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This paper presents a general object boundary extraction model for piecewise smooth images, which
incorporates local intensity distribution information into an edge-based implicit active contour. Unlike
traditional edge-based active contours that use gradient to detect edges, our model derives the neighbor-
hood distribution and edge information with two different region-based operators: a Gaussian mixture
model (GMM)-based intensity distribution estimator and the Hueckel operator. We propose the local dis-
tribution fitting model for more accurate segmentation, which incorporates the operator outcomes into
the recent local binary fitting (LBF) model. The GMM and the Hueckel model parameters are estimated
before contour evolution, which enables the use of the proposed model without the need for initial con-
tour selection, i.e., the level set function is initialized with a random constant instead of a distance map.
Thus our model essentially alleviates the initialization sensitivity problem of most active contours. Exper-
iments on synthetic and real images show the improved performance of our approach over the LBF
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1. Introduction

Image segmentation is a fundamental task in image processing
and computer vision, which has been studied extensively in past
decades. Most existing segmentation methods can be roughly cat-
egorized, based on the image features used, into two basic ap-
proaches, the edge-based and region-based methods [7]. Typical
difficulties in image segmentation include noise, low intensity con-
trast with weak edges, and intensity inhomogeneity [16], which
pose significant challenges to traditional segmentation methods
like region growing and edge detection [17]. In addition, traditional
edge detection approaches like thresholding need further edge
linking operation to produce continuous object boundaries. To ad-
dress these difficulties, more recent methods, such as the active
contour models, including the key concepts of both the edge-based
[23,6,20] and region-based approaches [9,19,34-36,39], have been
proposed for image segmentation with promising results. The ac-
tive contour models can achieve subpixel accuracy and provide
closed and smooth contours/surfaces. See [16,11] for a review of
major active contour models.

Edge-based active contour models [23,6,20] generally use im-
age gradient for object boundary detection, which are usually sen-
sitive to noise and weak edges. To solve such problems, region
information (e.g. intensity, color and texture descriptors) has been
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used in active contours [9,19,34-36,39], which usually segment an
image into multiple regions of interest with certain homogeneity
constraints. In addition, region-based active contours are much
less sensitive to contour initialization than edge-based models.

In practice, implicit active contour models (level set methods)
are commonly used in situations where contour topology changes
in deformation, which cannot be simply handled by explicit active
contours (snakes). A major category of region-based level set
methods is proposed to minimize the well-known Mumford and
Shah (MS) functional [27]. Due to the difficulty of directly minimiz-
ing the MS functional, different approximation methods [1,2,34,
9,35,30,15] have been proposed to allow more efficient energy
minimization. For example, early phase field models [1,2] use ellip-
tic approximations by I'-convergence to the weak formulation of
the MS functional. A recent paper [30] presents a new primal-dual
algorithm to minimize a convex relaxation of the MS functional,
which is independent of initialization. For image segmentation,
the piecewise constant (PC) models [36,9] approximate an image
as a combination of a set of homogenous regions, which is not true
for images with intensity inhomogeneity. For example, the Chan-
Vese (CV) model [9] assumes homogeneous object and background
regions with distinct intensity means. In [34,35], more advanced
piecewise smooth (PS) models have been proposed to improve
the PC model performance in case of intensity inhomogeneity.
However, with rather complicated algorithms, these models are
usually computationally expensive. For more efficient and robust
segmentation, a recent Graph Cuts-based method [15] is proposed
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to reformulate the Mumford-Shah functional on an arbitrary
graph, which is optimized by combinatorial techniques. As indi-
cated in [18], the models using global image statistics usually have
difficulty to extract heterogeneous objects. To overcome this prob-
lem, recently localized region-based models [5,29,26,19,18,32]
have been proposed. For example, in [19], a local binary fitting
(LBF) energy is defined over the neighborhood of each image pixel,
and the active contour is deformed to minimize the integration of
the LBF energy through the whole image. In each neighborhood,
the intensity means (f; and f>) of background and objects are esti-
mated and used in the energy to fit the local intensity distribution.
With the simple estimation of f; and f5, this model has difficulty in
some complex segmentation problems, e.g. multiple objects with
complex shapes. In addition, like most existing active contours,
the LBF model is rather sensitive to the initial contour location. Last
but not least, the values of f; and f, have to be estimated in each
contour evolution, which introduces expensive computational
cost.

