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a b s t r a c t

Support vector domain description (SVDD) is a well-known tool for pattern analysis when only positive
examples are reliable. The SVDD model is often fitted by solving a quadratic programming problem,
which is time consuming. This paper attempts to fit SVDD in the primal form directly. However, the
primal objective function of SVDD is not differentiable which prevents the well-behaved gradient based
optimization methods from being applicable. As such, we propose to approximate the primal objective
function of SVDD by a differentiable function, and a conjugate gradient method is applied to minimize
the smoothly approximated objective function. Extensive experiments on pattern classification were
conducted, and compared to the quadratic programming based SVDD, the proposed approach is much
more computationally efficient and yields similar classification performance on these problems.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There exist a range of pattern recognition problems, such as
novelty detection, where the task is to discriminate the pattern of
interest from imposters. In such cases, positive examples for training
are relatively easier to obtain and more reliable. However, although
negative examples are very abundant, it is usually difficult to sample
enough useful negative examples to adequately model the imposters
since they may belong to any class. In this situation, it is often
reasonable to assume positive examples to cluster in a certain way.
Under this assumption, the goal is to accurately describe the class of
positive examples as opposed to the very wide range of negative
examples, which are not of interest.

To this end, Tax and Duin [30–32] developed a support vector
domain description (SVDD) method, which fits a tight hypersphere
in the nonlinearly transformed feature space to enclose most of
the positive examples. Thus, SVDD could be regarded as a
description of the class of interest. Extensive experiments show
that SVDD can correctly identify some negative examples even
though it has not seen any negative example during the training
phase [30–32].

SVDD is, like support vector machine (SVM) [34, chapter 10], a
kernel method, thus inherits all the related advantages of SVM.
Since it was proposed, SVDD has been applied to various applica-
tion problems, including image classification [39], remote sensing
image analysis [2,23,24], medical image analysis [29], machine
diagnostics [33,38], and multi-class classification problems [18,37],

among others. Furthermore, SVDD is a preliminary step for
support vector clustering [3,19,20].

Similar to SVM, the formulation of SVDD leads us to a quadratic
programming problem (see Section 2 for more details). Although
the decomposition techniques [25,26] or sequential minimization
methods [27] could be employed to solve the quadratic program-
ming problem, the training of SVDD has time complexity about
Oðn3Þ (see the end of Section 2 for details), where n is the training
set size. High training cost is undesirable, especially for model
selection and some feature selection methods, where the training
algorithm often needs to run multiple times. Therefore, it is highly
appreciated to develop time-efficient yet accurate enough training
algorithms for SVDD.

As an alternative, we can fit the SVDD model by directly
optimizing the primal objective function, as the similar work for
SVM [9]. However, the primal objective function of SVDD is not
differentiable which prevents gradient based methods [4,36] from
being applicable, although they are easy to implement, and
converge fast to at least a local optimum. As such, we introduce
a smooth approximation to the primal objective function of SVDD,
which is an upper bound of the primal objective function and
converges uniformly to the primal objective function as the
controlling smoothing parameter increases. Then, conjugate gra-
dient method is employed to minimize the proposed smoothly
approximated objective function. We test the proposed approach
on face detection and handwritten digit recognition problems, and
detailed performance comparison on these problems demon-
strates that the proposed smoothly approximated SVDD (SA-
SVDD) often yields testing accuracy very close to that of the
quadratic programming based SVDD (QP-SVDD). However, SA-
SVDD is much more computationally efficient than QP-SVDD.
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The rest of this paper is organized as follows: Section 2 briefly
reviews the formulation of SVDD; Section 3 proposes the smoothly
approximated SVDD model, and a conjugate gradient method is
presented to minimize the smoothed objective function; a brief
computational complexity analysis is also presented in Section 3;
Section 4 compares the classification performances and training time
of the proposed SA-SVDD algorithm to the original QP-SVDD on two
publicly available real-world datasets; finally, Section 5 summarizes
this paper and discusses some future research directions.

2. Support vector domain description

This section briefly reviews the general formulation of support
vector domain description (SVDD) with only positive examples
(Section 2.1) and with both positive and negative examples
(Section 2.2). Refer to [30–32] for more detailed derivations.

2.1. SVDD with positive examples

Given training data fxi; i¼ 1;…;ng with the feature vector
xiARp, SVDD is looking for a hypersphere (in a high dimensional
Hilbert feature space H where the examples have been mapped
through a nonlinear transformation Φ) of radius R40 and center c
with a minimum volume containing most of the data. Therefore,
we have to minimize R2 with constraints JΦðxiÞ�cJ2rR2, for
i¼ 1;…;n. In addition, since the training sample might contain
outliers, we introduce a set of slack variables ξiZ0, as in the
framework of support vector machine (SVM) [34, chapter 10]. The
slack variable ξi measures how much the squared distance from
the ith training example to the center exceeds the radius squared.
Therefore, the slack variable could be understood as a measure of
error. Taking the constraints into account, the problem becomes

min
R;c;ξ

FðR; c; ξÞ ¼ R2þC
Xn
i ¼ 1

ξi; ð1Þ

with constraints

JΦðxiÞ�cJ2rR2þξi; ξiZ0 for i¼ 1;…;n; ð2Þ
where ξ¼ ðξ1;…; ξnÞ0 is the vector of slack variables, and the
parameter C40 controls the tradeoff between the volume of the
hypersphere and the permitted errors.

