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Abstract. Using a refined arithmetic-geometric mean inequality, this paper
gives an improved version of Hoeffding’s inequality which has a closed form and
is easy to evaluate. Numerical simulations comparing the performance of the
proposed inequality and the original Hoeffding’s inequality are also presented.

1 Introduction

In probability theory, Hoeffding’s inequality [5] provides an upper bound on the prob-
ability that the sum of random variables deviates from its expected value. It has wide
applications in random algorithm analysis [4], statistical learning theory [2, 6], infor-
mation theory [7], and random matrix theory [1], to name a few. For convenience of
reference, we give the full statement of Hoeffding’s inequality and the complete proof
below.

Theorem 1. (Hoeffding’s Inequality) Let X1, X2, · · · , Xn be independent (not nec-
essarily identically distributed) random variables with P (0 ≤ Xi ≤ 1) = 1 for i =
1, 2, · · · , n. Let pi = E(Xi) for i = 1, 2, · · · , n, p = 1

n

∑n
i=1 pi, and q = 1− p. Then for

any 0 < t < q

P (X̄ > p+ t) ≤ exp

(
−n

[
(p+ t) log

p+ t

p
+ (q − t) log

q − t

q

])
≡ UH , (1)

where X̄ =
∑n

i=1 Xi

n .

Proof. Let X =
∑n

i=1 Xi. For any λ > 0, we have

P (X̄ > p+ t) = P (X > n(p+ t)) = P (eλX > enλ(p+t)) ≤ E[eλX ]

enλ(p+t)
(2)

=
E[eλ

∑n
i=1 Xi ]

enλ(p+t)
=

E[
∏n

i=1 e
λXi ]

enλ(p+t)
=

∏n
i=1 E[e

λXi ]

enλ(p+t)
, (3)

where the inequality in Eq. (2) follows from Markov’s inequality, and Eq. (3) uses the
independence assumption.

Using the convexity of function eλx on the interval [0, 1], there is

eλx ≤ 1− x+ xeλ. (4)



2

Applying Eq. (4) to Eq. (3), yields

P (X̄ > p+ t) ≤ e−nλ(p+t)
n∏

i=1

E[1−Xi +Xie
λ]

= exp (−nλ(p+ t))

n∏
i=1

(1− pi + pie
λ)

≤ exp (−nλ(p+ t))

(∑n
i=1(1− pi + pie

λ)

n

)n

(5)

= exp (−nλ(p+ t)) (q + peλ)n (6)

= exp
(
−n
[
λ(p+ t)− log(q + peλ)

])
, (7)

where in Eq. (5), we used the arithmetic-geometric mean inequality which states that
for positive x1, x2, · · · , xn,

n∏
i=1

xi ≤

(
1

n

n∑
i=1

xi

)n

. (8)

Choosing λ to minimize Eq. (7), we obtain

λ∗ = log

[
(p+ t)q

p(q − t)

]
. (9)

Substituting λ∗ into Eq. (7), we can obtain the desired result in Eq. (1). ⊓⊔

2 The improved Hoeffding’s inequality

In the proof of Theorem 1, the arithmetic-geometric mean inequality in Eq. (8) was
used as a major ingredient. There is a refined version of the arithmetic-geometric mean
inequality which makes it possible to further improve the Hoeffding’s inequality in Eq.
(1).

Lemma 1. (Refined Arithmetic-Geometric Mean Inequality) Suppose that xk ∈
[a, b] and pk ≥ 0 for k = 1, 2, · · · , n, where a > 0, and further suppose that

∑n
k=1 pk =

1. Let x̄ =
∑n

k=1 pkxk. We have

1

2b

n∑
k=1

pk(xk − x̄)2 ≤ x̄−
n∏

k=1

xpk

k ≤ 1

2a

n∑
k=1

pk(xk − x̄)2. (10)

The proof of Lemma 1 is given in [3]. We are interested in a special case in which
each pk = 1/n, then

n∑
k=1

pk(xk − x̄)2 =
1

n

n∑
k=1

(xk − x̄)2 = var(x),
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where x = (x1, x2, · · · , xn), and var(x) denotes the variance1 of the array x = (x1, x2, · · · , xn).
Thus, for this special case, there is

1

2b
var(x) ≤ x1 + x2 + · · ·+ xn

n
−

(
n∏

k=1

xk

)1/n

≤ 1

2a
var(x),

and consequently

n∏
k=1

xk ≤
(
x1 + x2 + · · ·+ xn

n
− 1

2b
var(x)

)n

. (11)

By comparing Eq. (8) to Eq. (11), clearly, Eq. (11) provides a tighter bound of the
product of the given numbers by incorporating the variance information.