Other similar localized energy functional can be seen in
[5,29,26,18,32]. Brox and Cremers [5] extends the work of Zhu and
Yuille [39] to further study the relationship between the full piece-
wise smooth Mumford-Shah functional and Bayesian model.
According to the linear filtering operation of a regularization frame-
work, it is shown that the MS functional can be interpreted as a first-
order approximation of a Bayesian a-posteriori maximization based
on local intensity statistics, i.e., a Gaussian distribution with fixed
variance. Furthermore, they extend the traditional MS functional
by incorporating the variable local variance for a more robust seg-
mentation. Similarly, Piovano et al. [29] replace the global region
intensity mean in the piecewise constant MS functional (i.e., the
CV PC model [9]) with a piecewise smooth function that corre-
sponds to the intensity average in a small neighborhood of an image
point. This new model approximates the original piecewise smooth
MS functional, but with a simpler complexity similar to the CV PC
model. Though, like the LBF model, the local intensity means and
two boundary terms have to be updated in each level set evolution,
which still demands a high computational cost. In [26], Mory et al.
propose a fuzzy region competition model to partition an image into
foreground and background regions, which employs a fuzzy mem-
bership function instead of using active contours for segmentation.
Based on the original region competition algorithm [39], a general
non-parametric region error function is used for intensity density
estimation in the foreground and background regions. The fore-
ground region in [39] is replaced by the fuzzy membership function,
which enables a model more computational efficient and less sensi-
tive to initialization than active contour models. Moreover, the
model is extended for more general case of local space-varying
probability densities, with the same energy functional as the LBF
model. In [32], a two-step algorithm combining the global CV PC en-
ergy and a new local energy is proposed for angiograms vessel seg-
mentation. The CV model is applied in the first step to roughly
extract the vessels and the local energy term is used in the second
step to refine the result, which is constructed similar to the CV term
but based on the intensity contrast within the level set narrowband.
In [18], a general framework is proposed to reformulate current
global region-based energy to a local form. Three global energy
functions have been used as examples to show the improved perfor-
mance when adapted into the framework. Specifically, the uniform
modeling energy is similar to the LBF energy since both of them are
based on the CV PC model [9]. Same as the approaches in [19,29], the
model in [18] has a high computational cost by updating the local
statistics in each iteration. In addition, these active contour-based
local models are usually sensitive to contour initialization, see
Section 4, where we compare our proposed method with the LBF
model and the local region-based approach in [18] with different
energies.

Based on the LBF model, we present a new edge-based active
contour that uses a more general and accurate local region model,
local distribution fitting (LDF) energy, to characterize the neighbor-
hood intensity distribution for edge detection in piecewise smooth
(non-textured) images. Unlike traditional edge-based active
contours that use image gradient for edge detection, two localized
region-based operators, a Gaussian mixture model (GMM) [25]-
based intensity distribution estimator and the Hueckel operator
[17], are used to obtain neighborhood distribution and edge infor-
mation before contour evolution. The pre-derived neighborhood
distribution depends only on the image itself, which is used in
the LDF model for object boundary extraction. This enables an im-
plicit active contour without the initial contour selection, i.e., the
level set function can be initialized as a random constant instead
of a distance map. For the local GMM-based distribution estimator,
the neighbor intensities of each image point are characterized by a
mixture of two Gaussian distributions of object and background.
The GMM parameters are estimated by the expectation-maximiza-
tion (EM) [12] algorithm. We further improve the algorithm effi-
ciency by using another neighborhood-based operator, the
Hueckel operator, to derive the edge parameters of each region,
which are computed by a set of orthogonal Zernike moments
[22]. We present these two operators as examples of how tradi-
tional edge detection approaches can be incorporated into current
active contours, and make no claim that one operator outperforms
the other. The LDF energy terms for all image points are integrated
together as the level set energy functional, based on which the con-
tour evolution equation is derived. Compared to the LBF model and
other existing approaches (e.g. PC and PS models), there are three
major contributions of the proposed LDF model: (a) a general ob-
ject boundary extraction model is proposed for more accurate
and robust segmentation, which incorporates different region-
based operator outcomes of neighborhood distribution informa-
tion into an implicit active contour; (b) the initialization sensitivity
problem is essentially alleviated with a “random” level set initial-
ization; and (c) the moment-based LDF model saves computational
cost.

The remainder of this paper is organized as follows. Section 2
reviews the background of two well-known region-based active
contour methods (Mumford-Shah and Chan-Vese models), GMM
and EM, and the Hueckel operator and Zernike moments. Section
3 presents the proposed LDF model. Experimental results on a set
of synthetic and in vivo images are illustrated in Section 4. This pa-
per is summarized in Section 5.