The Lagrangian dual of the above optimization problem is

min
α

LðαÞ ¼
Xn
i ¼ 1

Xn
j ¼ 1

αiαjKðxi; xjÞ�
Xn
i ¼ 1

αiKðxi; xiÞ; ð3Þ

with constraints

Xn
i ¼ 1

αi ¼ 1; 0rαirC for i¼ 1;…;n; ð4Þ

where α¼ ðα1;…; αnÞ0 with αi being the Lagrangian multiplier for
the ith constraint, and Kðxi; xjÞ ¼ oΦðxiÞ;ΦðxjÞ4 is the kernel
function which satisfies Mercer's condition [34, chapter 10]. From
the Karush–Kuhn–Tucker (KKT) conditions [4, chapter 3] [6,
chapter 5], the center of the hypersphere in the high dimensional
feature space H can be represented in terms of the Lagrangian
multipliers as

c¼
Xn
i ¼ 1

αiΦðxiÞ: ð5Þ

Once the parameters αi's are obtained, the radius R can be
computed from the set of support vectors.

In decision making stage, if the distance from a new example x
is less than the radius R, it is classified as a positive example;
otherwise, it is classified as a negative example. Thus, the decision

rule is

f ðxÞ ¼ sign R2� JΦðxÞ�
Xn
i ¼ 1

αiΦðxiÞJ2
 !

¼ sign 2
Xn
i ¼ 1

αiKðxi; xÞ�Kðx;xÞþb

 !
; ð6Þ

where b¼ R2�Pn
i ¼ 1

Pn
j ¼ 1 αiαjKðxi; xjÞ.

2.2. 2-Class SVDD

If negative examples are available, we could integrate this part
of information to the formulation of SVDD. In this situation, we
would prefer the hypersphere enclosing as many positive exam-
ples as possible and excluding as many negative examples as
possible, and again, we want the volume of the hypersphere to be
as small as possible. Let the training set be fðxi; yiÞ; i¼ 1;2;…;ng,
where yiAfþ1; �1g, with yi ¼ þ1 for positive examples and
yi ¼ �1 for negative examples. As in Section 2.1, we denote the
radius of the hypersphere as R and denote its center as c.

Suppose we impose different penalties for misclassifying posi-
tive and negative examples, then similar to Section 2.1, the
optimization problem could be summarized as

min
R;c;ξ

FðR; c; ξÞ ¼ R2þCþ1

X
i:yi ¼ þ1

ξiþC�1

X
i:yi ¼ �1

ξi ¼ R2þ
Xn
i ¼ 1

Cyiξi;

ð7Þ
where Cþ1 and C�1 are the penalties on mistakenly classifying a
positive or negative example, respectively. As in Section 2.1, ξi is
the slack variable on the ith example, and it should satisfy the
constraints

JΦðxiÞ�cJ2rR2þξi; ξiZ0 for yi ¼ þ1; ð8Þ
and

JΦðxiÞ�cJ2ZR2�ξi; ξiZ0 for yi ¼ �1: ð9Þ
We compactly rewrite the constraints in one equation as

yi JΦðxiÞ�cJ2�R2
� �

rξi; ξiZ0 for i¼ 1;…;n: ð10Þ

By using the Lagrange multiplier method, we get the dual
problem as

min
α

LðαÞ ¼
Xn
i ¼ 1

Xn
j ¼ 1

αiαjyiyjKðxi; xjÞ�
Xn
i ¼ 1

αiyiKðxi; xiÞ; ð11Þ

with constraints

Xn
i ¼ 1

αiyi ¼ 1; 0rαirCyi for i¼ 1;…;n: ð12Þ

By the KKT condition, the center of the hypersphere can be
represented as

c¼
Xn
i ¼ 1

αiyiΦðxiÞ: ð13Þ

Once the parameters αi's are obtained, the radius R can be
computed from the set of support vectors.

Given a new example x, the decision rule is

f ðxÞ ¼ sign R2� JΦðxÞ�
Xn
i ¼ 1

αiyiΦðxiÞJ2
 !

¼ sign 2
Xn
i ¼ 1

αiyiKðxi; xÞ�Kðx; xÞþb

 !
; ð14Þ

where b¼ R2�Pn
i ¼ 1

Pn
j ¼ 1 αiαjyiyjKðxi; xjÞ.

We should notice that minimizing the objective function in Eq.
(7) does not imply strong generalization ability of the resultant
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classifier because the radius R is not directly related to the
generalization ability. Particularly, 2-class SVDD is different from
SVM in which JwJ is related to the margin of the classifier which
in turn measures the generalization ability. For instance, in Fig. 1,
the blue “þ” represents positive example and the green “n”

represents negative example. The dashed red circle obviously
corresponds to the global minimum solution for Eq. (7), but the
black circle clearly has better generalization ability even though it
does not achieve the smallest objective function defined in Eq. (7).
To the best of our knowledge, the relationship between the
generalization ability of SVDD and the related optimization pro-
blem has not been discussed in literature so far.