Theorem 2. (Improved Hoeffding’s Inequality) With the same notations and
settings as in Theorem 1, let

A = (q − t)(p− σ2

2
), B = −(p+ t)(q + σ2), C =

σ2

2
(1 + p+ t),

where σ2 =
∑n

i=1(pi − p)2/n. Denote

w =
−B +

√
B2 − 4AC

2A

Then

P (X̄ > p+ t) ≤ w−n(p+t)

(
q + pw − σ2(w − 1)2

2w

)n

≡ UN . (12)

Before we give the proof of Theorem 2, we summarize some useful properties of the
coefficients A, B and C as

Lemma 2. With the same notations as Theorem 2, there is A > 0, A + B + C < 0,
and B2 − 4AC > 0.

Proof. Since

σ2 =
1

n

n∑
i=1

(pi − p)2 =
1

n

n∑
i=1

p2i − p2,

there is

p− σ2 = p− 1

n

n∑
i=1

p2i + p2 =
1

n

n∑
i=1

(pi − p2i ) + p2 > 0.

Consequently,

A = (q − t)

(
p− σ2

2

)
> 0, (13)

1 Although it is not exactly the variance, calling it as variance simplifies our notation greatly.
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because q > t. We also have the following:

A+B + C = (q − t)

(
p− σ2

2

)
− (p+ t)(q + σ2) +

σ2

2
(1 + p+ t)

= (pq − pt− qσ2/2 + tσ2/2)− (pq + tq + pσ2 + tσ2)

+ (σ2/2 + pσ2/2 + tσ2/2)

= −pt− qt− qσ2/2− pσ2 + σ2/2 + pσ2/2

= −t < 0, (14)

where the last equality follows since p+ q = 1.
Finally, let’s calculate

B2 − 4AC = (p+ t)2(q + σ2)2 − 4(q − t)

(
p− σ2

2

)
σ2

2
(1 + p+ t)

= (p2 + t2 + 2pt)(q2 + σ4 + 2qσ2)− (σ2 + σ2p+ σ2t)(2pq − 2pt− qσ2 + tσ2)

= p2q2 + q2t2 + 2pq2t+ p2σ4 + t2σ4 + 2ptσ4 + 2p2qσ2 + 2qσ2t2 + 4pqtσ2

− (2pqσ2 − 2ptσ2 − qσ4 + tσ4 + 2p2qσ2 − 2p2tσ2 − pqσ4 + ptσ4

+ 2pqtσ2 − 2pt2σ2 − qtσ4 + t2σ4)

= (p2q2 + p2σ4 − 2pqσ2 + qσ4 + pqσ4) + (2ptσ4 − tσ4 − ptσ4 + qtσ4)

+ (4pqtσ2 − 2pqtσ2) + (q2t2 + 2pq2t+ 2qσ2t2 + 2pσ2t+ 2p2σ2t+ 2pσ2t2)
(15)

In Eq. (15),
2ptσ4 − tσ4 − ptσ4 + qtσ4 = (p+ q)tσ4 − tσ4 = 0,

since p+ q = 1; and

p2q2 + p2σ4 − 2pqσ2 + qσ4 + pqσ4 = (pq)2 − 2pqσ2 + σ4(p2 + pq + q)

= (pq)2 − 2pqσ2 + σ4 = (pq − σ2)2 ≥ 0

and

r(t) = (4pqtσ2 − 2pqtσ2) + (q2t2 + 2pq2t+ 2qσ2t2 + 2pσ2t+ 2p2σ2t+ 2pσ2t2)