2. Background
2.1. Mumford-Shah model

Given a gray scale image I: Q@ ¢ %* — % Mumford and Shah
[27] formulated image segmentation as a problem of finding
an optimal contour C that divides Q into a set of regions €,
and a piecewise smooth approximation u of I, which is smooth
in each region €2 i.e., a denoised version of I. The energy func-
tional was defined as:

B0 = [(u—1?axp | vufax el (1)

where x € %2, |(] is the contour length, 1 > 0 and v > 0 are constants
to balance the terms. The first term is the data fidelity term; the sec-
ond term is a regularization term; and the third term is the contour
length term. In practice, it is difficult to solve Eq. (1) directly due to
different dimensions of u and C, and the non-convexity of the en-
ergy functional. Based on Eq. (1), many simplified models have been
proposed for practical applications, e.g. elliptic approximations
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[1,2], CV PC model [9], PS models [34,35], and Graph Cuts-based
model [15].

2.2. Chan-Vese piecewise constant model

Chan and Vese [9] proposed the well-known PC model to over-
come the classical snakes’ problems of sensitivity to image noise
and initial contour location, which is defined as:

Eer.c2.0) = | (I - c2)dx +v[Cl, 2)

Jout(C)

(I —c1)%dx + /
Jin(C)

where out(C) and in(C) are the regions outside and inside the active

contour C, respectively, and c¢; and ¢, are two global constants rep-

resenting the intensity means of the two regions, i.e., background

and objects. Eq. (2) can be reformulated in level set framework as:

E(C1,Co. ) = / (Io — 1) H()dx + / (o — )*(1 — H())dx

Q

y / VH($)dx, 3)

where H is the Heaviside step function and ¢ represents the level
set function. By calculus of variations, the level set evolution equa-
tion can be derived as:

0 . . (V
E)_(f = 0.(9) {VdWQv—i') —(lo—c1)* + (Io — c2)* |, (4)
where ¢;(¢) = /jh:;ix C2(¢) = flol(l HHé * H, is a modified Heavi-

side function for a smooth Dirac function:
2 arctan (¥)], 6;(x) = H,(x) =1

&
[ T e24x2"

The constants ¢; and ¢, in the CV PC model cannot accurately
characterize inhomogeneous regions in real data, which results in
incorrect segmentation for images with intensity inhomogeneity.
To address this problem, Vese and Chan developed the PS model
[35], which is computationally expensive. As indicated in [18], re-
cent localized active contours [5,29,19,18,32] are all based on the
CV PC model.

He(0 =11+

2.3. GMM and the EM algorithm

Mixture models [25] are widely used to approximate compli-
cated distributions with the output coming from one of a group
of “hidden” sources (e.g. objects and background in an image). In
statistics, a mixture model is usually defined as a probability distri-
bution that is a convex combination of several independent
components with different probability distributions. Therefore, it
provides a general framework to characterize heterogeneity. Given
an output of a mixture model, the goal is to estimate from which
source (measured by probabilities) the output is generated, as well
as the parameters describing the source component distributions,
e.g. means and variances of a Gaussian mixture model. As a popu-
lar model, GMM has been widely used in image segmentation
applications [3,28,31] to characterize the objects and background
intensity distributions.

Given a set of N samples (e.g. image points) from n-dimensional
space, X ={X1, ..., X;, ..., Xy}, in which each sample is drawn from
one of M Gaussian components, a GMM can be denoted as:

p(X|O) = Zalp (X|6:), (5)

where the parameters are @ ={oy,..., 0 01,..., 0y} such that
SM. o = 1 and o; refers to the prior probability of each component;
0;=(w;, %), W is the mean and ; is the covariance matrix,

background

background

Fig. 1. Local GMM distribution estimation examples.

i=1,...M. Let y; j=1,...N, denote which Gaussian X; is drawn
from, the probability of X; coming from the i-th Gaussian is:

P(x,-|yj:i,oi>:()n/lw exp (506~ 1)"=7" % - ).
(6)

The taskis to estimate the hidden distributions given the data, i.e.,
to estimate the unknown parameters 0 which maximize Eq. (5). The
GMM parameters can be estimated by the EM algorithm [12], which
repeats the E-step and M-step until convergence. The E-step is to cal-
culate the expectation of which Gaussian is used, conditioned on the
observations (X), using the estimated prior probability of each distri-
bution (p(y; = i|0;)) and current parameter values (©,),

pXjly; =i, 00)p(y; = 1|6:)
S P(X1y; =k, ©)p(y; = k|©:)
Given the E-step estimation of unknown variables (y = {y1, ..., ¥n},
yi=1,...,M), the M-step estimates the distribution parameters

