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a b s t r a c t

This paper proposes two gradient based methods to fit a Probit regression model by maximizing the

sample log-likelihood function. Using the property of the Hessian of the objective function, the first

method performs weighted least square regression in each iteration of the Newton–Raphson frame-

work, resulting in ProbitBoost, a boosting-like algorithm. Motivated by the gradient boosting algorithm

[10], the second proposed approach maximizes the sample log-likelihood function by updating the

fitted function a small step in the gradient direction, performing gradient ascent in functional space,

resulting in Gradient ProbitBoost. We also generalize the algorithms to multi-class problems by two

strategies, one of which is to use the gradient ascent to maximize the multi-class sample log-likelihood

function for fitting all the classifiers simultaneously, and the second approach uses the one-versus-all

scheme to reduce the multi-class problem to a series of binary classification problems. The proposed

algorithms are tested on typical classification problems including face detection, cancer classification,

and handwritten digit recognition. The results show that compared to the alternative methods, the

proposed algorithms perform similar or better in terms of testing error rates.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In binary classification problems, we have response variable
YAf0;1g, and the d-dimensional predictor vector xARd. Probit
regression is appropriate for fitting a binary response model,
which assumes the posterior probability of Y given x has the form

PðY ¼ 19xÞ ¼Fðf ðxÞÞ, ð1Þ

where f ðxÞ is a function of the input vector x, and Fð�Þ is the
standard normal cumulative distribution function, i.e.,

FðtÞ ¼
Z t

�1

jðzÞ dz with jðzÞ ¼ 1ffiffiffiffiffiffi
2p
p e�z2=2: ð2Þ

It follows from Eq. (1) that

PðY ¼ 19xÞZ0:53f ðxÞZ0, ð3Þ

and this enables us to use signðf ðxÞÞ as the classifier in the
decision making stage.

Note that Eq. (1) can be rewritten as

PðY9xÞ ¼Fðf ðxÞÞY ð1�Fðf ðxÞÞÞ1�Y , ð4Þ

therefore the log-likelihood function is

lðf Þ ¼ Y log Fðf ðxÞÞþð1�YÞlogð1�Fðf ðxÞÞÞ
¼ Y log Fðf Þþð1�YÞlog Fð�f Þ, ð5Þ
ll rights reserved.

du (S. Zheng),
where we slightly abuse the usage of notation by letting f ¼ f ðxÞ,
which is clear from the context. Eq. (5) is true because
1�Fðf Þ ¼Fð�f Þ from the symmetry of the standard normal
distribution.

To fit the Probit regression model, we find f ðxÞ such that the
expected log-likelihood function is maximized:

E½lðf Þ9x� ¼ E½Y log Fðf Þþð1�YÞlog Fð�f Þ9x�: ð6Þ

Unfortunately, the expected log-likelihood in Eq. (6) is usually
uncomputable because the related distributions are unknown.
Instead, given a set of data fðxi,YiÞ,i¼ 1, . . . ,ng, we usually max-
imize the sample log-likelihood function in Eq. (7) to find f ðxÞ:

l̂ðf Þ ¼
1

n

Xn

i ¼ 1

½Yi log Fðf ðxiÞÞþð1�YiÞlog Fð�f ðxiÞÞ�, ð7Þ

i.e., the fitted function fn can be obtained by

f n ¼ arg max
f

l̂ðf Þ: ð8Þ

In modern era, high dimensional problems are ubiquitous, for
example, the problems in computer vision and bioinformatics
usually involve thousands of predictors. As such, a model fitting
method being able to solve high dimensional problems is highly
appreciated. Maximizing the sample log-likelihood function in Eq.
(7) can be solved via an iteratively re-weighted least-squares
(IRWLS) approach [14], but the convergence of IRWLS is not
guaranteed when there are a large number of predictors. Böhning
[3] found a lower bound for the log-likelihood function in Eq. (7)
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and maximized this lower bound to obtain an approximation of
the Probit regression model. However, in high dimensional
spaces, this lower bound method needs to calculate the inverse
of a large matrix, which is computationally expensive and
unstable. The Probit regression model could also be solved by
applying the parameter expansion technique to expecta-
tion maximization [19] and data augmentation [20]. The
methods presented in [19,20] are theoretically sound, but there
is no high dimensional example given. In [22,31], Probit regres-
sion was employed together with Bayesian inference for cancer
classification, which is a difficult problem in very high dimen-
sional space, and [7] integrated Probit regression model and
Bayesian inference in reproducing kernel Hilbert space to perform
the same task. However, Bayesian inference usually involves
Markov chain Monte Carlo algorithms, which are very time
consuming, even in the decision making stage, and this is often
undesired in applications.

In the additive model framework, this paper introduces two
alternative algorithms to maximize the sample log-likelihood
function of Probit regression model, which can work in high
dimensional spaces. Using the property of the second order
derivative of the expected log-likelihood function, the first
method performs weighted least square regression in each itera-
tion of the Newton–Raphson framework, resulting in a boosting-
like algorithm, which is called ProbitBoost. Motivated by the
gradient boosting algorithm [10], the second proposed approach
iteratively maximizes the log-likelihood function by updating the
fitted model a small step in the gradient direction, performing
gradient ascent in functional space, yielding Gradient ProbitBoost.
We also generalize the proposed algorithms to multi-class case by
using the first order based gradient ascent to maximize the multi-
class sample log-likelihood function for fitting the multiple
classifiers simultaneously. As the second option for multi-class
problem, we use the one-versus-all approach to reduce the
problem to multiple binary classification problems.

The proposed ProbitBoost and Gradient ProbitBoost are tested
on typical classification problems with very high dimensional
features, including face detection, cancer classification based on
gene expression data, and handwritten digit recognition. By
analyzing detailed performance curves/measures, we observe that
the Newton–Raphson based ProbitBoost performs better than the
first order based Gradient ProbitBoost, in terms of both conver-
gence speed and classification error rate. The performance of the
proposed algorithm with different weak learners is also investi-
gated, and we recommend the regression stump [25] for a general
classification problem. We also experimentally investigate the
strategies for setting the step size parameter for the Gradient
ProbitBoost. On the considered experiments, compared to the
alternative methods, the proposed algorithms achieve better or
similar performance in terms of classification error rates. To
the best of our knowledge, this is the first attempt to apply
gradient based optimization method for fitting the Probit regres-
sion model in high-dimensional spaces, and the resulting algo-
rithms are easy to implement with performance comparable to
state-of-the-art.

The rest of this paper is organized as follows: Section 2 reviews
the interpretation of boosting algorithm as functional gradient
descent; Section 3 derives the proposed ProbitBoost and Gradient
ProbitBoost algorithms for binary classification problems and gen-
eralizes the proposed algorithms to multi-class scenario; Section 4
presents the experimental results on the problems of face detection,
cancer classification, and handwritten digit recognition, and the
comparison to the alternatives is also presented; in Section 5, we
briefly discuss the differences among AdaBoost, LogitBoost, and the
proposed ProbitBoost; finally, Section 6 summarizes this paper and
discusses the future research direction.
2. Boosting as functional gradient descent

Boosting [9] is a classic algorithm in pattern classification and
is well known for its simplicity and high accuracy. The powerful
feature selection mechanism of boosting makes it suitable to
work in high dimensional spaces. Friedman et al. [10,11] devel-
oped a general statistical framework which yields a direct inter-
pretation of boosting as a method for function estimation, which
is a ‘‘stagewise, additive model’’.

