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Recently Saul and Lee proposed a mixture model for discriminative classification of
non-negative data via non-negative matrix factorization for feature extraction. In order
to improve the generalization, this paper considers a sparse version of the model. The
basic idea is to minimize the sum of the weights of un-normalized mixture models for
posterior distributions according to regularization method. Experiments on CBCL face
database and USPS digit data set assess the validity of the proposed approach.
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1. Introduction

Mixture models have been widely investigated for classification. There exist two
strategies for training a mixture model: generative (also called informative) learn-
ing and discriminative learning. The former is an indirect method, which firstly
calculates the class conditional distribution and then computes the posterior dis-
tribution via Bayesian rule; the latter is a direct one, which models the boundaries
or the posterior directly; see Refs. 6 and 17 for more detail.

This paper mainly focuses on the discriminative learning based on Saul and Lee’s
work,19 where they investigated a learning algorithm using mixture models for the
classification of non-negative data, but the results indicate the method does not have
good generalization. Starting with analyzing the discriminative objective function,
we show its relationship with maximum likelihood and maximum entropy principle,
and that poor generalization will occur without prior knowledge. Regularization is a
powerful tool to improve generalization, and has been successfully applied in many
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learning tasks, e.g. support vector machines,22 AdaBoost.15 Based on regularization
theory, this paper proposes a sparse mixture model, whose basic idea is to impose
sparseness constraints on the mixture weights of the posterior distributions. It is
the only difference with Saul and Lee’s method.

The rest of this paper is organized as follows. After a short review on learning
and generalization in Sec. 2, Sec. 3 proposes the sparse mixture models for discrimi-
native learning based on regularization method along with the discussion of related
methods in Sec. 4; the experimental results on CBCL face database and USPS digit
data set are given in Sec. 5, and we conclude the paper in Sec. 6.

2. Review on Learning and Generalization

The task of classification is to design a classifier based on N given i.i.d. samples
{xn, yn}, n = 1, 2, . . . , N , where xn ∈ Rd and yn ∈ {1, 2, . . . , I} for I categories.
Many algorithms have been proposed for this problem, from statistical methods to
neural networks, e.g. see Refs. 3, 4, 16, and the recent support vector machines.22

Theoretically, we can use the joint pdf p(x, y, Θ) for data and parameter Θ
(also contains some structure information) to describe the rule underlying the
observation.13 We may consider the following simple factorization of the joint pdf as

p(x, y, Θ) = p(x|y, Θ)p(y|Θ)p(Θ) (1)

= p(y|x, Θ)p(x|Θ)p(Θ) (2)

where p(Θ) stands for some prior knowledge on the parameter Θ.
Now we define the likelihood function based on the N training samples and

parameter as

L =
N∏

n=1

p(xn, yn, Θ). (3)

Furthermore, it can be expressed, according to Eqs. (1) and (2), as

L =
N∏

n=1

p(xn|yn, Θ)p(yn|Θ)p(Θ) (4)

=
N∏

n=1

p(yn|xn, Θ)p(xn|Θ)p(Θ). (5)

When we want to maximize the functions above with respect to Θ, we can maximize
their corresponding log functions as

E = log L

=
N∑

n=1

log p(xn|yn, Θ) +
N∑

n=1

log p(yn|Θ) +
N∑

n=1

log p(Θ) (6)

=
N∑

i=1

log p(yn|xn, Θ) +
N∑

n=1

log p(xn|Θ) +
N∑

n=1

log p(Θ). (7)
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Now we can see that the common maximum likelihood estimation is to maximize
(6) without consideration of p(Θ). Here we focus more on Eq. (7): the first term
is the sum of posterior over all training samples, and the last two terms stand for
some prior background information on xi, yi and the parameter Θ, which always
play a role of regularization term according to the selection of prior knowledge, e.g.
see Ref. 13. In fact, this can be considered as one kind of the maximum a posteriori
estimation.

When the prior knowledge related to xi, yi, Θ is not taken into account, we get
the following two common functions for maximization

Egen(Θ) =
N∑

n=1

log p(xn|yn, Θ) (8)

and

Edis(Θ) =
N∑

n=1

log p(yn|xn, Θ). (9)

Usually speaking, Eq. (8) is used for generative learning and Eq. (9) for discrimi-
native learning.