As implemented in popular toolboxes [8,12,16], the quadratic
programming problems in Eqs. (3) and (11) can be solved by the
decomposition methods [25,26] or sequential minimal optimiza-
tion [27]. Theoretical and empirical studies [5] show that the
computational cost for SVM QP problem is between Oðn2Þ and
Oðn3Þ, and since the SVDD QP problem is similar to the SVM QP
problem, we expect SVDD to have a similar computational com-
plexity for training. The numerical experiments in Section 4.2 on
real world data show that the time complexity for QP based SVDD
is approximately Oðn3Þ, at least on the tested datasets.

Thus, as the training set gets large, it is very expensive to train an
SVDD model. In model selection, cross validation [14, chapter 7] is
often used, in which we need to run the training algorithm multiple
times to select the best set of parameters. Also, for feature selection,
some well-known methods are designed to run the training algo-
rithmmany times, for example, the recursive feature elimination SVM
[13,41]. In these situations, the reduction of training time is important
for system development and progress making. As such, fast training
algorithms for SVDD which can achieve similar accuracy as the
quadratic programming method are highly appreciated.

3. The proposed approach

This section proposes a smooth approximation to the primal
objective functions of SVDD models and presents a conjugate
gradient algorithm to minimize the smoothed objective functions.

We also provide a brief computational cost analysis for the
proposed algorithms.

3.1. Smooth approximation to the SVDD models

In the SVDD formulation in Eq. (1), we rewrite the slack
variable ξi as

ξi ¼ ½JΦðxiÞ�cJ2�R2�þ ¼maxð0; JΦðxiÞ�cJ2�R2Þ; ð15Þ
where the function ½t�þ ¼maxð0; tÞ is called hinge loss function
[14, chapter 12]. Therefore, we reformulate the optimization
problem for SVDD as

min
R;c

FðR; cÞ ¼ R2þC
Xn
i ¼ 1

JΦðxiÞ�cJ2�R2
h i

þ
; ð16Þ

which absorbs the constraints.
In the minimization problem in Eq. (16), the hinge loss function

is not differentiable which prevents us from using gradient based
optimization methods which usually converge fast to at least a
local optimum point. Chen and Mangasarian [10] introduced a
class of smooth functions for nonlinear optimization problems and
the idea was applied to fitting SVM classifier [21,40] and quantile
regression model [42] in statistics. Enlightened by these successes,
we use a differentiable function

SτðtÞ ¼
1
τ
log 1þeτt
� � ð17Þ

to approximate the hinge loss function ½t�þ , where τ is a large
positive constant and is called the smoothing parameter. It can be
verified that the function SτðtÞ is continuous, convex, and always
dominates the hinge loss function. As the smoothing parameter τ
increases, SτðtÞ converges uniformly to the hinge loss function. The
verification is similar to that in [21,40], thus is omitted.

Replacing the hinge loss function in Eq. (16) by its smoothed
counterpart (with τ fixed at a large positive value), we obtain the
smoothed objective function as

FτðR; cÞ ¼ R2þC
Xn
i ¼ 1

Sτ JΦðxiÞ�cJ2�R2
� �

: ð18Þ

Obviously, from the properties of Sτð�Þ, FτðR; cÞ is an upper bound of
the function FðR; cÞ defined in Eq. (16), and converges uniformly to
FðR; cÞ as τ increases.

By using the “kernel trick”, we assume

c¼
Xn
i ¼ 1

αiΦðxiÞ; ð19Þ

then the objective function in Eq. (18) becomes

FτðR;αÞ ¼ R2þC
Xn
i ¼ 1

Sτ Kðxi; xiÞ�2
Xn
j ¼ 1

αjKðxi; xjÞ
0
@

þ
Xn
j ¼ 1

Xn
k ¼ 1

αjαkKðxj; xkÞ�R2

1
A

¼ R2þC
Xn
i ¼ 1

Sτ Kii�2Ki�αþα0Kα�R2
� �

; ð20Þ

where K is the n� n kernel matrix with elements Kij ¼ Kðxi; xjÞ, Ki�
is the ith row of the kernel matrix K. It is straightforward to show
that the function FτðR;αÞ is convex in R2 and α, thus gradient
method can give us a global minimum point of FτðR;αÞ.

Viewing R2 as a single variable, we have

∂Fτ
∂R2 ¼ 1�C

Xn
i ¼ 1

S0τ Kii�2Ki�αþα0Kα�R2
� �

; ð21Þ

Fig. 1. Minimizing Eq. (7) does not imply good generalization ability: the red
dashed circle minimizes Eq. (7) while the black solid circle has better general-
ization ability as a classifier. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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where

S0τðtÞ ¼
eτt

1þeτt
ð22Þ

is calculated from the definition of SτðtÞ in Eq. (17). Taking
derivative with respect to α, yields

∂Fτ
∂α

¼ 2C
Xn
i ¼ 1

S0τ Kii�2Ki�αþα0Kα�R2
� �

ðKα�K�iÞ; ð23Þ

where K�i is the ith column of the kernel matrix K.
For the 2-class SVDD model, similarly, we introduce the hinge

loss function to Eq. (7) to absorb the constraints in Eq. (10),
yielding

FðR;αÞ ¼ R2þ
Xn
i ¼ 1

Cyiξi ¼ R2þ
Xn
i ¼ 1

Cyi yi JΦðxiÞ�cJ2�R2
� �h i

þ
:

ð24Þ

By using the “kernel trick”, we assume

c¼
Xn
i ¼ 1

αiyiΦðxiÞ; ð25Þ

and we continue as

FðR;αÞ ¼ R2þ
Xn
i ¼ 1

Cyi yiKðxi; xiÞ�2yi
Xn
j ¼ 1

αjyjKðxi; xjÞ
2
4

þyi
Xn
j ¼ 1

Xn
k ¼ 1

αjyjαkykKðxj; xkÞ�yiR
2

3
5

þ

¼ R2þ
Xn
i ¼ 1

Cyi yiKii�2yiKi�ðα:nyÞþyiðα:nyÞ0Kðα:nyÞ�yiR
2

h i
þ

¼ R2þ
Xn
i ¼ 1

Cyi yiKii�2yiKi�αyþyiα
0
yKαy�yiR

2
h i

þ
; ð26Þ

where α:ny¼ ðα1y1;…; αnynÞ0, that is, the vector formed by
element-wise multiplying two vectors. Note that ðα:nyÞ:ny¼ α
since yi ¼ 71. Thus, it is convenient to view α:ny as one variable,
and we introduce the notation αy ¼ α:ny.

Notice that although the hinge loss function ½t�þ is convex in t,
the function yiKii�2yiKi�αyþyiα

0
yKαy�yiR

2 is concave in αy for
yi ¼ �1 since the kernel matrix K is always positive definite, thus
½yiKii�2yiKi�αyþyiα

0
yKαy�yiR

2�þ is not convex in αy for yi ¼ �1.
As a consequence, the objective function in Eq. (26) is not convex
in αy .

Replacing the hinge loss function in Eq. (26) by its smoothed
counterpart (with τ fixed at a large positive value), we obtain the
smoothed objective function as

FτðR;αyÞ ¼ R2þ
Xn
i ¼ 1

Cyi Sτ yiKii�2yiKi�αyþyiα
0
yKαy�yiR

2
� �

: ð27Þ

The function FτðR;αyÞ is not convex in αy , based on the same
reason as in last paragraph. As such, the gradient based method
can only yield a local minimum point of FτðR;αyÞ.

It is straightforward to calculate that

∂Fτ
∂R2 ¼ 1�

Xn
i ¼ 1

yiCyi S
0
τ yiKii�2yiKi�αyþyiα

0
yKαy�yiR

2
� �

; ð28Þ

and

∂Fτ
∂αy

¼ 2
Xn
i ¼ 1

yiCyi S
0
τ yiKii�2yiKi�αyþyiα

0
yKαy�yiR

2
� �

ðKαy�K�iÞ: ð29Þ

3.2. Conjugate gradient for minimizing the smoothed objective
function

In applying the idea of smoothly approximating a nonsmooth
objective function, some works [9,21] used the Newton method to
minimize the smoothed objective function. However, the Newton
method involves estimating and inverting the Hessian matrix,
which is time consuming and prone to errors due to the finite
precision of floating-point numbers, especially in high dimen-
sional spaces. Compared to the Newton method, conjugate gra-
dient method avoids using the second order derivative
information and inverting a matrix, and it only has a simple
formula to determine the new search direction. This simplicity
makes the method very easy to implement, only slightly more
complicated than steepest descent. Other advantages of the con-
jugate gradient method include its low memory requirements and
its convergence speed. Refer to [4, chapter 1] for more details.
Algorithm 1 gives the procedure of conjugate gradient method for
minimizing a general function f over Rn.

Algorithm 1. Conjugate gradient method for minimizing a func-
tion f over Rn.

0. Initialization: choose a starting point x0ARn, compute
g0 ¼∇f ðx0Þ and set d0 ¼ �g0. Set the iteration number m.

1. for t¼1 to m do:
2. If gt�1 ¼ 0, terminate and return xt�1 as the minimum

point of f.
3. Set xt ¼ xt�1þγtdt�1, where γt is the step-size at iteration t.
4. Compute gt ¼∇f ðxtÞ, and set dt ¼ �gtþδtdt�1, with

δt ¼ g0
tgt

g0
t � 1gt� 1

.

5.end for
6. Return xm as the minimum point of f.

In the 3rd step, the step-size γt is chosen as

γt ¼ arg min
γ40

f ðxt�1þγdt�1Þ: ð30Þ

The minimization problem in Eq. (30) can be solved by back-
tracking line search algorithms [6, chapter 9]. We choose to use
Armijo rule [1] for its simplicity, which is given in Algorithm 2 for
completeness.

Algorithm 2. Armijo rule to determine the step-size.

0. Given the objective function f ðxÞ, the current estimation xc,
the current gradient vector ∇f ðxcÞ, and the search direction
d.

1. Initialize γ ¼ 1.
2. Calculate D¼ f ðxcþγdÞ� f ðxcÞ.
3. If Dr γ

4∇f ðxcÞ0d, return the current γ as the step-size;
otherwise, set γ ¼ γ=2, and go back to step 2.

When applying the conjugate gradient method to minimize the
objective function in Eq. (20) or (27), according to the properties of
the smooth approximation, we should set a large value for τ.
However, as studied in [40], if we start with a very large τ, the
algorithm will be unstable. Starting from a relatively small τ and
increasing it gradually will stabilize the solution. In practice, we do
not increase τ after each conjugate gradient step, because we
should let the conjugate gradient algorithm run several iterations
to fully utilize its power in minimizing the objective function at
the current τ value. As such, we adopt a sequential minimization
strategy for fitting the smoothly approximated SVDD (SA-SVDD)
model. Algorithm 3 sketches the procedure for minimizing the
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objective function in Eq. (20), and the algorithm for the 2-class SA-
SVDD could be developed similarly, thus is omitted.1

Algorithm 3. Conjugate gradient for smoothly approximated
SVDD.