Consider the problem of function estimation

f nðxÞ ¼ arg min
f

E½rðY ,f ðxÞÞ9x�, ð9Þ

where rð�,�Þ is a loss function which is typically differentiable and
convex with respect to the second argument. Estimating f nð�Þ from
the given data fðxi,YiÞ, i¼ 1, . . . ,ng can be performed by minimiz-
ing the empirical risk n�1

Pn
i ¼ 1 rðYi,f ðxiÞÞ and pursuing iterative

steepest descent in functional space. This leads us to the generic
functional gradient descent algorithm [10], as shown in Algorithm 1.

Algorithm 1. Generic functional gradient descent.
Initialize f ½0�ð�Þ with f ½0�ð�Þ ¼ arg min
c

1

n

Pn
i ¼ 1

rðYi,cÞ,
or set f ½0�ð�Þ ¼ 0, and set iteration number m¼0.

1.
 Increase m by 1. Compute the negative gradient �ð@=@f ÞrðY ,f Þ

and evaluate at f ½m�1�
ðxiÞ:

Ui ¼�
@rðYi ,f Þ
@f

���
f ¼ f ½m�1�

ðxiÞ
, i¼ 1, . . . ,n:
2.
 Fit the negative gradients U1, . . . ,Un to x1, . . . ,xn by the base
procedure (e.g., the weak learner in AdaBoost):

fðxi,UiÞ, i¼ 1, . . . ,ng�!g½m�ð�Þ:
3.
 Update the estimation by f ½m�ð�Þ ¼ f ½m�1�
ð�Þþng½m�ð�Þ, where n

is a step size factor.

4.
 Check the stopping criterion, if not satisfied, go to step 1.
Many boosting algorithms can be understood as functional
gradient descent with appropriate loss function. For example, if
we choose rðY ,f Þ ¼ expð�ð2Y�1Þf Þ, we would recover the Ada-
Boost algorithm [11]; if we choose rðY ,f Þ ¼ ðY�f Þ2=2, we would
result in L2 Boost [5]; this idea was also applied to quantile
regression and classification models, see [16,32,33].
3. Functional gradient ascent for Probit regression

This section derives the ProbitBoost algorithm in the Newton–
Raphson framework by using the properties of the gradient and
Hessian of the log-likelihood function, then the first order
gradient method is applied to yield the Gradient ProbitBoost.
We also generalize the proposed algorithms to multi-class pro-
blems by the first order method and the one-versus-all strategy.
For completeness, the details of the weak learners is presented
which will be used extensively in this paper.
3.1. Gradient and Hessian of the expected log-likelihood function

Gradient based optimization methods are well known for their
simplicity in implementation and being able to get at least a local
optimum [26]. To fit Probit regression model, we will maximize
the sample log-likelihood function in Eq. (7) by gradient ascent.
Before we propose the algorithm, let us first investigate the ideal
case, i.e., maximizing the expected log-likelihood function E½lðf Þ9x�
in Eq. (6) by gradient ascent. In the Newton–Raphson framework,
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we proceed in an iterative fashion with

f ½mþ1�
ðxÞ ¼ f ½m�ðxÞ�H�1

ðf ½m�ðxÞÞDðf ½m�ðxÞÞ, ð10Þ

where f ½m�ð�Þ is the fitted function at the m-th iteration; Dð�Þ and
Hð�Þ are the gradient and Hessian of the objective function, i.e.,
E½lðf Þ9x�, respectively.

The gradient is calculated as:

Dðf Þ ¼
@E½lðf Þ9x�

@f
¼ E

Yjðf Þ
Fðf Þ

�
ð1�YÞjð�f Þ

Fð�f Þ

����x
� �

¼ E
jðf ÞðY�Fðf ÞÞ
Fðf ÞFð�f Þ

����x
� �

: ð11Þ

Hessian is defined as

Hðf Þ ¼
@Dðf Þ

@f
¼ E

@

@f

jðf ÞðY�Fðf ÞÞ
Fðf ÞFð�f Þ

� �����x
� �

¼ E½hðf Þ9x�, ð12Þ

where

hðf Þ ¼
@

@f

jðf ÞðY�Fðf ÞÞ
Fðf ÞFð�f Þ

� �
: ð13Þ

In the following derivations, we will use the relations, Fð�f Þ ¼

1�Fðf Þ, jðf Þ ¼jð�f Þ, and j0ðf Þ ¼�fjðf Þ, which follow directly
from the properties of standard normal distribution.

When Y¼0, Eq. (13) becomes

hðf Þ ¼
@

@f

jðf Þð0�Fðf ÞÞ
Fðf ÞFð�f Þ

� �
¼�

@

@f

jðf Þ
Fð�f Þ

� �

¼�
�fjðf ÞFð�f Þþjðf Þjð�f Þ

F2
ð�f Þ

¼
jðf Þ½fFð�f Þ�jðf Þ�

F2
ð�f Þ

¼
jðf ÞG0ðf Þ

F2
ð�f Þ

, ð14Þ

with

G0ðf Þ ¼ fFð�f Þ�jðf Þ:

When Y¼1, Eq. (13) becomes

hðf Þ ¼
@

@f

jðf Þð1�Fðf ÞÞ
Fðf ÞFð�f Þ

� �
¼

@

@f

jðf ÞFð�f Þ

Fðf ÞFð�f Þ

� �

¼
@

@f

jðf Þ
Fðf Þ

� �
¼
�fjðf ÞFðf Þ�jðf Þjðf Þ

F2
ðf Þ

¼
jðf Þ½�fFðf Þ�jðf Þ�

F2
ðf Þ

¼
jðf ÞG1ðf Þ

F2
ðf Þ

, ð15Þ

with

G1ðf Þ ¼�fFðf Þ�jðf Þ:

In summary, we have E½hðf Þ9x� as the Hessian of the expected
log-likelihood function E½lðf Þ9x�, with

hðf Þ ¼

jðf ÞG0ðf Þ

F2
ð�f Þ

if Y ¼ 0

jðf ÞG1ðf Þ

F2
ðf Þ

if Y ¼ 1

8>>>><
>>>>:

¼
jðf ÞGY ðf Þ

F2
ðð2Y�1Þf Þ

: ð16Þ

where

GY ðf Þ ¼ �ð2Y�1ÞfF½ð2Y�1Þf ��jðf Þ:

We can further prove the following property of Hessian:

Lemma 1. hðf Þo0 for any value of f ðxÞ, thus the Hessian of E½lðf Þ9x�
is negative.

Proof. It is easy to see that when f o0,

G0ðf Þ ¼ fFð�f Þ�jðf Þo fFð�f Þo0:

If f Z0, we have

G00ðf Þ ¼Fð�f Þ�fjð�f Þ�j0ðf Þ
¼Fð�f Þ�fjðf Þþ fjðf Þ ¼Fð�f Þ40,
which implies that G0ðf Þ is a monotonically increasing function on
½0,1Þ. We can calculate G0ð0Þ ¼�jð0Þo0, and it is easy to verify
that

lim
f-1

G0ðf Þ ¼ 0:

By the property of monotonic increasing function, it follows that
G0ðf Þo0 when f Z0. Thus, G0ðf Þ always assumes negative values.

