coarse Aggregate, and Fine Aggregate. The actual

concrete compressive strength for a given mixture under a

specific age (days) was determined from laboratory. The

dataset along with a brief description can be downloaded

from UCI machine learning repository at http://archive.ics.

uci.edu/ml/datasets/Concrete?Compressive?Strength. The

Table 2 The performance measures of CG-SSVR and QP-SVR on ‘‘cpu Prototask’’, using the comp-activ dataset

Ntr Kernel Testing Error Training Time

CG-SSVR QP-SVR CG-SSVR QP-SVR

300 Linear 0.0835 (0.0136) 0.0860 (0.0141) 0.7864 (0.0129) 85.7356 (2.0314)

Gaussian 0.0507 (0.0081) 0.0523 (0.0084) 10.9355 (0.0469) 84.4198 (0.9393)

600 Linear 0.0731 (0.0094) 0.0733 (0.0091) 2.3234 (0.0214) 673.9525 (12.4385)

Gaussian 0.0426 (0.0045) 0.0407 (0.0047) 67.8063 (0.1395) 664.8266 (6.2866)

900 Linear 0.0694 (0.0053) 0.0695 (0.0051) 5.160 (0.0315) 2331.1 (39.0994)

Gaussian 0.0405 (0.0036) 0.0374 (0.0042) 229.64 (0.7705) 2308.2 (16.4527)

See the footer of Table 1 for more information

Table 3 For the two prototasks on comp-activ dataset, the ratio

between the training time spent by QP-SVR and CG-SSVR for dif-

ferent models and different training set sizes

Experiment ‘‘cpuSmall Prototask’’ ‘‘cpu Prototask’’

Ntr 300 600 900 300 600 900

Linear

Kernel

121.38 329.05 521.26 109.02 290.07 451.76

Gaussian

Kernel

7.69 9.79 10.04 7.72 9.80 10.05

Int. J. Mach. Learn. & Cyber. (2015) 6:155–166 163

123

http://archive.ics.uci.edu/ml/datasets/Concrete%2bCompressive%2bStrength
http://archive.ics.uci.edu/ml/datasets/Concrete%2bCompressive%2bStrength


dataset includes 1,030 observations, with 8 quantitative

predictor variables (the 8 factors mentioned above), and 1

quantitative response variable (concrete compressive

strength). Please refer to [28] for more details about the

dataset. We normalize the predictor variables and the

response variable to have zero mean and unit standard

deviation.

We repeat the experiment in Sect. 6.1 with training

set sizes 200, 400, 600, and 800. Table 4 reports the

testing accuracy and the training time of the proposed

CG-SSVR and QP-SVR for different training set sizes.

We clearly observe that the testing accuracy of

CG-SSVR linear model is at the same level as that of

QP-SVR with linear kernel; for the Gaussian model,
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Fig. 2 The evolution curves for

CG-SSVR algorithm with

training set size 300, on the

‘‘cpuSmall Prototask’’: a the

objective function of CG-SSVR

with linear model; b the

objective function of CG-SSVR

with Gaussian kernel; c the

training/testing errors of linear

CG-SSVR; d the training/

testing errors of Gaussian CG-

SSVR

Table 4 The performance measures of the proposed CG-SSVR and QP-SVR on the concrete strength dataset

Ntr Kernel Testing Error Training Time

CG-SSVR QP-SVR CG-SSVR QP-SVR

200 Linear 0.1599 (0.0096) 0.1607 (0.0098) 0.3567 (0.0106) 24.2981 (0.2378)

Gaussian 0.0916 (0.0081) 0.0855 (0.0083) 4.1997 (0.0197) 24.4755 (0.1674)

400 Linear 0.1535 (0.0074) 0.1539 (0.0076) 0.9463 (0.0117) 187.3117 (1.6807)

Gaussian 0.0835 (0.0060) 0.0753 (0.0059) 22.9003 (0.0486) 188.8853 (0.9353)

600 Linear 0.1517 (0.0084) 0.1518 (0.0084) 1.8055 (0.0237) 629.0577 (5.3291)

Gaussian 0.0813 (0.0067) 0.0727 (0.0066) 68.3958 (0.2583) 634.5108 (2.6732)

800 Linear 0.1485 (0.0169) 0.1484 (0.0168) 3.124 (0.0455) 1,510.3 (11.8654)

Gaussian 0.0780 (0.0096) 0.0702 (0.0090) 169.0244 (0.3874) 1,525.1 (6.2058)

See the footer of Table 1 for more information

Table 5 On the concrete strength dataset, the ratio between the

training time spent by QP-SVR and CG-SSVR for different models

and different training set sizes

Ntr 200 400 600 800

Linear Kernel 68.12 197.94 348.41 483.49

Gaussian Kernel 5.83 8.25 9.28 9.02
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QP-SVR performs slightly better than CG-SSVR, with

advantage only about 0.008 in average. Table 5 presents

the ratio of the training times of QP-SVR and CG-SSVR

for different models and different training set sizes. We

again observe that CG-SSVR with linear kernel is hun-

dreds of time faster than the QP-SVR counterpart, and

CG-SSVR is multiple times faster than QP-SVR for the

nonlinear SVR model.