0. Initialize R and α, set the maximum outer iteration number
M, and the conjugate gradient iteration number m.

1. for i¼1 to M do:
2. Set τ¼ i.
3. Minimize FτðR;αÞ with m iterations of conjugate gradient

algorithm, with the currently estimated R2 and α as the
initial point.

4. end for

To get a reasonably good model, from our experience, for the
SA-SVDD with only positive examples, we set the outer iteration
number M to be 15 and set the inner iteration number m to be 4;
for the 2-class SA-SVDD, we set M and m to be 30 and 10,
respectively. Thus, the SA-SVDD algorithm with only positive
examples will run totally 60 steps of conjugate gradient at most,
and the 2-class SA-SVDD will run at most 300 steps.2 In our
experiments, we tried different combinations of M and m, and
found that the performances of the resultant classifiers are similar.
In general, setting the parameters M and m to be larger values will
make the algorithm more precise, but it would spend more time
as well.

Since we aim to enclose the positive examples using a hyper-
sphere as much as possible, we initialize the diameter of the
hypersphere as the largest distance between positive examples. In
the feature space, the squared distance between xi and xj is

d2 ¼ JΦðxiÞ�ΦðxjÞJ2 ¼ Kðxi; xiÞ�2Kðxi; xjÞþKðxj; xjÞ
¼Kii�2KijþKjj: ð31Þ

Therefore, we initialize the variable R2 as

R2 ¼max
i;j

Kii�2KijþKjj
� �

=4; ð32Þ

where the indices i and j run over all the positive examples. The
vector α or αy is initialized as zero vector.

3.3. Computational complexity

Since the proposed SA-SVDD algorithm (Algorithm 3) contains
M iterations of Algorithm 1, we need to analyze the complexity of
Algorithm 1. In step 3 of Algorithm 1, there is a search for the
optimal step-size implemented by Algorithm 2, and this search
needs to evaluate the objective function expressed by Eq. (20) or
(27), where the most computationally expensive operation is to
calculate α0Kα or α0

yKαy . Since the kernel matrix K is of size n� n
and the coefficient vector α or αy is of size n� 1, the operation
α0Kα or α0

yKαy has computational complexity Oðn2Þ. Note that
although Eq. (20) or (27) has the form of summation with index
from 1 to n, the operation α0Kα or α0

yKαy only needs to be done
once for an iteration. From our experience, Algorithm 2 often
converges in less than 10 iterations, thus the complexity of step
3 of Algorithm 1 is of the order Oðn2Þ.

In step 4 of Algorithm 1, we need to calculate the gradient
vector of the objective function according to Eqs. (21), (23) or Eqs.
(28), (29). We see that again, the most expensive operation is α0Kα
or α0

yKαy , which has complexity Oðn2Þ.
In our experiments, the whole algorithm (Algorithm 3) will run at

most 60 steps of conjugate gradient for SVDD with only positive
examples, and the 2-class SA-SVDD will run at most 300 steps. Thus,
the computational complexity of the SA-SVDD algorithms is about
Oðn2Þ. In Section 4.2, we will numerically verify that the computa-
tional complexity of the proposed algorithm is of the order Oðn2Þ.

4. Experimental results

On a face dataset and the USPS handwritten digit dataset, we
compared the performances of the proposed smoothly approxi-
mated SVDD (SA-SVDD) and the ordinary quadratic programming
based SVDD (QP-SVDD). The SA-SVDD was developed using
MATLAB, and we did not do any specific code optimization.3 The
QP-SVDD was implemented based on the MATLAB SVM toolbox of
[12] with the quadratic programming solver from the Cþþ
version of LIBSVM [8]. All the experiments were conducted on a
personal computer with Pentium IV CPU 3.00 GHz and 3.25 GB
memory, with WinXP operating system and MATLABs R2012b as
the platform.

In our experiments, we adopted the Gaussian kernel

Kðu; vÞ ¼ exp � Ju�vJ2

2σ2

( )
ð33Þ

with σ ¼ 5. We set the SVDD parameters C¼2, Cþ1 ¼ 2, and
C�1 ¼ 2 in the algorithms. The parameter setting in our
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Fig. 2. On the CBCL face dataset, the ROC curves of QP-SVDD, SA-SVDD, 2-class QP-
SVDD, 2-class SA-SVDD, and SVM.

Table 1
On the CBCL face dataset, the area under the curve of different classifiers.

QP-SVDD SA-SVDD 2-class QP-SVDD 2-class SA-SVDD 2-class SVM

0.8583 0.8574 0.8830 0.8893 0.8996

1 Algorithm 3 is similar to an algorithm in [40], where the convergence and
stability were studied in detail. Thus, the convergence and stability of Algorithm 3
are not presented here.

2 The objective function of the 2-class SA-SVDD (i.e., Eq. (27)) is not convex, as
analyzed in Section 3.1. Hence, we let the 2-class SA-SVDD algorithm run a longer
time, expecting it to find a good solution.