From the definition of G0ðf Þ and G1ðf Þ, they are symmetric about

0, because

G0ð�f Þ ¼�fFðf Þ�jð�f Þ ¼�fFðf Þ�jðf Þ ¼ G1ðf Þ:

Since G0ðf Þ is negative, G1ðf Þ is negative as well.

From Eq. (16), it immediately follows that hðf Þo0. &

According to Lemma 1, the Hessian of E½lðf Þ9x� is negative,
which means that the function E½lðf Þ9x� is concave in f, thus the
maximum point could be found by gradient ascent algorithms.

3.2. ProbitBoost: fitting Probit model by Newton–Raphson

From Eq. (10), the Newton–Raphson step for maximizing the
expected log-likelihood function is

f ½mþ1�
ðxÞ ¼ f ½m�ðxÞ�H�1

ðf ½m�ðxÞÞDðf ½m�ðxÞÞ

¼ f ½m�ðxÞ�
1

E½hðf ½m�Þ9x�
E
jðf ½m�ÞðY�Fðf ½m�ÞÞ
Fðf ½m�ÞFð�f ½m�Þ

�����x
" #

¼ f ½m�ðxÞþ
1

E½�hðf ½m�Þ9x�
E
jðf ½m�ÞðY�Fðf ½m�ÞÞ
Fðf ½m�ÞFð�f ½m�Þ

�����x
" #

¼ f ½m�ðxÞþE�h
jðf ½m�ÞðY�Fðf ½m�ÞÞ
�hðf ½m�ÞFðf ½m�ÞFð�f ½m�Þ

�����x
" #

¼ f ½m�ðxÞþE�h
ðFðf ½m�Þ�YÞF2

ðð2Y�1Þf ½m�Þ

GY ðf
½m�
ÞFðf ½m�ÞFð�f ½m�Þ

�����x
" #

, ð17Þ

where we used the notation Ewð�9xÞ for the weighted conditional
expectation [11] with

Ew½gðx,yÞ9x� ¼
E½wðx,yÞgðx,yÞ9x�

E½wðx,yÞ9x�
with wðx,yÞ40 8x,8y: ð18Þ

Eq. (17) uses the weight �hðf Þ, which is reasonable for being a
weight function since hðf Þo0 by Lemma 1. We define a trans-
formed response variable as

Yn
¼
ðFðf Þ�YÞF2

ðð2Y�1Þf Þ

GY ðf ÞFðf ÞFð�f Þ
, ð19Þ

then Eq. (17) shows that in each step, for updating the fitted
function, we just need to fit a weighted least square regression of
the transformed response Yn on x with weight �hðf Þ.

The above procedure can be translated from population ver-
sion to sample version, resulting in Algorithm 2, which is called
ProbitBoost because the procedure is like that of AdaBoost [9], L2

Boost [5], and LogitBoost [11].

Algorithm 2. ProbitBoost algorithm.
0.
 Given the total iteration number M, training data

fðxi,YiÞ,i¼ 1, . . . ,ng with xiARd and YiAf0;1g; initialize

f ½0�ðxÞ ¼ 0.

1.
 for m¼1 to M do:

2.
 Calculate the transformed response as

Yn

i ¼
ðFðf ½m�1�

i Þ�YiÞF
2
½ð2Yi�1Þf ½m�1�

i �

GYi
ðf ½m�1�

i ÞFðf ½m�1�
i ÞFð�f ½m�1�

i Þ
,

for i¼ 1;2, . . . ,n, where f ½m�1�
i ¼ f ½m�1�

ðxiÞ.
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3.

1
Weight function of ProbitBoost
Calculate the weight by Wi ¼�

jðf ½m�1�
ðxiÞÞGYi

ðf ½m�1�
ðxiÞÞ

F2
½ð2Yi�1Þf ½m�1�

ðxiÞ�
,

for i¼ 1;2, . . . ,n.

0.9
4.
0.8

Fit a function gmðxÞ by weighted least square regression

of Yn

i on xi with weights Wi, i¼ 1;2, . . . ,n.
5.

0.7
Update the function f ½m�ðxÞ ¼ f ½m�1�

ðxÞþgmðxÞ.

6.
 end for
0.6t Positive Examples

7.
 h Negative Examples
Output the classifier signðf ½M�ðxÞÞ.
i

o

n

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

Fitted value

W
ei

g

Fig. 1. The weights as a function of the fitted value, for positive examples (solid

line) and negative examples (dashed line).
For the weight function, we can further prove:

Lemma 2. The weight function

Wðf Þ ¼�hðf Þ ¼ �
jðf ÞGY ðf Þ

F2
ðð2Y�1Þf Þ

has the following property:

if Y ¼ 0, lim
f-�1

Wðf Þ ¼ 0 and lim
f-1

Wðf Þ ¼ 1,

if Y ¼ 1, lim
f-�1

Wðf Þ ¼ 1 and lim
f-1

Wðf Þ ¼ 0:

Proof. We only prove the first half of the lemma because the
second half is similar.

When Y¼0,

Wðf Þ ¼�
jðf ÞG0ðf Þ

F2
ð�f Þ

¼
j2ðf Þ�fjðf ÞFð�f Þ

F2
ð�f Þ

:

It is easy to see that when f-�1, F �fð Þ-1, j2ðf Þ-0, and

fjðf Þ-0. Thus, we conclude Wðf Þ-0 as f-�1.

By repeatedly using L’Hôpital’s rule, we have

lim
f-1

Wðf Þ ¼ lim
f-1

d

df
½j2ðf Þ�fjðf ÞFð�f Þ�

d

df
F2
ð�f Þ

¼ lim
f-1

�2j2ðf Þf�jðf ÞFð�f Þþ fj2ðf Þþ f 2jðf ÞFð�f Þ

�2Fð�f Þjðf Þ

¼
1

2
þ lim

f-1

fjðf Þ�f 2Fð�f Þ

2Fð�f Þ

¼
1

2
þ lim

f-1

jðf Þ�f 2jðf Þ�2fFð�f Þþ f 2jðf Þ
�2jðf Þ

¼ lim
f-1

fFð�f Þ

jðf Þ
¼ lim

f-1

Fð�f Þ�fjðf Þ
�fjðf Þ

¼ 1� lim
f-1

Fð�f Þ

fjðf Þ

¼ 1þ lim
f-1

jðf Þ
jðf Þ�f 2jðf Þ

¼ 1þ lim
f-1

1

1�f 2
¼ 1: &

Fig. 1 shows the plots of the weight functions of positive and
negative examples, as fitted values. The trend stated in Lemma 2
is clearly seen. Furthermore, it is evident from Fig. 1 that W(f) is
monotonically increasing for negative examples, and monotoni-
cally decreasing for positive examples. Thus, for any reasonable
value of f ðxÞ, the weight function falls in [0,1]. From Fig. 1, we can
also observe that, when the algorithm makes a mistake at the
current stage (i.e., f o0 for positive example or f 40 for negative
example), the weight for this example will be

w4Wð0Þ ¼
2

p
40:5,

that is, the algorithm will focus more on this mistakenly classified
example in the next iteration. If the algorithm makes further
mistake, i.e., for positive example, f decreases; for negative
example, f increases, then the weight of this example is increased,
forcing the algorithm to pay more attention to this particular
example in the next iteration. These properties are desired for the
algorithm to have good performance.