(©®) and the prior probability of each distribution, which maximize
the data likelihood as

o[ ﬁ o]
>

j=1 i

pWy; =ix;,0,) = (7)

Q0,6 =

Mz

py; = ix;, ©:) log(p(X;ly; = 1, ©)p(y; = i|@)),

8)

where the log-likelihood is used for easier numerical implementa-
tion. With gradient ascent approach, we can update the parameters
and the prior probabilities as:

L XLpW; = %, 00X,
l Z][‘vzlp(y]‘ = i[x;, Or) 7

Il
—_

9)

s _ LjPO; = 1%, 090 — ) (% — )"
ZjN:]p(yj = l|xj7 Oy) /
. 1
o =py; =16 = N P( = i|X;, O)

These updated parameters then become the input for next E-
step, and the convergence to a local maximum of the EM algorithm
is guaranteed [12,38]. In our application, only the distributions of
objects and background exist in a small neighborhood, i.e., M = 2.
Using the EM algorithm, Fig. 1 shows two examples of local
GMM-based distribution estimation in a small region (see the
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white rectangles). The left images in Fig. 1 are input images with
intensity inhomogeneity, and the middle images are the enlarged
views of the selected regions. The blue curves in the right images
are the intensity histograms of the regions. The estimated Gaussian
distributions of the objects and background are illustrated as the
red curves, with the black dotted lines as the estimated intensity
means using Eq. (9). It can be seen that the estimated means match
well with the real intensity means (green lines), which show the
suitability to use the localized GMM for neighborhood distribution
estimation. In the proposed LDF model, we use GMM to estimate
the local intensity means f; and f, of the LBF model, which is more
accurate than the LBF model.

2.4. Hueckel operator and Zernike moments

The Hueckel operator [17] models an edge as a step discontinu-
ity intensity at a location in an image. As shown in Fig. 2, a step
function is modeled in a unit circle as:

2.

0,0) x
bT l\"“-l__T__/

T /
\*1__%1,/

; if (xcosy+ ysiny) < p

. b
ooy ,)_{ b+l ; if (xcosy+ ysiny) > p

Fig. 2. Hueckel operator model.

where lis the step height, b is the base intensity, p and y define the
position and orientation of the edge segment with respect to the cen-
ter of the circle. Thus the two intensities b and (b + [) correspond to
the intensity means of object and background in the region.

In the proposed model, a set of image moments, Zernike mo-
ments [22], are used to estimate these four parameters of b, [, p,
and ). Zernike moments are projections of the image data onto a
set of complex polynomials, which form a complete orthogonal
set over the interior of a unit circle. To evaluate the Zernike mo-
ments at a pixel, the neighborhood of that pixel should be mapped
to the interior of the unit circle. The Zernike moment of order n and
repetition m is defined as

A =" LSS S Vi ), (10)
X y

T

where V,,, (1, ) is a complex polynomial and defined as

Vam (1, @) = Ry ()™, (11)
with j=+v—1, n >0, and n — |m| is an even positive integer and
Rum(r) is a radial polynomial defined as

(n—|m))/2 (_1)5(11 _ S)!rn—25

=0 s!(%‘m‘—s)!(”’T‘m‘—s)Y

In Eq. (10), V;,, is the conjugate of V,,,. As in [22], we can compute
the parameters as:

o (ImA
)= tan <Re[AE}>7

_ln 4 [sin! - p? j
b:Aoo 7 +Isin (;’)*lpm, where A}, =A€7, (13)

Rom (1) =

(12)

_ Ax
=
A

3A1,

l = -3
201 2"

Different from the local GMM-based distribution estimation,
here the edge parameters are computed directly by Eq. (13) instead
of the iterative EM algorithm, which saves the algorithm computa-
tional cost. Similar to Fig. 1, the estimated b and b + 1 are close to
the real intensity means.

3. Proposed approach
3.1. Local distribution fitting energy functional

In order to improve the performance of the global PC [9] and PS
[34,35] models on images with inhomogeneity, Li et al. [19] pro-
posed the implicit active contours driven by the LBF energy. The le-
vel set energy function of the LBF model is defined as

E(¢.fi.fo) = E¥(¢.fi.fo) + UP($) + VL($), (14)

where E'®( ¢, fi, f>) is the LBF energy, P(¢p) is a level set regulariza-
tion term [20,21] which penalizes the deviation of the level set
function from a signed distance function, L(¢) is the contour length
term which prefers a smooth curve.