= q2t2 + 2pq2t+ 2(p+ q)t2σ2 + 2tσ2(pq + p+ p2)

= q2t2 + 2pq2t+ 2t2σ2 + 4ptσ2 > 0

since every term in r(t) is positive. Hence,

B2 − 4AC = (pq − σ2)2 + r(t) > 0. (16)

⊓⊔

We now proceed to

Proof. [Proof of Theorem 2] For each i, since pi ∈ [0, 1], we have 1 + pi(e
λ − 1) ∈

[1, eλ]. Thus, according to Eq. (11),

n∏
i=1

(1− pi + pie
λ) ≤

(∑n
i=1(1− pi + pie

λ)

n
− σ2(eλ − 1)2

2eλ

)n

=

(
q + peλ − σ2(eλ − 1)2

2eλ

)n

.

(17)
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Similar to the proof of Theorem 1, there is

P (X̄ > p+ t) ≤ exp (−nλ(p+ t))

n∏
i=1

(1− pi + pie
λ)

≤ exp (−nλ(p+ t))

(
q + peλ − σ2(eλ − 1)2

2eλ

)n

(18)

= exp

(
−n

[
λ(p+ t)− log

(
q + peλ − σ2

2
eλ + σ2 − σ2

2
e−λ

)])
, (19)

where Eq. (18) follows by applying Eq. (17).
To minimize Eq. (19), let

g(λ) = λ(p+ t)− log

(
q + peλ − σ2

2
eλ + σ2 − σ2

2
e−λ

)
,

and we maximize g(λ) with respect to λ > 0. For this purpose, set

g′(λ) = p+ t−

(
p− σ2

2

)
eλ + σ2

2 e−λ

q + peλ − σ2

2 eλ + σ2 − σ2

2 e−λ
= 0,

which is equivalent to

p+ t =

(
p− σ2

2

)
e2λ + σ2

2(
p− σ2

2

)
e2λ + (q + σ2)eλ − σ2

2

or (
p− σ2

2

)
e2λ +

σ2

2
= (p+ t)

(
p− σ2

2

)
e2λ + (p+ t)(q + σ2)eλ − σ2

2
(p+ t),

which is

(q − t)

(
p− σ2

2

)
e2λ − (p+ t)(q + σ2)eλ +

σ2

2
(1 + p+ t) = 0. (20)

Denote

A = (q− t)

(
p− σ2

2

)
, B = −(p+ t)(q+σ2), C =

σ2

2
(1+p+ t), and W = eλ,

then Eq. (20) is

AW 2 +BW + C = 0. (21)

According to Eq. (16), B2 − 4AC > 0. Thus, Eq. (21) has two real roots:

W =
−B ±

√
B2 − 4AC

2A
.

Since λ > 0, W = eλ > 1, therefore we should take the root which is greater than 1.
Let us check the two roots.
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1. Since A > 0, −B+
√
B2−4AC
2A > 1 is equivalent to√

B2 − 4AC > 2A+B. (22)

If 2A+B < 0, Eq. (22) is true automatically. If 2A+B > 0, Eq. (22) is equivalent
to

B2 − 4AC > 4A2 + 4AB +B2,

which is further equivalent to

4A(A+B + C) < 0,

which is true because A > 0 and A+B + C < 0 according to Eqs. (13) and (14).

2. Similarly, −B−
√
B2−4AC
2A > 1 is equivalent to√

B2 − 4AC < −(2A+B). (23)

If 2A+B > 0, Eq. (23) is false automatically. If 2A+B < 0, Eq. (23) is equivalent
to

B2 − 4AC < 4A2 + 4AB +B2,

which is further equivalent to

4A(A+B + C) > 0,

which is false because A > 0 and A+B + C < 0 according to Eqs. (13) and (14).