3.3. Gradient ProbitBoost: first order functional gradient ascent for

Probit regression

As an alternative to the Newton–Raphson method, the simple
gradient ascent method, for its simplicity, could also be used to
maximize the expected log-likelihood function in Eq. (6), that is

f ½mþ1�
ðxÞ ¼ f ½m�ðxÞþnmDðf ½m�ðxÞÞ

¼ f ½m�ðxÞþnmE
jðf ½m�ðxÞÞðY�Fðf ½m�ðxÞÞÞ
Fðf ½m�ðxÞÞFð�f ½m�ðxÞÞ

�����x
" #

, ð20Þ

where nm is the step size parameter at iteration m. Eq. (20)
indicates that in each iteration, we only need to fit a least square
regression with new response

Yn
¼
jðf ½m�ðxÞÞðY�Fðf ½m�ðxÞÞÞ
Fðf ½m�ðxÞÞFð�f ½m�ðxÞÞ

:

Translating the above procedure into sample version, we could
obtain the algorithm as listed in Algorithm 3.

Algorithm 3. Gradient ProbitBoost.
0. G
iven the total number of iterations M, training data fðxi,YiÞ,

¼ 1, . . . ,ng with xiARd and YiAf0;1g; initialize f ½0�ðxÞ ¼ 0.

1. f
 r m¼1 to M do:

2.
 Compute the gradient ð@=@f ÞlðYi,f Þ and evaluate at f ½m�1�

ðxiÞ:

Yn

i ¼
@
@f lðYi,f Þ

���
f ¼ f ½m�1�

ðxiÞ
¼

jðf ÞðYi�Fðf ÞÞ
Fðf ÞFð�f Þ

���
f ¼ f ½m�1�

ðxiÞ
,i¼ 1, . . . ,n:
3.
 Fit the gradient vector Yn

1, . . . ,Yn

n to x1, . . . ,xn by the weak
learner:

fðxi,Y
n

i Þ,i¼ 1, . . . ,ng�!g½m�ð�Þ:
4.
 Update the estimation by f ½m�ð�Þ ¼ f ½m�1�
ð�Þþnmg½m�ð�Þ,

where nm is the step size at this iteration.

5. e
 d for
6. O
utput the classifier signðf ½M�ðxÞÞ.
Algorithm 3 could also be explained in the framework of
functional gradient algorithm [10] (refer to Algorithm 1 in
Section 2). Let the cost function rð�,�Þ be the log-likelihood
function lðY ,f Þ defined in Eq. (5), then perform gradient ascent
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in functional space in each step. Since the purpose is to maximize
the objective function, in each iteration, we approximate the
gradient vector rather than the negative gradient vector. By this
way, we can also obtain the algorithm presented in Algorithm 3,
which is referred to as Gradient ProbitBoost.

Similar to [10], we let the weak learner be gðx,aÞ, where a is a
parameter vector. Then the third step in Algorithm 3 can be
performed by an ordinary least square regression:

am ¼ arg min
a

Xn

i ¼ 1

½Yn

i �gðxi,aÞ�
2, ð21Þ

hence the function g½m�ðxÞ ¼ gðx,amÞ can be regarded as an approx-
imation to the gradient in the functional space. In step 4, the step
size nm can be determined by line search

nm ¼ arg max
g

Xn

i ¼ 1

l½Yi,f
½m�1�
ðxiÞþgg½m�ðxiÞ�: ð22Þ

The maximization problem in Eq. (22) can be solved by 1-D search
algorithms, e.g., Fibonacci search, Golden section search [26].

In the generic functional gradient descent framework (shown
in Algorithm 1), it is claimed in [4] that the choice of the step size
factor in step 3 is of minor importance as long as it is ‘‘small’’. A
smaller value of fixed step size nm typically requires a larger
number of boosting iterations and thus more computing time,
while the predictive accuracy has been empirically found to be
good when choosing nm ‘‘sufficiently small’’ (e.g., nm ¼ 0:1) [10].
By simulations, Friedman [10] showed that the performances are
similar if the step size parameter is less than 0.125. To balance the
predictive accuracy and the computational burden, Bühlmann [4]
suggested choose step size as 0.1. Thus, as an alternative option
for the step size, we can fix it at a small value, e.g., 0.1.
3.4. Multi-class versions

In this subsection, we generalize the proposed classification
algorithms to multi-class situation. Suppose we have J classes,
that is, the class label YAf1;2, . . . ,Jg. We fit a classifier for each
class, and denote them as functions f jðxÞ, j¼ 1, . . . ,J, and let
f ¼ ðf 1, . . . ,f JÞ

0. Assume PðY ¼ j9xÞpFðf jðxÞÞ, that is

pj ¼ PðY ¼ j9xÞ ¼
Fðf jðxÞÞPJ

k ¼ 1 Fðf kðxÞÞ
: ð23Þ

We make prediction by taking the maximum posterior probabil-
ity, that is, the predicted class label Ŷ is determined by

Ŷ ¼ arg max
jA f1;2,...,Jg

PðY ¼ j9xÞ ¼ arg max
jA f1;2,...,Jg

f jðxÞ:

We define binary variable yj ¼ IðY ¼ jÞ, for j¼ 1;2, . . . ,J, where
Ið�Þ ¼ 1 if the condition in the parenthesis is correct, and 0 otherwise.
Obviously, for each example x, there is only one yj¼1, and other yj’s
are all 0. With this notation, we can write the likelihood function as

PðY9xÞ ¼
YJ

j ¼ 1

p
yj

j :

Then the expected log-likelihood function is

E½lðf 1, . . . ,f JÞ9x� ¼ E
XJ

j ¼ 1

yj log pj

������x
2
4

3
5

¼ E
XJ

j ¼ 1

yj log Fðf jðxÞÞ�
XJ

j ¼ 1

yj log
XJ

k ¼ 1

Fðf kðxÞÞ

 !������x
2
4

3
5

¼ E
XJ

j ¼ 1

yj log Fðf jðxÞÞ�log
XJ

k ¼ 1

Fðf kðxÞÞ

 !������x
2
4

3
5,

ð24Þ

the last step is true because
PJ

j ¼ 1 yj ¼ 1, for any example x.
The first order derivatives are

Dj ¼
@E½lðf 1, . . . ,f JÞ9x�

@f j

¼ E yj

jðf jðxÞÞ

Fðf jðxÞÞ
�

jðf jðxÞÞPJ
k ¼ 1 Fðf kðxÞÞ

�����x
" #

¼ E
jðf jðxÞÞ

Fðf jðxÞÞ
ðyj�pjÞ

�����x
" #

for j¼ 1;2, . . . ,J: ð25Þ

We define DðfÞ ¼ ðD1,D2, . . . ,DJÞ
0, then the Newton–Raphson

update equation is

f½mþ1�
¼ f ½m��Hðf ½m�Þ�1Dðf ½m�Þ, ð26Þ

where f ½m� is the currently fitted functions, Dðf ½m�Þ and Hðf ½m�Þ are the
gradient and the Hessian evaluated at the current fitting, respectively.
Unlike the algorithm presented in Section 3.2, where we updated the
fitted function efficiently by a weighted least square regression, it is
not obvious to do so in Eq. (26) because the Hessian is a J� J matrix.
As such, we choose to use the first order gradient method for
maximizing the expected log likelihood function, that is