In the LBF energy functional, two local intensity fitting func-
tions, fi(x) and f5(X), X € R?, are used to approximate the intensity
means of the two local regions around the point x outside and in-
side the active contour, i.e., the background and object regions. The
LBF energy functional is constructed as:

ELBF(¢7f1=f2):)~1/ UKJ(X*Y)\I(V) ffl(x)\zH(d)(y))dy}dx

i [ [ Koty P —H(d)(y)))dy} dx,
(15)

where 4; > 0 and /; > 0 are constants, K5(X — y) is the Gaussian ker-
nel function as

Ky (d) = 1 e

=5 , with a scale parameter ¢ > 0.
no

This local Gaussian kernel restricts the LBF energy of each point
in a small neighborhood. The regularizing term P(¢)[20,21]" intrin-
sically maintains the regularity of the level set function without the
need for extra re-initialization procedures, which is defined as

P9) - [ 3(V600] -~ 17dx (16)

The contour length term L(¢) is defined as
L(¢) = /95(¢(X))IV¢(X)IdX7 (17)

where §(¢) is the Dirac delta function. The local fitting functions
f1(x) and f5(x) are computed as:

_ Ko (%) * [H($(X)I(X)]
Ko (x) « H($ (X))

K, (%)« [(1 - H(p(X))I(x)]

) = A Hipm)]

which depend on the level set function ¢ and need to be updated in
each contour evolution.

The LBF model improves the global PC and PS models on inten-
sity inhomogeneity and is more computationally efficient than the
PS models. Nevertheless, with only two simply estimated intensity
means for local regions, this model has problems in complex image
segmentation, e.g. multiple objects with complex shapes (see Sec-
tion 4). Moreover, the LBF model is rather sensitive to the initial
contour location, as will be shown in our experiments. Last but
not least, the updating of the fi(x) and f>(x) in each iteration still
demands a high computational cost. To overcome these problems,

fix)

, and

(18)

! Note there are also other methods [14,37] proposed to eliminate the need for
reinitializing the level set function during evolution process, which is usually
implemented efficiently by the first order approximation [33].
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especially for a robust contour initialization, we propose the LDF
energy for each point x as:

EPF () = 4 / Ko (X — YY) — b (0)PH($(y))dy + 2
x / Ko (x = y)lI(y) — ha(®)P(1 - H(p(y)))dy, (19)

where h;(x) and h,(x) correspond to the local background and object
distribution fitting functions, respectively. Using Eq. (9) or Eq. (13), h;
and h, can be obtained by the local GMM-based operator or the Huec-
kel operator before contour evolution. With localized GMM, two
Gaussian distributions of object and background are mixed in the
small neighborhood of each image point. The estimated intensity
means (uq and y, in Eq. (9)) correspond to hy and h,. For the Hueckel
edge model, we compute b and (b +1) (Eq. (13)) as h; and h,.

Before contour evolution, we determine the correspondence of
the pre-calculated py, p (or b, b +1)to hy, hy according to the relative
brightness of background and objects, which can be simply obtained
as prior knowledge of an input image. For example, if objects are al-
ways locally (in a small neighborhood) darker than the background,
we have hy = max(u,, ¢2)(orb +I)and h, = min( 4, uz)(orb). Thus hy
and h;, depend on the image itself instead of the level set function,
which can be computed offline with a more efficient computational
cost than the LBF model. In addition, the pre-derived h, and h, essen-
tially enables an active contour model without user initialization,
i.e., the level set function can be initialized with a random constant,
see Section 3.3. Therefore the LDF model essentially alleviates the
initialization sensitivity problem of the LBF model and many exist-
ing active contours. Note that the recent algorithm [30] that mini-
mizes a convex relaxation of the MS functional does not assume
any image priors, which is independent of initialization and may
be applied for segmentation applications to overcome the initializa-
tion sensitivity problem.

For object boundary detection, we integrate the LDF energy at
each point over the whole image. Together with the level set reg-
ularizing term P(¢) of Eq. (16) and the contour length term L(¢)
of Eq. (17), we construct the level set energy similar to Eq. (14):

E(¢,h1, hy) = E™ (¢, hy, ha) + P($) + VL(¢)
= / E’ () +§(|V¢<x)\ —1)? +v3($(%))|Vp(X)|dx.
(20)

Following [9,35,19], we use the modified Heaviside function for a
smooth Dirac function (Eq. (4)), with ¢ =1 in experiments.