3 In our implementation of SA-SVDD, the conjugate gradient algorithm is a
nested loop, and the inner loop calls a function for Armijo step size, which is
developed by ourselves. Changing the inner loop to MATLAB native code will
significantly improve the efficiency of SA-SVDD.
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experiments might not be the optimal to achieve the best testing
error. Nevertheless, our purpose is not to achieve the optimal
testing error, but to compare the performances of SA-SVDD and
QP-SVDD; therefore, the comparison is fair as long as the para-
meter settings are the same for the two algorithms.

In the decision rules given by Eqs. (6) and (14), we change the
value of the parameter b, and for each value of b, we calculate the
true positive rate and false positive rate. We then plot the true
positive rate vs. the false positive rate, resulting the receiver
operating characteristic (ROC) curve [11], which will be used to
illustrate the performance of the classifier. The classifier performs
better if the corresponding ROC curve is higher. In order to
numerically compare the ROC curves of different methods, we
calculate the area under the curve (AUC) [11]. The bigger the AUC,
the better the overall performance of the classifier.

4.1. Face detection

In the first experiment, we selected to use the face dataset
provided by the Center for Biological & Computational Learning
(CBCL) at MIT, which was downloaded from http://cbcl.mit.edu/
software-datasets/FaceData2.html. The training set consists of 6977
images, with 2429 face images and 4548 non-face images; the testing
set consists of 24 045 images, including 472 face images and 23 573
non-face images. Each image is of size 19�19 pixels, which is
histogram equalized and normalized so that all pixel values are
between 0 and 1. In the experiment, we did not extract any specific
feature for face detection (e.g., the features used in [35]), instead, we
used the pixel values as input to SA-SVDD or QP-SVDD directly.

We compare the performances of QP-SVDD and SA-SVDD by using
all the 2429 face images as training set; to test the 2-class QP-SVDD
and 2-class SA-SVDD, we randomly select 1000 non-face images
combined with the 2429 face images as the training set. Fig. 2 shows
the ROC curves of the QP-SVDD and SA-SVDD, for both versions; as a
comparison to the 2-class SVDD models, the ROC curve of 2-class
SVM is also given. The ROC curves clearly demonstrate that, for both
versions, the performances of QP-SVDD and SA-SVDD are very close.
The curves also show that with extra information from negative
examples, the 2-class SVDD model performs better than the SVDD
with only positive examples. We notice that the 2-class SVM has
better performance than all the SVDD methods, which is not a
surprise since SVM is designed to maximize the generalization ability
(i.e., the margin of the classifier), while SVDD does not have such a
mechanism.4 Table 1 presents the AUC for different methods on the

face detection problem, and the observation from Table 1 is consistent
with our conclusion from Fig. 2.

Fig. 3 presents the evolution curves of the objective functions of
SA-SVDD and the 2-class SA-SVDD, evaluated according to Eqs.
(20) and (27), respectively. It is evident that the objective functions
decrease monotonically as the algorithm proceeds, and the SA-
SVDD algorithm converges within about 30 iterations, while the 2-
class SA-SVDD converges in about 200 iterations. The minimum
values of the objective functions are 1.2155 and 6.8739 for SA-
SVDD and 2-class SA-SVDD, respectively.

Table 2 gives the objective function values5 of QP-SVDD and SA-
SVDD algorithms for both versions calculated using Eqs. (16) and (26),
respectively, at the final solutions. We observe that at the optimal
solution of SA-SVDD, the objective functions calculated by Eqs. (20)
and (27) are higher than those calculated by Eqs. (16) and (26), which
is expected because the smoothed objective functions in Eqs. (20) and
(27) are upper bounds of the original objective functions in Eqs. (16)
and (26). Table 2 shows that compared to QP-SVDD, the SA-SVDD
solutions yield higher objective function values. We also notice that
the objective function gap between the 2-class versions is higher than
that of the 1-class versions, this is because the 2-class SA-SVDD
objective function is not convex and the conjugate gradient method
might have found a local minimum point. Nevertheless, since the final
purpose is to perform classification, minimizing the objective function
too much might overfit the classifier.

Table 2 also gives the training time for different models. For this
problem, due to the large training set and expensive QP solver, the
QP-SVDD algorithms spend very long time (about 6 h) in the training
stage. The proposed SA-SVDD algorithm needs only 11 min to
converge and the 2-class SA-SVDD needs less than 1 h to converge.
Thus, we can conclude that compared to QP-SVDD, the proposed SA-
SVDD algorithms converge much faster with similar classification
performance on the CBCL face detection dataset.
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Fig. 3. The evolution curves of the objective functions for SA-SVDD algorithms on the CBCL face dataset: (a) SA-SVDD with only positive examples and (b) SA-SVDD with
both positive and 1000 negative examples randomly selected.

Table 2
On the CBCL face dataset, the comparison between the QP-SVDD and SA-SVDD
algorithms. The objective functions are calculated according to Eqs. (16) and (26)
using the final solutions, the training times are in seconds.

Method QP-SVDD SA-SVDD 2-class QP-SVDD 2-class SA-SVDD

Objective function 0.6456 1.1888 0.6621 2.3047
Training Time 21,439 664.03 20,895 3389.7

4 In the 2-class SVDD formulation, the radius R of the hypersphere is not
related to the generalization ability. Refer to Fig. 1.