On the other hand, according to maximum entropy principle, we can define a
loss function for maximization as8

EMaxEnt(Θ) = −
N∑

n=1

p(yn|xn, Θ) log p(yn|xn, Θ). (10)

It is shown that maximizing Eq. (9) equals to maximizing Eq. (10),8 based on the
maximum entropy principle. However, many previous results show that maximum
entropy principle is only an inference process with some common sense principles of
uncertain reasoning; see Ref. 14, and the references therein. So we should add more
constraints on Eq. (9) to get the optimal resolution when dealing with some specified
tasks such as object recognition. Because of no prior knowledge from special domain,
it leads to poor generalization based on only optimizing Eqs. (8) or (9). In practice,
there are many methods to improve generalization,18 and regularization method is
one popular approach; see Ref. 2 for a good survey. According to the regularization
method, we will discuss a spare mixture model for discriminative learning based on
Saul and Lee’s algorithm19 in the next section.

3. Sparse Mixture Models for Discriminative Classification

When applying generative mixture models for learning, we first model the class
density distribution. In this case, the class density distribution with parameter
Θ = {Θ1, . . . , ΘM} may take the following form as19

p(x|y = i, Θ) =
M∑

j=1

WijΦ(x|Θj), (11)
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where M is the number of components for each class; and the mixture weights Wij

and basis functions Φ(x|Θj) are all usually normalized, i.e. subjected to
∑

j Wij = 1
for all i and

∫
Φ(x|Θj)dx = 1 for all j, respectively.

When mixture models are used for discriminative learning, the modeled
posterior distributions can take the following form19

p(y = i|x, Θ) =

∑
j WijΦ(x|Θj)∑
kl WklΦ(x|Θl)

, (12)

where the mixture weights Wij and basis functions Φ(x|Θj) are all nonnegative.
The nonnegative constraints are derived from nonnegative data analysis 10 and we
can make use of multiplicative updates.9 For sparse nonnegative features, the basis
function has the following form19

Φ(x|Θj) = eΘj ·X , (13)

where Θj is a real vector and X denotes a nonnegative representation of the feature
vector x.19 The final objective function for discriminative training is to maximize
the conditional log likelihood (9), which can be rewritten here as

Lc =
∑

n

log p(yn|xn, Θ). (14)

In fact we can impose some constraints, via some prior knowledge, on the un-
normalized weights and basis functions. Here we consider one simple case: we hope
that the weights are sparse, and this can be expressed via minimizing

∑
ij Wij . We

call this a sparse mixture model, and then we can get the objective function for
discriminative training as below via regularization method

Lr = Lc − λ
∑
ij

Wij , (15)

where λ is a regularization parameter with nonnegative value. The last term can be
interpreted as imposing Laplace prior on W ; and some more can be considered.13,23

Based on the learning algorithm of Saul and Lee’s work,19 it is easy to derive
the multiplicative updating rules as following

Wij ← Wij

{(
∂L+

∂Wij

)/(
∂L−
∂Wij

+ λ

)}
(16)

eΘju ← eΘju

{(
∂L+

∂Θju

)/(
∂L−
∂Θju

)}s

(17)

where

L+ =
∑

n

log
∑
ij

ZniWije
Θj ·Xn , (18)

L− =
∑

n

log
∑
ij

Wije
Θj ·Xn ; (19)
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Zni is a binary matrix in which nith element declares whether the nth training
sample belongs to the ith class; and

s =
1

maxn

∑
u Xnu

(20)

is a measurement of the sparseness of the training features. See Appendix A for the
simple and easily understood proof of convergence.

In order to get nonnegative sparse features, we adopt the nonnegative matrix
factorization method which has been discussed in Refs. 9 and 10. However, how to
select an optimal λ is still an open problem although there exist some methods.2

We choose the values for λ heuristically in this paper. When λ = 0, the learning
algorithm reduces to that in Ref. 19 without spareness constraints on weights.

4. Related Methods

Our method is based on regularization theory,2 which has its Bayesian interpreta-
tion with Laplace prior on weights.13,23 The basic idea has been used for supervised
and unsupervised learning, e.g. see Refs. 5, 11, 12, 25 recently. In fact, according
to the idea in Ref. 8, the proposed method here can also be used for speech
recognition20 and suchlike.

5. Experimental Results

5.1. Binary classification

Firstly, we tested our algorithm on the widely used CBCL face and nonface
database1 for binary classification. The data set contains a training set of 2,429
faces and 4,548 nonfaces, a test set of 472 faces and 23,573 nonfaces. The size of
each gray image is 19 × 19 = 361 and all pixel values are between 0 and 1.