3.2. Energy minimization

Gradient decent method is used to minimize the energy func-
tional of Eq. (20). The level set evolution equation is:

% o) (ner — aes) + u{vz(p - div(%)}
+ véAqS)div(%), (21)

where ej(x) and ey(x) are functions as eyx)= [Ks(y —x)
[I(x) — h(y)|dy, k = 1, 2. For a point x far away from boundaries, the lo-
cal intensity distributions of h;(x) and hy(x) are close to each other,
thus the edge detection term (Ae; — Aye,) is small and the contour
length term (the third term in Eq. (21)) dominates, which prevents
the emergence of contours in these regions. On the other hand, for
points located at edges, the term (A;e; — X,e3) is large due to the large
difference of h; and h,, thus it takes effect to detect boundaries.

3.3. Remarks on the LDF contour initialization

The level set function of the proposed LDF model is initialized
with any constant (e.g. ¢ = 1). As described in Section 3.2, before
contour evolution, we assign the pre-calculated neighborhood-
based distribution parameters (x; and i, or b and b +1) to the
LDF functions of h; (background) and h; (objects). In the level set
evolution equation (Eq. (21)), (116, — 42e3) is small for points far
away from boundaries and the contour length term dominates,
resulting in fast convergence in these regions. Here we use the
points near boundaries to show the emergence of zero level sets
from the initial constant ¢. For these points, the first term
(411 — 4pe2) dominates due to the large difference of the h; and
h,. Without loss of generality, we assume an image with objects lo-
cally brighter than background (e.g. Fig. 3(a)), i.e., hy < hy. With
J1 =42, (1181 — Z2e3) > 0 for the object points close to boundaries.
Thus the ¢ values of these points decrease as the contour evolves
with Eq. (21). Meanwhile, the ¢ values of the background points
near boundaries increase with (Z;e; — Z;e3)<0. New contours
(zero level sets) emerge as the ¢ values of object points finally be-
come negative. Similar process can be obtained for objects locally
darker than background. Therefore, with the pre-derived LDF func-
tions of h; and h,, we can initialize the level set function with any
constant, which has also been shown in the experiments (e.g. Figs.
3, 7(b-c)).

4. Experiments

This section presents the experiments on both synthetic and
real images with intensity inhomogeneity, noise and complex ob-
ject shapes. Specifically, we compare our LDF model to the LBF
model [19] and the local region-based approach (LR)? [18] on ini-
tialization sensitivity and segmentation accuracy. We also present
several CV PC [9] and PS [35] model examples to show the limita-
tions of the models using global statistics. For the experiments, the
initial contours of the PC, PS, LBF, and LR models are shown in green
and the red curves are segmentation results. For all these experi-
ments, the level set function is initialized with a constant between
0 and 1 for the LDF model. The neighborhood size of 11 by 11 is used
to estimate the local GMM and Hueckel operator parameters (i.e., the
unit circle). Note that the GMM and Hueckel operators are two dif-
ferent examples to estimate the LDF functions. Similar to the three
energy examples presented in [18], we do not suggest that one is
superior to the other according to accuracy and robustness. A com-
mon feature of these images is that the objects are always locally
(i.e., within a small region) brighter (Fig. 3(a)) or darker (Fig. 4(a))
than the background, which may not be true in the whole images.
According to this feature, after the derivation of yx; and p, (or b
and ) of each image point, we can determine their correspondence
to hy and hy, as described in Section 3.2.

Figs. 3(a) and 4(a) are two images from [19] with intensity inho-
mogeneity. They share the common feature as described above. For
example, although the object in Fig. 3(a) is always locally brighter
than the background, the left part of object is darker than the right
background. The active contours using global statistics usually
have difficulty to handle such intensity inhomogeneity problem,
e.g. the CV PC model results in Figs. 3(b-c) and 4(b-c), and the
PS model result in Fig. 4(e). It can be seen that the PS model out-
performs the PC model on intensity inhomogeneity, as shown in
Fig. 3(d-e) and Fig. 4(d). Though, the CV PC model is rather insen-
sitive to the contour initialization, i.e., it produces almost the same

2 The uniform modeling (UM) energy and the mean separation (MS) energy in [18]
are compared in the experiments, and the histogram separation (HS) energy is not
included in the comparison due to its very high computational and time cost.
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(a) Original image (b), (¢) A CV PC [9] initial (d), (e) A CV PS [35] initial
contour and the result contour and the result
(f) GMM-based fitting (g) Moment-based fitting
functions A, and h, functions Ay and A,
(h), (1), (j) GMM-based segmentation (k) Moment-based (1), (m) A LBF [19] initial
results at 25, 50, and 350 iterations segmentation result contour and the result

(n), (0) A LR[18] initial contour (p), (q) A LR [18] initial contour
and the result of UM energy and the result of MS energy

Fig. 3. An example with synthetic intensity inhomogeneity.