Hence, we should take

w = eλ
∗
=

−B +
√
B2 − 4AC

2A

as the solution to Eq. (21). According to Eq. (18), we finally have

P (X̄ > p+ t) ≤ exp (−nλ∗(p+ t))

(
q + peλ

∗
− σ2(eλ

∗ − 1)2

2eλ∗

)n

= w−n(p+t)

(
q + pw − σ2(w − 1)2

2w

)n

,

which is what to be proved. ⊓⊔

Remark 1. Let pM = max(p1, p2, · · · , pn) ≤ 1, there is 1+pi(e
λ−1) ≤ 1+pM (eλ−1) ≤

eλ. Hence, Eq. (17) can be improved as

n∏
i=1

(1− pi + pie
λ) ≤

(
q + peλ − σ2(eλ − 1)2

2(1 + pM (eλ − 1))

)n

. (24)

Consequently, Eq. (18) becomes

P (X̄ > p+ t) ≤ exp (−nλ(p+ t))

(
q + peλ − σ2(eλ − 1)2

2(1 + pM (eλ − 1))

)n

(25)
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However, to minimize Eq. (25), we need to solve a high order equation, which is not
easy. We note that Eq. (25) holds for any λ > 0, we can just choose the λ which
minimizes Eq. (18), that is,

w = eλ
∗
=

−B +
√
B2 − 4AC

2A
.

With this choice, the further improved bound is

P (X̄ > p+ t) ≤ exp (−nλ∗(p+ t))

(
q + peλ

∗
− σ2(eλ

∗ − 1)2

2(1 + pM (eλ∗ − 1))

)n

= w−n(p+t)

(
q + pw − σ2(w − 1)2

2(1 + pM (w − 1))

)n

. (26)

Clearly, compared to Eq. (12), Eq. (26) provides a tighter bound because pM ≤ 1.

Remark 2. It is straightforward to verify that the original Hoeffding’s inequality in Eq.
(1) can be obtained from the proposed result in Eq. (12) by setting σ2 = 0, that is,
ignoring the variance of pi’s. In this sense, we see that the original Hoeffding’s inequality
wastes the information contained in pi’s. We also observe from Eq. (18) that larger σ2

could lead to tighter bound.

3 Simulations and Comparisons

In this section, we compare the performance of the original Hoeffding’s inequality given
in Eq. (1) to that of the improved version in Eq. (12). In Theorems 1 and 2, we assume
that every Xi ∈ [0, 1] almost surely, thus pi = E(Xi) ∈ [0, 1] almost surely.

We first consider that pi’s are uniformly distributed in (0, 1). Table 1 displays the
values of UH and UN for various combinations of n and λ. To get an intuitive idea
about the improvement of the proposed inequality to the original inequality, we also
list the ratio between these two values, i.e., R = UH/UN . From Table 1, it is observed
that our method provides a modest improvement when λ is small, but for large λ values
such that p+ λ is close to 1, the improvement is significant. Table 1 also demonstrates
that for large n, the improvement is more prominent.

Table 2 shows the comparison results when pi’s are Bernoulli(0.5) distributed. We
observe the similar pattern as in Table 1, that is, our method provides significant
improvement when p + λ is close to 1. However, if we compare Table 2 to Table 1,
we see that for similar p+ λ values, the improvement of our method over the original
inequality differs significantly. This is because, for Bernoulli(0.5), the variance of pi’s is
larger than that for uniform distribution, and according to Eq. (18), larger σ2 is more
likely to yield a tighter bound.

To further verify our observation in Table 2, we generate pi’s according to Beta(2,
10) distribution, which is right skewed and has small variance (about 0.011). In this
situation, we would expect that the improvement provided by our method is marginal,
and the computation results in Table 3 demonstrates this.
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n p σ2 λ UH UN R = UH/UN

10 0.3762 0.0485

0.1 0.8128 0.7807 1.0411
0.2 0.4412 0.3884 1.1359
0.4 0.0359 0.0250 1.4357
0.45 0.0139 0.0090 1.5326

20 0.4612 0.0843

0.1 0.6697 0.5799 1.1548
0.2 0.1979 0.1262 1.5680
0.4 9.1973× 10−4 2.5867× 10−4 3.5556
0.45 1.0027× 10−4 2.2438× 10−5 4.4687

50 0.4887 0.0868

0.1 0.3663 0.2526 1.4501
0.2 0.0167 0.0052 3.2055
0.4 1.3950× 10−8 5.1546× 10−10 27.0629
0.45 3.2958× 10−11 6.7021× 10−13 49.1751