5 When plotting the ROC curves, we changed the values of b; when calculating
the objective functions, we used the optimal solution.
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4.2. Handwritten digit recognition

The task of recognizing handwritten digits captured the atten-
tion of pattern recognition community for a long time and has still
been a benchmark problem. The dataset consists of normalized
handwritten digits (0–9), automatically scanned from envelopes
by the U.S. Postal Service. The originally scanned digits are binary
with different sizes and orientations; then the images have been
deslanted and size normalized, resulting in 16�16 gray-scale
images [17]. Similar to the experiment in Section 4.1, we simply
use these 256 pixel values as inputs to the algorithms. The dataset
consists of 7291 training examples and 2007 testing examples, and
is available at http://www-stat.stanford.edu/�tibs/ElemStatLearn.

To test the SVDD algorithms, we created four binary classifica-
tion problems, with digits “0”, “3”, “5”, and “9” as positive class,
respectively. To test the performance of the 2-class SVDD algo-
rithms, we randomly selected 400 negative examples for each
problem. Refer to Table 5 for the training set size of each problem.

For each of the four binary classification problems, we present the
ROC curves of QP-SVDD and SA-SVDD algorithms in Fig. 4. We
observe that with only positive examples, the SA-SVDD performs
slightly worse than the QP-SVDD, but in general, SA-SVDD benefits
more from the negative examples than QP-SVDD does. As we have
analyzed, 2-class QP-SVDD could find a global optimal solution

because the objective function in Eq. (11) is convex, while the 2-
class SA-SVDD can only get a local optimum point due to the non-
convexity of the objective function in Eq. (27). However, in the 2-
class SVDD situation, the global optimal solution does not necessarily
bring good generalization ability, as illustrated by Fig. 1. This might
be the reason why 2-class SA-SVDD performs better than 2-class QP-
SVDD on this dataset. The 2-class SVM performs very similarly to the
2-class SA-SVDD, for visual effect, the ROC curve for SVM is not
plotted. As a numerical measure, Table 3 shows the AUC of every
classifier for each dataset, and the results are consistent with the
observation from the curves in Fig. 4.

Figs. 5 and 6 show the evolution curves of the objective
functions of SA-SVDD and 2-class SA-SVDD as the algorithms
proceed, respectively. As we have observed on the CBCL dataset,
the objective functions decrease monotonically, and SA-SVDD
converges in about 30 iterations, while the 2-class SA-SVDD
converges in about 200 iterations. In Figs. 5 and 6, we also list
the final objective function values. Table 4 gives the objective
function values of the QP-SVDD and SA-SVDD algorithms calcu-
lated using Eqs. (16) and (26), respectively, at the final solutions.
Similar to the results on the CBCL dataset, we observe that the SA-
SVDD algorithms yield higher objective function values than QP-
SVDD algorithms.

Table 4 also lists the training times of different algorithms on
the USPS dataset. To clearly illustrate the speed advantage of SA-
SVDD, we calculate the ratio between the training times of QP-
SVDD and SA-SVDD for different problems, and list the results in
Table 5, which also gives the sizes of the considered problems. It is
clearly seen that with only positive examples, the SA-SVDD
algorithm is 20–30 times faster than the QP counterpart, and the
2-class SA-SVDD is 3–6 times faster than the 2-class QP-SVDD. We
also notice that the speed advantage of the proposed algorithm is
more significant for larger datasets. More importantly, we should
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Fig. 4. The ROC curves of the considered SVDD algorithms on the USPS dataset with different digit as positive class: (a) digit “0” as positive; (b) digit “3” as positive; (c) digit
“5” as positive; and (d) digit “9” as positive.

Table 3
The area under the curve of the considered classifiers on the USPS dataset.

Digit QP-SVDD SA-SVDD 2-class QP-SVDD 2-class SA-SVDD

0 0.9775 0.9734 0.9812 0.9965
3 0.9456 0.9426 0.9551 0.9901
5 0.8554 0.8423 0.9293 0.9949
9 0.9707 0.9603 0.9843 0.9922
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Fig. 5. The objective functions for SA-SVDD algorithmwith only positive examples on the USPS dataset: (a) digit “0” as positive, with the minimum value 1.2737; (b) digit “3”
as positive, with the minimum value 1.1995; (c) digit “5” as positive, with the minimum value 1.2337; and (d) digit “9” as positive, with the minimum value 1.1451.
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Fig. 6. The objective functions for SA-SVDD algorithm with positive examples and 400 randomly selected negative examples on the USPS dataset: (a) digit “0” as positive,
with the minimum value 2.2640; (b) digit “3” as positive, with the minimum value 2.5702; (c) digit “5” as positive, with the minimum value 3.2738; and (d) digit “9” as
positive, with the minimum value 2.7128.
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mention that in our implementation, the core quadratic program-
ming code for QP-SVDD was developed in Cþþ which is far more
computationally efficient than our SA-SVDD implementation. Tak-
ing this factor into account, if the implementation of SA-SVDD is
optimized, it would be much more time-efficient than QP-SVDD.

To gain further insight about the computational complexity and to
verify our theoretical analysis in Section 3.3, we compared the
training time on the digit results. Since the problem for digit “5”
has the smallest size, we used it as the baseline. For each algorithm,
we calculated the ratio of the training time on the digits “9”, “3” and
“0” to that on the digit “5”, along with the square and cubic of the
problem size ratio. Table 6 presents the results.