f½mþ1�
¼ f ½m� þnmDðf ½m�Þ,

with nm being the step size parameter at iteration m. For each
classifier fj, we have the updating equation

f ½mþ1�
j ðxÞ ¼ f ½m�j ðxÞþnmE

jðf ½m�j ðxÞÞ

Fðf ½m�j ðxÞÞ
ðyj�p½m�j Þ

�����x
" #

, ð27Þ

where p½m�j is calculated according to Eq. (23). Eq. (27) shows that the
function f jðxÞ could be updated efficiently by fitting a least square
regression with response variable

yn

j ¼
jðf ½m�j ðxÞÞ

Fðf ½m�j ðxÞÞ
ðyj�p½m�j Þ:

The above procedure can be applied to the sample version, and
is summarized as the algorithm presented in Algorithm 4. As
before, the step size parameter nm can be fixed at a small value or
determined by 1-D search, such as golden section search.
Algorithm 4. Multi-class Gradient ProbitBoost.
0.
 Given the total iteration number M, training data

fðxi,YiÞ,i¼ 1, . . . ,ng with xiARd and YiAf1;2, . . . ,Jg. Initialize

f ½0�j ðxÞ ¼ 0 for j¼ 1;2, . . . ,J; define yij ¼ IðYi ¼ jÞ, for

i¼ 1;2, . . . ,n and j¼ 1;2, . . . ,J.

1.
 for m¼1 to M do:

2.
 Calculate the probability values

pij ¼
Fðf ½m�1�

j ðxiÞÞPJ
k ¼ 1 Fðf

½m�1�
k ðxiÞÞ

for i¼ 1;2, . . . ,n and j¼ 1;2, . . . ,J:
3.
 Calculate the transformed response as

yn

ij ¼
jðf ½m�1�

j ðxiÞÞ

Fðf ½m�1�
j ðxiÞÞ

ðyij�pijÞ for i¼ 1;2, . . . ,n and j¼ 1;2, . . . ,J:
4.
 for j¼1 to J do:

5.
 Fit a function gm

j ðxÞ by least square regression of yn

ij on

xi with i¼ 1;2, . . . ,n.

6.
 Update the j-th function by f ½m�j ðxÞ ¼ f ½m�1�

j ðxÞþnmgm
j ðxÞ.
7.
 end for

8.
 end for
9.
 Output the classifier arg maxjA f1;2,...,Jgðf
½M�
j ðxÞÞ.
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Alternatively, similar to [8,9], we can fit the multi-class
classifier with one-versus-all approach by reducing the multi-
class problem into J binary classification problems. It is very easy
to sketch the algorithm as the following:

Algorithm 5. Multi-class ProbitBoost by one-versus-all.
Fig. 2
Probi

likeli
0.
 Given the total iteration number M, training data

fðxi,YiÞ,i¼ 1, . . . ,ng with xiARd and YiAf1;2, . . . ,Jg. Initialize

yij ¼ IðYi ¼ jÞ, for i¼ 1;2, . . . ,n and j¼ 1;2, . . . ,J.
1.
 for j¼1 to J do:

2.
 Fit classifier f ½M�j ðxÞ by calling Algorithm 2 or 3 with data

fðxi,yijÞ,i¼ 1, . . . ,ng
3.
 end for

4.
 Output the classifier arg maxjA f1;2,...,Jgðf

½M�
j ðxÞÞ.
3.5. Regression stump as weak learner

We have many options for the weak learners, for example, the
ordinary least square regression. However, the ordinary least
square regression is not stable for classification problems [11],
especially when the number of variable is far more than the
sample size. Furthermore, the least square regression is time
consuming since matrix inversion is involved.

The most popular weak learners in conjunction with boosting
are regression trees. In this paper, we use the regression tree with
only two terminal nodes, i.e., regression stump, as weak learner.
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Not only easier to fit, regression stump was experimentally
proved yielding better or equal performance than boosting large
trees [8,11]. A regression stump is defined as

gðx,a,b,yÞ ¼ aIðxk4yÞþb,

where a and b are coefficients, and y is a threshold value, k is the
variable based on which the regression is made.

Given the training data fðxi,ziÞ,i¼ 1, . . . ,ng, and the i-th datum
is assigned a weight wi, with

Pn
i ¼ 1 wi ¼ 1. We fit a regression

stump by minimizing the weighted square error with the objec-
tive function

Jkða,b,yÞ ¼
Xn

i ¼ 1

wiðzi�gðxk
i ,a,b,yÞÞ2:

The solution to the above optimization problem is

bk ¼

P
iwiziIðx

k
i rykÞP

iwiIðxk
i rykÞ

and

ak ¼

P
iwiziIðx

k
i 4ykÞP

iwiIðxk
i 4ykÞ

�bk,

and yk is selected to minimize Jkða,b,yÞ, the minimum of Jkða,b,yÞ
is denoted as JminðkÞ ¼ Jkðak,bk,ykÞ. Finally, the index of the
selected variable is

kn
¼ arg min

k
JminðkÞ,

and the parameters akn , bkn , and ykn are obtained consequently.
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Table 1
The leave-one-out error rates of the considered algorithms on the cancer

classification datasets. The size and the dimensionality of each dataset are also

given. The best performances are displayed in bold.

Dataset Size Dimension L2 B.

(%)

A. B. (%) L. B. (%) P. B. (%) G. P. B.

(%)

Leukemia 72 3571 12.5 4.17 2.78 2.78 4.17

Estrogen 49 7129 6.12 10.20 12.24 8.16 10.20

Colon 62 2000 16.13 17.74 16.13 16.13 16.13
Lymphoma 96 4026 14.58 8.33 12.50 11.46 12.50

Prostate 102 5966 6.86 6.86 4.90 3.92 4.90

DLBCL 77 6285 9.09 6.49 3.90 3.90 5.19
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4. Experimental results

In this section, we test the proposed ProbitBoost algorithms on
several typical binary and multi-class classification problems, and
compare the performance to the alternative algorithms. All the
algorithms were implemented with MATLAB 2007b, without
particular code optimization. The experiments were performed
on a personal computer with Windows XP operating system,
Pentium IV CPU 3.00 GHz, and 3.00 GB memory.

4.1. Face detection

Face detection is a classical problem in computer vision, and
many machine learning algorithms have been successfully
applied to face detection, e.g., support vector machines [21],
AdaBoost [28]. In this experiment, we use a dataset with 3000
face and 3000 non-face images, each image is of size 16�16. The
training set includes 600 face and 600 non-face images randomly
selected from the whole dataset, and the rest images are used for
testing. Similar to [28], we extract different types of Haar features
from the images, with the minimum rectangle size as 4 by 4 (for
example: 4 by 5, 8 by 4, 10 by 11), obtaining around 6000 features
in total. We compare the performance of the proposed Probit-
Boost algorithms to several famous boosting based methods,
including AdaBoost [28], L2 Boost [5], and LogitBoost [11]. The
AdaBoost face detector follows [28], and all other algorithms
employ regression stump [25] as weak learner since it is similar
to the weak learner used in [28].