6.3 Boston house dataset

The Boston house dataset is available online at http://lib.

stat.cmu.edu/datasets/boston_corrected.txt. This dataset

concerns the median house price in suburb of Boston area,

and there are 12 non-constant continuous predictor vari-

ables. We normalize the predictor variables and the

response variable to have zero mean and unit standard

deviation.

We repeat the experiment in Sect. 6.1 with training set

sizes 100, 200, 300, and 400, and Table 6 reports the

testing accuracy and training time for different models and

different training set sizes. We observe that for linear

model, the proposed CG-SSVR algorithm has slightly

smaller testing errors, and for the nonlinear model with

Gaussian kernel, the testing error of CG-SSVR is slightly

larger (by only about 0.005) than QP-SVR. Table 7 pre-

sents the comparison of the training time of QP-SVR and

CG-SSVR, which demonstrates the same pattern as in

Tables 3 and 5.

7 Conclusion and future works

In literature, the support vector regression (SVR) model is

often fitted by solving the dual of the original constrained

optimization problem, resulting in a quadratic program-

ming problem, which is computationally expensive to

solve, with time complexity about O(n3), where n is the

training set size. As an alternative, this paper attempts to fit

the SVR model by directly minimizing the primal form of

the optimization problem. However, the primal objective

function is not differentiable, which makes the well-

developed gradient based optimization methods inappli-

cable, although the gradient based methods are easy to

implement, converge fast to at least a local optimum. As

such, we introduce a smooth approximation to the original

primal objective function of the SVR model. We prove that

as the smoothing parameter becomes smaller, the approx-

imation has better quality, and the solution to the approx-

imated problem converges to that of the original SVR

model. We propose to use conjugate gradient method to

minimize the smoothed objective function, in which we

gradually decrease the smoothing parameter, in order to

stablize the solution.

Extensive experiments were conducted on various pub-

licly available real-world datasets, and we compared the

performance of the proposed Conjugate Gradient based

Smooth SVR (CG-SSVR) to that of the Quadratic Pro-

gramming based SVR (QP-SVR), in terms of testing

accuracy and training time. All our results show that CG-

SSVR has very similar testing accuracy as QP-SVR, for

either linear or nonlinear model. Although not imple-

mented in a computationally efficient programming lan-

guage, CG-SSVR was shown to be much faster than QP-

SVR. Specifically, for linear model, CG-SSVR is often

hundreds of times faster than QP-SVR, and for nonlinear

model, CG-SSVR is about 3–10 times faster, depending on

the training set size. We also observe that as the training set

Table 6 The performance measures of the proposed CG-SSVR and QP-SVR on the Boston house dataset

Ntr Kernel Testing error Training time

CG-SSVR QP-SVR CG-SSVR QP-SVR

100 Linear 0.1128 (0.0158) 0.1170 (0.0170) 0.2453 (0.0081) 3.5147 (0.0639)

Gaussian 0.0733 (0.0130) 0.0773 (0.0161) 1.2233 (0.0154) 3.5081 (0.0670)

200 Linear 0.0979 (0.0119) 0.0998 (0.0117) 0.3891 (0.0087) 25.1167 (0.3063)

Gaussian 0.0580 (0.0104) 0.0541 (0.0113) 4.1536 (0.0235) 25.1569 (0.3294)

300 Linear 0.0924 (0.0170) 0.0936 (0.0171) 0.6933 (0.0090) 82.5833 (0.8637)

Gaussian 0.0512 (0.0144) 0.0457 (0.0134) 11.0211 (0.0656) 82.6587 (0.7135)

400 Linear 0.0860 (0.0282) 0.0869 (0.0284) 1.0216 (0.0191) 193.1191 (1.9420)

Gaussian 0.0456 (0.0226) 0.0399 (0.0204) 22.7733 (0.0408) 193.7238 (0.9853)

See the footer of Table 1 for more information

Table 7 On the Boston house dataset, the ratio between the training

time spent by QP-SVR and CG-SSVR for different models and dif-

ferent training set sizes

Ntr 100 200 300 400

Linear Kernel 14.33 64.55 119.12 189.04

Gaussian Kernel 2.87 6.06 7.50 8.51
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size gets larger, the speed advantage of CG-SSVR over

QP-SVR becomes greater.

Although the presented experimental results are suffi-

cient to support the superiority of CG-SSVR, next, we

would like to test the proposed CG-SSVR algorithm on

some very large datasets, as those used in [11], and com-

pare the performance with the alternatives [11, 17, 18].

Currently, we employ the conjugate gradient algorithm for

minimizing the smoothed objective function. It will be

interesting to compare other gradient based optimization

methods, for example, quasi-Newton method [2, 27],

coordinate gradient descent [4, 12], or blockwise coordi-

nate descent [16].

Besides minimizing the regression error, the linear SVR

model studied in this paper essentially imposes an L2

constraint on the regression coefficients. When the pre-

dictor vector is in a very high dimensional space, however,

an L1 constraint on the regression coefficients is often

preferred because of the variable selection ability associ-

ated with the L1 norm [25]. In literature, this idea was

applied to linear support vector machine [8, 31] and linear

SVR [17, 18, 24]. Thus, it would be interesting to apply the

smoothing idea to L1 constrained linear SVR with a large

number of predictors. This is another potential extension to

the current work.
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