It is observed from Table 6 that the training time of QP-SVDD
algorithms grows perfectly in the rate of Oðn3Þ. For the proposed SA-
SVDD algorithms, the time complexity is close to Oðn2Þ. Because for
different problems, the algorithm needs different number of iterations
to converge, there is fluctuation in the training time ratio. This verifies

the theoretical analysis in Section 3.3 that the time complexity of the
proposed method is Oðn2Þ.

5. Conclusion and future works

Support vector domain description (SVDD) is a well-known tool
for data description and pattern classification, with many applica-
tions. In literature, the SVDD model is often fitted by solving the
dual of a constrained optimization problem, resulting in a quad-
ratic programming problem, which is computationally expensive
to solve, with time complexity about Oðn3Þ, where n is the training
set size. The high training cost is rather undesirable in model
selection and some feature selection methods.

As an alternative, this paper attempts to fit the SVDD model by
directly minimizing the primal form of the optimization problem.
However, the primal objective function of SVDD is not differenti-
able, which makes the well-developed gradient based optimiza-
tion methods inapplicable. These methods are desirable because
they are easy to implement, and because they converge quickly to
at least a local optimum. As such, we introduce a smooth app-
roximation to the original primal objective function of the SVDD
model, resulting in an unconstrained smooth optimization pro-
blem. Finally, the conjugate gradient method is applied to mini-
mize the smoothed objective function. The proposed algorithm
has computational complexity about Oðn2Þ.

Experiments were conducted on face detection and hand-
written digit recognition problems, and we compared the perfor-
mance of the proposed smoothly approximated SVDD (SA-SVDD)
to that of the quadratic programming based SVDD (QP-SVDD), in
terms of ROC analysis and training time. Our results show that the
developed SA-SVDD has slightly worse classification performance
than QP-SVDD if only positive examples are used for training; if
the training set contains both positive and negative examples, the
SA-SVDD has better classification performance. In our experi-
ments, if there are only positive examples, SA-SVDD is 20–30
times faster than QP-SVDD; with both positive and negative
examples, SA-SVDD is 3–6 times faster than QP-SVDD. We also
observe that as the training set size gets larger, the speed
advantage of SA-SVDD over QP-SVDD becomes greater.

As shown in [32], the SVDD model is equivalent to the model in
[28], which separates the origin and the positive examples by a
hyperplane. The model in [28] also uses the hinge loss function,
yielding a quadratic programming problem. Thus, a possible
extension to this work is to apply the idea of smooth approxima-
tion to the model in [28] and save computing time. Currently, we
employ the conjugate gradient method for minimizing the
smoothed objective function. It will be interesting to compare
other gradient based optimization methods, for example, quasi-
Newton method [4,36], coordinate gradient descent [7,15], or
blockwise coordinate descent [22].
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Table 4
On the USPS dataset, the comparison between the QP-SVDD and SA-SVDD
algorithms. The objective function are calculated according to Eqs. (16) and (26)
using the final solutions, the training times are in seconds.

Digit Method QP-SVDD SA-
SVDD

2-class QP-
SVDD

2-class SA-
SVDD

0 Objective
function

0.7588 1.2377 0.7600 1.5057

Training time 2417.6 80.7813 1915.1 428.9688

3 Objective
function

0.7310 1.1600 0.7340 1.6370

Training time 414.8281 18.3594 559.0938 153.4375

5 Objective
function

0.7566 1.1989 0.7634 2.0453

Training time 252.6719 12.0313 408.5156 117.1406

9 Objective
function

0.7029 1.0935 0.7051 1.8785

Training time 392.5469 20.0156 554.1250 147.2500

Table 5
The ratio of training times of QP-SVDD and SA-SVDD on different problems. The
problem sizes are also given.

Problem Digit 5 Digit 9 Digit 3 Digit 0 CBCL

Positive # 556 644 658 1194 2429
SVDD time ratio 21.00 19.61 22.60 29.93 32.29
Training # 956 1044 1058 1594 3429
2-class SVDD time ratio 3.49 3.76 3.64 4.46 6.16

Table 6
The time complexity of different algorithms on the USPS dataset.

QP-SVDD ðn9=n5Þ3 ¼ 1:5339 ðn3=n5Þ3 ¼ 1:6575 ðn9=n5Þ3 ¼ 9:9035
t9=t5 ¼ 1:5536 t3=t5 ¼ 1:6418 t9=t5 ¼ 9:5681

SA-SVDD ðn9=n5Þ2 ¼ 1:3416 ðn3=n5Þ2 ¼ 1:4006 ðn9=n5Þ2 ¼ 4:6117
t9=t5 ¼ 1:6636 t3=t5 ¼ 1:5260 t9=t5 ¼ 6:7143

2-class QP-SVDD ðn9=n5Þ3 ¼ 1:3024 ðn3=n5Þ3 ¼ 1:3554 ðn9=n5Þ3 ¼ 4:6354
t9=t5 ¼ 1:3564 t3=t5 ¼ 1:3686 t9=t5 ¼ 4:6879

2-class SA-SVDD ðn9=n5Þ2 ¼ 1:1926 ðn3=n5Þ2 ¼ 1:2248 ðn9=n5Þ2 ¼ 2:7801
t9=t5 ¼ 1:2570 t3=t5 ¼ 1:3099 t9=t5 ¼ 3:6620
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