For computational efficiency, we used 2,429 faces and 2,500 nonfaces in the
training set for learning, the first 5,000 samples of test set for test, which include 472
faces and 4,528 nonfaces. Nonnegative matrix factorization10 was applied to discover
sparse features with lower dimensionality, and we set d = 80 heuristically here. We
also set five values for λ for comparison: 0, 0.1, 0.5, 1 and 5. We considered different
models with different mixture components for each class: M = 8, 16, 24, 32, 48. All
models were initialized with Wij = 0.5 and Θju = 0.5 where the dimension of
each Θj is equal to d, and trained by the same 100 iterations to converge for
comparison.

As shown in Table 1, we can see that when the number of mixture components
(M) per class increases, the accuracy of classification for face is improved. More
importantly, the proposed approach with positive value for λ can improve the gen-
eralization in contrast to the original method, i.e. the case of λ = 0, especially for
the class of face. For example, the highest accuracy rate for the class of face (F) is
96.8% when M = 48 and λ = 5; and that for the class of nonface (NF) is 74.1%
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Table 1. Classification accuracy rates (%) on a test set of CBCL face
database where F stands for the class of face and NF stands for the class
of nonface.

λ = 0 λ = 0.1 λ = 0.5 λ = 1 λ = 5

M F NF F NF F NF F NF F NF

8 66.5 51.7 67.4 52.2 69.5 52.9 72.0 53.6 74.8 56.4
16 75.2 49.9 77.1 50.9 79.0 53.1 80.9 56.0 82.8 58.6
24 75.2 72.2 79.7 73.0 82.2 74.1 83.9 74.0 86.4 73.1
32 76.2 61.4 82.2 62.2 87.5 61.4 90.5 60.7 92.0 60.1

48 85.6 57.8 89.6 58.9 93.2 58.8 93.9 58.0 96.8 57.7

when M = 24 and λ = 0.5. The limitation of this method is how to select optimal
λ and M for the best generalization, which is still an open problem.

5.2. Multiclass classification

Here we used the USPS database for multiclass classification. This database con-
tains 7,291 training patterns and 2,007 testing patterns of 16 × 16 images.21 We
selected 500 samples each digit for training and all testing patterns for test. The
original USPS data are saved using [−1, +1] range to represent patterns and we
normalized the data to the range [0, 1].

Again, we adopted nonnegative matrix factorization10 to get sparse features
with lower dimensionality by setting d = 100 simply and heuristically. We set
four values for λ for comparison: 0, 0.1, 0.2, and 0.3. We considered two cases with
different mixture components for each class: M = 24, 48. All models were initialized
randomly where the dimension of each Θj is equal to d, and trained by the same
100 iterations to converge for comparison.

It can be seen from Table 2 that the accuracy of classification increases with
more mixture components (M) per class. To some extent, the proposed approach
with positive value of λ can improve the generalization ability in contrast to the
original method, although it is marginally improved. One reason for this may be
lack of enough training samples, and the other comes from the limitation of the
method, i.e. how to select optimal λ and M for the best generalization as stated
above.

Table 2. Classification accuracy rates (%) on USPS data set where
TR stands for training data set and TE for test.

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3

M TR TE TR TE TR TE TR TE

24 88.74 84.55 88.78 84.55 88.80 84.60 88.76 84.60
48 95.20 88.99 95.30 89.14 95.30 89.04 95.26 89.19
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6. Conclusion and Future Work

Starting with analyzing the discriminative objective function, we show its relation to
maximum likelihood and maximum entropy principles and that poor generalization
occurs without prior knowledge. This paper investigates a sparse mixture model
for discriminative classification via nonnegative matrix factorization in order to
improve the generalization. The basic idea of our method is to minimize the sum
of the weights of un-normalized mixture models for posterior according to regular-
ization theory. The experiments on CBCL face database for binary classification
and on USPS digit data set for multiclass classification assess the validity of the
proposed method.