Fig. 2 gives various performance curves of the algorithms.
Fig. 2(a) gives the testing error rates of different boosting based
algorithms. As seen from Fig. 2(a), with regression stump as weak
learner, L2 Boost performs the worst, which is expected because the
L2 loss is not very appropriate for classification problem [12]. The
performances of LogitBoost and ProbitBoost are roughly at the same
level on this dataset, and AdaBoost performs worse than LogitBoost
and ProbitBoost, but better than L2 Boost. In the boosting based
algorithms, we are free to choose the weak learners. As an
illustration, we also ran ProbitBoost with simple linear regression
with only one feature as weak learner. With such a weak learner,
we will get a linear classifier by ProbitBoost. Fig. 2(a) also gives the
testing error curve with this setting. Clearly, the result is very poor
because, believably, the data is not linearly separable.

Fig. 2(b) shows the sample log-likelihood function on the training
data when the ProbitBoost classifier is being trained. We observe that,
as the training proceeds, the sample log-likelihood function increases
monotonically, which is consistent with our theoretical analysis. We
also observe that the training of ProbitBoost with regression stump
converges in 20 iterations or so, and its counterpart with simple
linear regression converges much more slowly. Furthermore,
Fig. 2(b) shows that the algorithm with simple linear regression
cannot achieve the optimal solution.

Fig. 2(c) presents the testing error curves of Gradient ProbitBoost
with regression stump and simple linear regression as weak learners,
and Fig. 2(d) gives the corresponding sample log-likelihood functions
as the training proceeds. The algorithm was ran for 1000 iterations,
with fixed small step size at 0.1. Fig. 2(c) shows that the performance
of Gradient ProbitBoost is similar to that of the Newton–Raphson
version of ProbitBoost, with testing error rate roughly 4% if regression
stump is used, and about 11% if simple linear regression is used as
weak learner. Comparing Fig. 2(d) to Fig. 2(b), we observe that
Gradient ProbitBoost needs far more iterations to converge. The
reason is that, Gradient ProbitBoost only uses first order derivative,
and the fitted function only moves a small step in each iteration;
while in the Newton–Raphson version, the second order derivative is
also used, and in each iteration, the fitted function moves an
optimal step.
By a close comparison of the algorithms, it is clear that the
major part of ProbitBoost (Algorithm 2) is a for loop which
includes four steps, while the major for loop for Gradient
ProbitBoost (Algorithm 3) includes three steps; ProbitBoost has
an extra weight calculating step (labeled as step 3 in Algorithm 2),
while all other steps in both algorithms are similar. With the
vector based implementation provided by MATLAB, the weights
can be calculated efficiently. Thus, we would expect that in
average, ProbitBoost only spends slightly more time than Gradi-
ent ProbitBoost per iteration. On the face dataset, we observed
that, with regression stump as weak learner, running for 100
iterations, ProbitBoost spent about 169 s on our computer, and
Gradient ProbitBoost used about 152 s. Therefore, our analysis
and simulation verify that it is reasonable to use iteration number
as a (rough) speed measure, as we did in this experiment.

For the Gradient ProbitBoost algorithm, we could have different
strategies to choose the step size. On the face detection problem, we
tested the performance of the algorithm with golden section search
[26] for step size and the fixed small step size strategy, with
regression stump as weak learner. We stop the algorithm once the
improvement of the sample log-likelihood function on the training
set is small (less than 0.01). We observe that with the golden section
search strategy, the training algorithm converges with 50 iterations,
spending 98.86 s on our computer; with the fixed step size, the
algorithm converges in 940 iterations, using 1865 s. With the golden
section search strategy, in every iteration, the step size is chosen to
increase the sample log-likelihood function the most, thus it needs
much fewer iterations to converge, compared to just moving a small
step in each iteration. However, the classifier obtained from golden
section search strategy has a higher testing error, 7.32%, compared to
3.86% with the fixed small step size. The reason might be that the
golden section search is often too greedy, while the fixed small step
size only changes the fitted function slightly in each iteration and
thus could be considered as a less greedy strategy.
4.2. Cancer classification based on gene expression data

We test the proposed algorithms on six publicly available gene
expression datasets for cancer classification: Leukemia [13],
Estrogen [27], Colon [2], Lymphoma [1], Prostate [24], and DLBCL
[23]. A common characteristic of these datasets is that the
dimensionality is much higher than the dataset size, refer to
Table 1 for details. As in the face detection problem, the con-
sidered classifiers include AdaBoost [9], L2 Boost [5], and Logit-
Boost [11]. All the algorithms used decision stump [8] as base
learner. In all the experiments, the step size parameter in
Gradient ProbitBoost is fixed as 0.1.

Since all the datasets have small size N, leave-one-out (LOO)
cross validation is carried out to estimate the classification
accuracy. That is, we put aside the i-th observation and train
the classifier on the remaining ðN�1Þ data points. We then apply
the learned classifier to get Ŷ i, the predicted class label of the i-th
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observation. This procedure is repeated for all the N observations
in the dataset, so that each one is held out and predicted exactly
once. The LOO error rate is determined by

ELOO ¼
1

N

XN

i ¼ 1

IðŶ iaYiÞ:

Table 1 shows the LOO classification error rates of the
considered classifiers on the six datasets, and the best perfor-
mance is displayed in bold. From Table 1, it is readily observed
that on four out of the six datasets, ProbitBoost has the best
performance, and Gradient ProbitBoost performs very similar to
ProbitBoost, usually with only slightly higher error rate.

Yang et al. [29] reported the performance of support vector
machines (SVM) on Leukemia, DLBCL, and Prostate datasets, and
the LOO error rates are 2.78%, 5.19%, and 5.90%, respectively.
Compared to SVM, the proposed ProbitBoost and Gradient Probit-
Boost perform better or the same. Yang et al. [29] performed gene
selection as a preprocessing step while the proposed algorithms did
not have such a preprocessing step. Although the main focus of this
paper is not to compare SVM and the proposed methods experimen-
tally, theoretical analysis makes it clear that the advantage of
ProbitBoost or Gradient ProbitBoost over SVM is that we can select
any weak classifier suitable of the specific application problem, but it
is usually non-trivial to select an appropriate kernel function for SVM.
Furthermore, the kernel functions of SVM often involve multiple
parameters which are usually difficult to estimate.

In LOO cross validation, the training and testing sets are highly
unbalanced, which will affect the evaluation result. To provide
more thorough results, we have also conducted 5-fold cross
validation, in which each dataset was randomly partitioned into
five parts of roughly equal size, and we run the algorithm 5 times.
In every run, one part was used as the testing set, and the other
four parts were used as the training set. For each algorithm on
Table 2
The 5-fold cross validation mean error rates and the standard deviations of the conside

in bold.