(a) Original image (b), (¢) A PC initial (d), (e) A PS initial
contour and the result contour and the result

(f) GMM-based (g) Moment-based (h), (i) A LBF initial
segmentation result segmentation result contour and the result

(3), (k) A LR UM initial (1), (m) A LR MS initial
contour and the result contour and the result

Fig. 4. A real image with intensity inhomogeneity.
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(b), (c) A PC initial

a) Original image
(8) Original ag contour and result

(h) GMM-based
segmentation result

(i) Moment-based
segmentation result
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(d), (e) A PS initial
contour and the result

(f) GMM-based fitting function /4, and A,

(g) Moment-based fitting function s, and h,

(j), (k) A LBF initial
contour and the result

(1), (m) A LR UM initial
contour and the result

(n), (0) A LR MS initial
contour and the result

Fig. 5. Segmentation of a gear wheel image.

results with different initial contours. Fig. 3(f) and (g) show the
GMM- and moment-based LDF fitting functions, h; and h,. It can
be seen that the points near boundaries have very different h;
and h,, which are almost the same for those points far away from
boundaries. Figs. 3(j), 4(f) and 3(k), 4(g) are the LDF model segmen-
tation results using the local GMM-based operator and the Hueckel
operator, respectively. With simple objects in these images, both
operators can generate accurate results. Fig. 3(h-j) show the local
GMM-based segmentation results at different time steps, which
demonstrate the emergence of new contours from the initial con-
stant level set function. Similar results can also be obtained using
the Hueckel operator. Figs. 3(I-m) and 4(h-i) are the LBF model
segmentation results with different initial contours. The LBF model
extracted different object boundaries with different initial con-
tours, even with the same parameter settings. In practice, the LBF
model initial contour has to be carefully selected for a successful
segmentation. Figs. 3(n-o0), 4(j-k) and 3(p-q), 4(I-m) show the ex-
tracted contours by the LR UM and MS energies, respectively,
which significantly improves the performance of the original glo-
bal energies. For example, the reformulated localized CV PC energy,
i.e., the LR UM energy, obtains much better results than the global
one.

Figs. 5(a) and 6(a) are five real images with complex object
shapes or multiple objects placed in inhomogeneous and noisy
background. Fig. 5(a) shows a wheel shape with multiple gears,
and the objective is to extract both the inner and outer wheel
boundaries. The wheel is locally darker than the background,

though the bottom gear is brighter than the top background. The
difficulty lies in the inhomogeneous and noisy background. There
are multiple local energy minima in the background, e.g. the back-
ground dark blocks surrounded by brighter regions. As shown in
Fig. 5(b-e), the global PC and PS models cannot accurately extract
the complete wheel shape. Once more, the PS model shows better
performance by successfully extracting the outer contour when the
initial contour is close to the real boundary in Fig. 5(d). Fig. 5(f) and
(g) show the GMM- and moment-based LDF fitting functions h;
and h,. Again, only the points close to boundary have a large differ-
ence of h; and h,. The segmentation results based on the local
GMM operator (Fig. 5(h)) and the Hueckel operator (Fig. 5(i)) are
accurate and close to each other. With the initial contour in
Fig. 5(j), the LBF model can extract most of the wheel boundary ex-
cept two gears at the top left, as shown in the white dashed circle.
With other initial contours (Fig. 5(k)), the LBF model cannot extract
the wheel boundary correctly. Similar to the LBF model, with both
initial contours, the LR UM (Fig. 5(I-m)) and MS (Fig. 5(n-0)) mod-
els cannot accurately extract both the inner and outer contours.
Fig. 6(a) show experiments on multiple objects segmentation.
The global models are not included here due to inaccurate results
(the PC model) or high computational cost (the PS model). Like
Figs. 3-5, the LR UM and MS energies generate similar results, thus
we present their “best” results here based on visual observations,
which are all presented as the LR results. The LDF model using
the outcomes of both the local GMM-based and the Hueckel oper-
ators obtained satisfactory results for all four images, as shown in
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(a) Original images with rice, potatoes, bacteria, and handwriting words

(g) LR initial contours and segmentation results

Fig. 6. Segmentation of images with rice, potatoes, bacteria, and handwriting words.