It is easy to use the proposed approach for other classification tasks, such as
speech recognition,20 and compare this method to others such as support vector
machines,22 and further apply it for face detection.24 These are future works for us
to consider. In addition, we think it is important to investigate how to decide the
optimal regularization parameter to get the best generalization. And finally it is
worthy of considering different basis functions for mixture models, such as Gaussian
mixtures.7

Appendix A

Proof of convergence

For simplicity and convenience, we follow the steps in Ref. 19. Adopt the same
notations, first let

P+
nij =

ZniWije
Θl·Xn∑

l WileΘj·Xn
, P−

nij =
Wije

Θj ·Xn∑
kl WkleΘl·Xn

. (21)

Then we recall three Eqs. (15)–(17) from Ref. 19, as below

L′
+ =

∑
n

log
∑
ij

ZniW
′
ije

Θj
′·Xn ≥

∑
nij

P+
nij log


ZniW

′
ije

Θ
′
j ·Xn

P+
nij


 , (22)

L′
− − L− =

∑
n

log


∑ij W ′

ije
Θ

′
j ·Xn∑

kl WkleΘl·Xn


 ≤

∑
n


∑ij W

′
ije

Θ
′
j·Xn∑

kl WkleΘl·Xn
− 1


 , (23)

and

eΘ
′
j ·Xn ≤ eΘj ·Xn +

∑
u

(
esΘ

′
ju − esΘju

)(XnueΘj ·Xn

sesΘju

)
. (24)
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Now we can get the following inequality

L′
r − Lr ≥

∑
nij

P+
nij

[
log
(

W ′
ij

Wij

)
+ (Θ′

j − Θj) · Xn

]

−
∑
nij

P−
nij

[
W ′

ij

Wij
− 1 +

W ′
ij

Wij

∑
u

Xnu

(
es(Θ′

ju−Θju) − 1
s

)]

−λ
∑
ij

(W ′
ij − Wij). (25)

Both sides of the above inequality become zeros when W ′
ij = Wij and Θ′

j = Θj.
Finally, maximize the right-hand side w.r.t. W ′

ij with the basis function parameters
fixed and one can get the update rule (16); maximize the right-hand side w.r.t. Θ′

j

with the mixture weights fixed and one can get the update rule (17). All update
rules keep the same property as those in Ref. 19.
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20. R. Schlüter, B. Müller and H. Ney, Comparison of discriminative training crite-
ria and optimization methods for speech recognition, Speech Commun. 34 (2001)
287–310.

21. USPS data set, available on http://www.kernel-machines.org/data.html.
22. V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd edn. (Springer, NY,

2000).
23. P. M. Williams, Bayesian regularisation and pruning using a Laplace prior, Neural

Comput. 1 (1994) 425–464.
24. M. H. Yang, D. Kriegman and N. Ahuja, Detecting faces in images: a survey, IEEE

Trans. Patt. Anal. Mach. Intell. 24 (2002) 34–58.
25. T. Zhang, Regularized Winnow Methods, Advances in Neural Information Processing

Systems (2001), pp. 703–709.



May 5, 2006 12:3 WSPC/115-IJPRAI SPI-J068 00475

440 W. Liu, N. Zheng & S. Zheng

Weixiang Liu received
the B.Sc. and M.Sc.
degrees in mechanical
engineering from Xi’an
Shiyou University,
China, in 1997 and
2000 respectively, and
the Ph.D. in electronic
& information engineer-
ing, at the Institute of

Artificial Intelligence and Robotics, from
Xi’an Jiaotong University, China in 2005.

His research interests include computer
vision and pattern recognition, machine
learning and information geometry.

Nanning Zheng grad-
uated in 1975 from the
Department of Electri-
cal Engineering, Xi’an
Jiaotong University,
China, and re-
ceived the M.E. degree
in information and con-
trol engineering from
Xi’an Jiaotong Univer-

sity, China in 1981, and the Ph.D. in electri-
cal engineering from Keio University, Japan,
in 1985. He is currently a professor and
the director of the Institute of Artificial
Intelligence and Robotics at Xi’an Jiaotong
University.

He served as the general chair for
the International Symposium on Information
Theory and Its Applications in 2002, and the
general co-chair for the International Sympo-
sium on Nonlinear Theory and Its Applica-
tions in 2002. Since 2000, he has been China
representative of the Governing Board of the
International Association for Pattern Recog-
nition. He presently serves as executive edi-
tor of Chinese Science Bulletin. He became a
member of the Chinese Academy Engineering
in 1999. He is a Fellow of IEEE.

His research interests include computer
vision, pattern recognition, computational
intelligence, image processing and hardware
implementation of intelligent systems.

Songfeng Zheng
received his B.E. degree
from the Department of
Information and Com-
munication Engineering,
and his M.S. degree
from the Department of
Computer Science, in
2000 and 2003, respec-
tively; both degrees are

from Xian JiaoTong Univerisity, China. He
is currently a Ph.D. student in the Statistics
Department at the University of California,
Los Angeles.

His research interests include computer
vision, machine learning, pattern recognition
and statistical modeling.