Dataset L2 Boost AdaBoost LogitBo

Mean (%) Std (%) Mean (%) Std (%) Mean

Leukemia 10.00 3.91 2.86 8.15 7.14

Estrogen 15.55 9.30 8.89 9.30 13.33

Colon 25.00 (0.21) 21.67 9.50 16.67
Lymphoma 15.79 5.77 8.42 4.71 9.47

Prostate 13.00 8.94 11.00 8.54 7.00

DLBCL 14.67 10.95 8.00 2.98 10.67

0 400 800 1200 1600 2000
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

Iteration Number

E
rr

or
 R

at
es

Training Error
Testing Error

Fig. 3. The performance curves on handwritten digit dataset: (a) the training and testing

of multi-class LogitBoost and ProbitBoost with one-versus-all strategy (Algorithm 5).
every dataset, Table 2 lists the mean error rates and the standard
deviations of the error rates of the 5 runs. From Table 2, we
observe that ProbitBoost yields the best performance on three out
of the six datasets, and Gradient ProbitBoost achieves the best
performance on the other three datasets.
4.3. Handwritten digit recognition

We test the performance of the multi-class versions of the
proposed algorithms on the task of recognizing handwritten
digits. This problem captured the attention of pattern recognition
community for a long time and has still been a benchmark
problem. The dataset consists of normalized handwritten digits
(0–9), automatically scanned from envelopes by the U.S. Postal
Service. The original scanned digits are binary and of different
sizes and orientations; then the images have been deslanted and
size normalized, resulting in 16�16 gray-scale images [17]. Since
our purpose is not to develop a digit recognition system, we
would not extract any specific features, instead, we simply use
these 256 pixel values as inputs for training and testing the
algorithms. The dataset consists of 7291 training examples and
2007 test examples, and is available at http://www-stat.stanford.
edu/�tibs/ElemStatLearn/. This is a 10-class classification pro-
blem, thus we have to fit 10 classifiers. We use the multi-class
error rate as the performance measure.

Fig. 3(a) shows the training and testing error curves of the
multi-class Gradient ProbitBoost (Algorithm 4) with the step size
parameter fixed at 0.1, with regression stump as weak learner.
We observe from the curves that initially, the training and testing
error decrease fast, and after about 1000 iterations, the improve-
ment becomes small. This indicates that the algorithm converges
with about 1000 iterations.
red algorithms on the datasets. The best mean error rates for a dataset are display

ost ProbitBoost Gradient ProbitBoost

(%) Std (%) Mean (%) Std (%) Mean (%) Std (%)

8.75 4.28 3.91 2.86 3.91

6.09 8.89 9.30 11.11 11.11

10.21 16.67 (10.21) 19.99 7.47

4.40 7.37 3.91 8.42 4.40

4.47 5.00 3.54 3.00 4.47

7.60 6.67 6.67 5.33 5.58
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Fig. 3(b) presents the performance curves of the one-versus-all
version of multi-class ProbitBoost (Algorithm 5) and multi-class
LogitBoost [8]. First of all, we notice that the one-versus-all approach
converges very quickly, both LogitBoost and ProbitBoost converge in
60 iterations. This is because both algorithms use the Newton–
Raphson approach which converges faster than the first order
method used in Algorithm 4. Secondly, compared to the approach
of fitting all the classifiers simultaneously which is presented in
Fig. 3(a), the one-versus-all method can achieve much better
performance, this could also be seen from Table 3, which gives the
final training and testing error rates of the considered algorithms.
The reason might be that in the one-versus-all approach, the
training algorithm only focuses on one class in each iteration, thus
it can learn better. Finally, we notice that, on this particular dataset,
ProbitBoost perform better than LogitBoost classifier.
5. Discussion

In the literature, it is commonly agreed that the generalized
linear model with Probit link function and Logit link function
perform similarly [6,15]. As algorithms to fit the Probit and Logit
models, ProbitBoost and LogitBoost are expected to perform
similarly, and our experimental results support this conjecture.
Yet from theoretical point of view, we could find some differences
Table 3
The training and testing error rates of several multi-class algorithms on the

handwritten digit recognition problem. The best performances on this problem are

displayed in bold.

Algorithm LogitBoost (one vs.

all) (%)

ProbitBoost (one vs.

all) (%)

ProbitBoost (All)

(%)

Training

error

7.21 5.17 8.57

Testing

error

13.55 11.26 14.56

Table 4
The weight functions for AdaBoost, LogitBoost, and ProbitBoost.

Algorithm Weight functions

AdaBoost Wðf Þpexpð�Yf ðxÞÞ
LogitBoost

Wðf Þ ¼ pð1�pÞp
1

½expð�f ðxÞÞþexpðf ðxÞÞ�2

ProbitBoost
Wðf Þp�

fðf ðxÞÞGY ðf ðxÞÞ

F2
ðð2Y�1Þf ðxÞÞ
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Fig. 4. (a) The weight function of AdaBoost a
among ProbitBoost, LogitBoost, and AdaBoost. All three algorithms
have a re-weighting step, and the re-weighted samples are fed to
the next iteration. The weight functions are summarized in Table 4,
in which f is the fitted function at this stage. To gain an intuitive
idea, Fig. 4 presents the weight functions of AdaBoost and
LogitBoost, refer to Fig. 1 for the weight function of ProbitBoost.

From the formulas and graphs of the weight functions, we
observe that the weights of AdaBoost and ProbitBoost depend on
the fitted function and the class label of the examples in a way
such that if an example is mistakenly classified, its weight will be
increased (this is particularly true for AdaBoost). LogitBoost gives
small weights to the examples about which it has high confidence
(the fitted function is far away from 0), and it gives big weights to
examples about which it has low confidence (i.e., fitted function
values are around 0). However, if the LogitBoost algorithm makes
a severe mistake (i.e., the fitted function value is a very large
positive number for a negative example or a very large negative
number for a positive example), it will give this mistakenly
classified example a small weight, and this makes it difficult to
correct the error in the successive iterations. In this sense, we
could say that AdaBoost and ProbitBoost have better error
correction ability than LogitBoost.

In the presented experiments, since only the first order
derivative information is employed, Gradient ProbitBoost did
not perform as well as the Newton–Raphson based ProbitBoost
which uses the second order derivative information and moves
the fitted function an optimal step in each iteration. For binary
Probit regression, we are lucky to find an explicit and easy-to-
implement way to evaluate the second order derivative, thus, the
Newton–Raphson based method could be applied. However, in
some cases, the second order derivative is not easy to calculate or
unstable, then the first order based method is preferred. For
example, the boosting based quantile regression presented in
[16,32,33] only uses the first order derivative, and it is an
algorithm similar to Gradient ProbitBoost introduced in this
paper. As another example, Algorithm 4 presented in this paper
tries to fit all the classifiers simultaneously for multi-class
problem, in which the Hessian is a J� J matrix, and it is not
obvious to develop an explicit Newton–Raphson method to
maximize the objective function in Eq. (24), thus the first order
derivative based gradient method is a better choice.
6. Conclusion and future works

In the framework of functional gradient ascent, this paper
introduces two approaches for maximizing the sample log-like-
lihood function of the Probit regression model. The first approach,
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ProbitBoost, is based on Newton–Raphson method, which
updates the fitted model by a weighted least square regression
in each iteration. The second algorithm, Gradient ProbitBoost,
only uses the first order gradient for updating the fitted model in
the gradient direction by a small step in each iteration. We also
investigate two approaches to generalize the methods to multi-
class cases, which are fitting multiple classifiers simultaneously
using the first order gradient information, and applying the one-
versus-all scheme to reduce the multi-class problem into a series
of binary classification problems.