100 0.4822 0.0887

0.1 0.1345 0.0626 2.1473
0.2 2.8703× 10−4 2.6379× 10−5 10.8807
0.4 2.6983× 10−16 3.2065× 10−19 841.5330
0.45 1.9909× 10−21 7.0177× 10−25 2.8369× 103

150 0.5259 0.0970

0.1 0.0474 0.0129 3.6827
0.2 3.4907× 10−6 6.0417× 10−8 57.7763
0.4 6.9625× 10−26 7.5374× 10−31 9.2373× 104

0.45 2.3836× 10−35 3.2747× 10−41 7.2790× 105

Table 1. Comparison of the original Hoeffding’s inequality and the proposed inequality when
pi’s are uniformly distributed in (0, 1).

n p σ2 λ UH UN R = UH/UN

10 0.7000 0.2100
0.1 0.7731 0.5292 1.4609
0.2 0.3125 0.1196 2.6126

20 0.6000 0.2400
0.1 0.6492 0.3128 2.0755
0.2 1604 0.0254 6.3156

50 0.4800 0.2496

0.1 0.3668 0.0588 6.2430
0.2 0.0170 1.7433× 10−4 97.5370
0.4 1.7310× 10−8 3.0123× 10−13 5.7466× 104

0.45 4.9139× 10−11 1.5775× 10−16 3.1151× 105

100 0.4600 0.2484

0.1 0.1347 0.0034 39.6811
0.2 3.0424× 10−4 3.1165× 10−8 9.7623× 103

0.4 6.8869× 10−16 2.0737× 10−25 3.3211× 109

0.45 1.1004× 10−20 1.1004× 10−31 9.6548× 1010

150 0.5 0.25

0.1 0.0488 2.0459× 10−4 238.4513
0.2 4.3626× 10−6 4.8180× 10−12 9.0549× 105

0.4 1.0538× 10−24 5.4437× 10−39 1.9358× 1014

0.45 5.9926× 10−33 1.9059× 10−49 3.1441× 1016

Table 2. Comparison of the original Hoeffding’s inequality and the proposed inequality when
pi’s are Bernoulli(0.5) random variables.

4 Conclusions

By applying a refined arithmetic-geometric inequality which incorporates variance in-
formation of the given numbers, this paper introduces an improved version to Hoeffd-
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n p σ2 λ UH UN R = UH/UN

10 0.1509 0.0053

0.1 0.7139 0.7068 1.0099
0.2 0.2958 0.2876 1.0285
0.4 0.0139 0.0130 1.0737
0.45 0.0050 0.0046 1.0860

20 0.1799 0.0060

0.1 0.5479 0.5381 1.0183
0.2 0.1094 0.1038 1.0546
0.4 3.5130× 10−4 3.0583× 10−4 1.1487
0.45 5.0320× 10−5 4.2821× 10−5 1.1751

50 0.1598 0.0061

0.1 0.1973 0.1871 1.0545
0.2 0.0027 0.0024 1.1645
0.4 8.7132× 10−10 5.9035× 10−10 1.4759
0.45 5.8351× 10−12 3.7135× 10−12 1.5713

100 0.1691 0.0109

0.1 0.0437 0.0365 1.1985
0.2 1.0768× 10−5 6.3927× 10−6 1.6844
0.4 1.9655× 10−18 5.1534× 10−19 3.8140
0.45 1.0196× 10−22 2.1529× 10−23 4.7360

150 0.1587 0.0097

0.1 0.0075 0.0058 1.2986
0.2 1.9330× 10−8 9.1753× 10−9 2.1067
0.4 5.5459× 10−28 8.3303× 10−29 6.6575
0.45 1.6210× 10−34 1.7972× 10−35 9.0196

Table 3. Comparison of the original Hoeffding’s inequality and the proposed inequality when
pi’s are Beta(2, 10) random variables.

ing’s inequality. Simulation results show that the improvement is moderate for small
λ but significant if p+ λ is close to 1. Both theoretical analysis and simulation results
indicate that if the variance of pi’s are large, the improvement is prominent.
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