The proposed algorithms were tested on typical classification
problems including face detection, cancer classification based on
gene expression data, and handwritten digit recognition. Each of
the problems has high dimensional features. Detailed performance
analysis shows that in general, the Newton–Raphson based Probit-
Boost performs better in terms of both convergence speed and
classification error rates than Gradient ProbitBoost which only uses
the first order gradient information. On the considered classification
problems, the proposed algorithms perform similar to or better than
the alternative methods. To the best of our knowledge, this is the first
attempt to use functional gradient optimization method for fitting
Probit regression model, and the resulting algorithms are able to work
in high dimensional spaces and easy to implement with performance
comparable to state-of-the-art.

Currently, the proposed algorithms only have ‘‘forward’’ steps, that
is, they select features which cause direct increasing of the sample
log-likelihood function. Moreover, the proposed algorithms are in the
framework of gradient ascent, which is greedy. Thus, it is possible
that the algorithms are too greedy and pick up some irrelevant
features in some iterations. In the literature, there are ‘‘backward’’
steps in model fitting [12,18,30]. As such, it is well motivated to
introduce ‘‘backward’’ step in the algorithms, that is, deleting some
variables at certain stage in order to improve the classification
performance, and this is our next step of research.
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[8] M. Dettling, P. Bühlmann, Boosting for tumor classification with gene
expression data, Bioinformatics 19 (9) (2003) 1061–1069.

[9] Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, Journal of Computer and System Sciences 55
(1) (1997) 119–139.

[10] J.H. Friedman, Greedy function approximation: a gradient boosting machine,
Annals of Statistics 29 (2001) 1189–1232.

[11] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statistical
view of boosting, Annal of Statistics 28 (2000) 337–407.

[12] J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd edition, Springer, New York, 2009.

[13] T.R. Golub, D.K. Slonim, P. Tamayo, et al., Molecular classification of cancer:
class discovery and class prediction by gene expression, Science 286 (1999),
531–537.

[14] P.J. Green, Iteratively reweighted least squares for maximum likelihood
estimation, and some robust and resistant alternatives, Journal of the Royal
Statistical Society. Series B (Methodological) 46 (2) (1984) 149–192.

[15] E.D. Hahn, R. Soyer, Probit and logit models: differences in a multivariate realm,
Retrieved May 18, 2012, from /http://home.gwu.edu/�soyer/mv1h.pdfS.

[16] B. Kriegler, R. Berk, Boosting the Quantile Distribution: A Cost-sensitive
Statistical Learning Procedure, Technical Report, Department of Statistics,
University of California, Los Angeles, 2007.

[17] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D.
Jackel, Handwritten digit recognition with a back-propagation network, in:
Proceedings of Advances in Neural Information Processing Systems, 1990,
pp. 396–404.

[18] S.Z. Li, Z. Zhang, Floatboost learning and statistical face detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence 26 (9) (2004)
1112–1123.

[19] C. Liu, D.B. Rubin, Y. Wu, Parameter expansion to accelerate EM—the PX-EM
algorithm, Biometrika 85 (1998) 755–770.

[20] J.S. Liu, Y. Wu, Parameter expansion for data augmentation, Journal of the
American Statistical Association 94 (1999) 1264–1274.

[21] E. Osuna, R. Freund, F. Girosit, Training support vector machines: an
application to face detection, in: Proceedings of IEEE Conference on Compu-
ter Vision and Pattern Recognition (CVPR), 1997.

[22] N. Sha, M. Vannucci, M.G. Tadesse, P.J. Brown, I. Dragoni, N. Davies,
T.C. Roberts, A. Contestabile, N. Salmon, C. Buckley, F. Falciani, Bayesian
variable selection in multinomial probit models to identify molecular
signatures of disease stage, Biometrics 60 (3) (2004) 812–819.

[23] M.A. Shipp, K.N. Ross, et al., Diffuse large B-cell lymphoma outcome
prediction by gene expression profiling and supervised machine learning,
Nature Medicine 8 (2002) 68–74.

[24] D. Singh, P.G. Febbo, K. Ross, D.G. Jackson, J. Manola, et al., Gene expression
correlates of clinical prostate cancer behavior, Cancer Cell 1 (2002) 203–209.

[25] A. Torralba, K.P. Murphy, W.T. Freeman, Sharing features: efficient boosting
procedures for multiclass object detection, in: Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2004.

[26] G.R. Walsh, Methods of Optimization, John Wiley and Sons, 1975.
[27] M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan,

J.R. Marks, J.R. Nevins, Predicting the clinical status of human breast cancer
using gene expression profiles, Proceedings of the National Academy of
Sciences USA 98 (2001) 11462–11467.

[28] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple
features, in: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2001.

[29] K. Yang, Z. Cai, J. Li, G. Lin, A stable gene selection in microarray data analysis,
BMC Bioinformatics 7 (2006) 228.

[30] P. Zhao, B. Yu, Stagewise Lasso, Journal of Machine Learning Research 8
(2007) 2701–2726.

[31] X. Zhou, X. Wang, E.R. Dougherty, Multi-class cancer classification using
multinomial probit regression with Bayesian variable selection, IEE Proceed-
ings System Biology 153(2) (2006) 70–78.

[32] S. Zheng, Boosting based conditional quantile estimation for regression and
binary classification, in: Proceedings of the 9th Mexican International
Conference on Artificial Intelligence (MICAI), 2010.

[33] S. Zheng, QBoost: Predicting quantiles with boosting for regression and binary
classification, Expert Systems With Applications 39 (2) (2012) 1687–1697.
Songfeng Zheng received his B.S. degree in Electrical Engineering, and M.S. in Computer Science, from Xi’an JiaoTong University, China, in 2000 and 2003, respectively. In
2008, he received Ph.D. degree in Statistics from the University of California, Los Angeles. Since 2008, he has been an assistant professor with the Department of
Mathematics, Missouri State University. His research interests include statistical learning, pattern recognition, statistical computation, and image analysis.
Weixiang Liu received his B.Sc. and M.Sc. degrees in mechanical engineering from Xi’an Shiyou University, China, in 1997 and 2000 respectively, and the Ph.D. in electronic
and information engineering from Xi’an Jiaotong University, China, in 2005. He was a researcher at Tsinghua University from 2005 to 2007. Since 2007, he has been an
associate professor with the Biomedical Engineering Department at Shenzhen University, China. His research interests include machine learning, pattern recognition,
computer vision, and bioinformatics.

http://home.gwu.edu/~soyer/mv1h.pdf
http://home.gwu.edu/~soyer/mv1h.pdf

	Functional gradient ascent for Probit regression
	Introduction
	Boosting as functional gradient descent
	Functional gradient ascent for Probit regression
	Gradient and Hessian of the expected log-likelihood function
	ProbitBoost: fitting Probit model by Newton-Raphson
	Gradient ProbitBoost: first order functional gradient ascent for Probit regression
	Multi-class versions
	Regression stump as weak learner

	Experimental results
	Face detection
	Cancer classification based on gene expression data
	Handwritten digit recognition

	Discussion
	Conclusion and future works
	Acknowledgment
	References