Fig. 6(b-c). For these complex segmentation problems, the LBF example, the bottom rice grains in Fig. 6(d-e) and the two leftmost
model has difficulty to accurately extract object boundaries. For potatoes of the second and third rows in Fig. 6(d) have imprecise
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(1) LR initial contours and segmentation results

Fig. 6 (continued)

(a) Original image
& & and 250 iterations

(b), (¢), (d) GMM-based segmentation results at 15, 60,

(e) Moment-based
segmentation result

(), (g), (h) LBF initial contours and segmentation results

(i), (), (k) LR initial contours and segmentation results

Fig. 7. Segmentation of an X-ray vessel image.

segmentation results, as shown in the white dashed circles. In
addition, the LBF model is quite sensitive to the initial contours,
as shown in Fig. 6(d-e). For the images of bacteria and handwriting
words, the LBF model failed to extract the boundaries due to the
complex object shapes and severe intensity inhomogeneity. With
the poor contour initialization in Fig. 6(f-g), the LR models extract

only a part of the object boundaries. To further test the LR model
sensitivity on initial contours, we conduct two more experiments
with multiple small initial contours (Fig. 6(h)) and one big initial
contour (Fig. 6(i)) to enclose most objects. These initial contours
significantly improve the segmentation results. For example, the
LR model now can extract almost the perfect boundaries in the rice
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and potato images in Fig. 6(i), except a minor rice grain at the bot- bacterial and words images even with very good initial contours.

tom (see the white dashed circle). Though, similar to the LBF mod- The interested readers are referred to [18] for a more detailed dis-
el, the LR model cannot handle the challenging cases of the cussion on the initialization sensitivity of the LR model.

(a) Original X-ray vessel images

(b) GMM-based LDF segmentation results

(¢) Moment-based LDF segmentation results

(d) LBF initial contours and segmentation results

(e) LBF initial contours and segmentation results

Fig. 8. Segmentation of X-ray vessel images.
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(g) LR initial contours and segmentation results

Fig. 8 (continued)

Figs. 7(a) and 8(a) are four X-ray vessel images with complex
shapes of multiple branches (the first two images in Fig. 8(a) are
from [19]). The goal is to extract the vessels from rather noisy
and inhomogeneous background. The proposed LDF model suc-
cessfully extracted the vessels from all the images, using both
the local GMM-based operator and the Hueckel operator. The LBF
model can extract the vessels in Fig. 8(d) with carefully selected
initial contours. With other initial contours (Fig. 8(e)), it failed to
extract the vessel boundaries. In addition, the LBF model cannot
correctly extract all the vessel branches in Fig. 7(f-h) due to the
very thin vessel branches at the left and right. It was able to extract
either the left or the right branch when the initial contour was
placed on it. The LR model obtains similar results as the LBF model
in Fig. 7(i-k), i.e., only a part of the vessel boundary is extracted
with all three initialization. With the initial contours in Fig. 8(f),
the LR model correctly extracts the vessels in the left two images,
but fails on the right one with severer noise and inhomogeneity. In
Fig. 8(g), the LR model extracts the complete vessel shape in the
left image, and most vessel boundaries in the right two images.
In summary, like most existing active contours, the LBF model
and the LR model are sensitive to the initial contour location, as
shown in the experiments.

The three examples of Fig. 8 are used to compare the CPU times
between the LDF model and the LBF model, which were recorded
on an Dell OptiPlex™ GX620 Desktop PC, with Pentium(R) D
3.4 GHz CPU, 3.5 GB RAM, and Matlab 7.8 on Windows XP. The
time costs of Fig. 8(b-d and f)* are listed in Table 1, from which it
can be seen the GMM-based LDF model is the slowest (except the
LR model) due to the iterative EM algorithm and the moment-based
LDF model is the fastest. The time costs of the GMM- and moment-
based operators to derive the LDF functions (h; and h,) are also listed
in Table 1 for a more detailed comparison. Note that our purpose
here is to compare the relative speeds of these models under the
same condition. Other fast algorithms [8,4,13] may be applied to
these models for a reduced time cost. The GMM-based model and

3 Different from the LDF and the LBF models, the LR model is implemented with the
narrowband level set method (http://www.shawnlankton.com/2008/04/active-con-
tour-matlab-code-demo/), whose time costs are also listed in Table 1 as a general
reference for interested readers.

Table 1
CPU time (in second) comparison of Fig. 8.
Left Middle Right
image image image
Image size 110 x 110 131 x 103 78 x 103
GMM-based LDF h; and h; estimation 9.00 10.12 5.91
model Fig. 8(b)
Total 10.76 17.00 8.33
Moment-based LDF h; and h, estimation 0.14 0.14 0.11
model Fig. 8(c)
Total 4.81 8.94 1.77
LBF model Fig. 8(d) 5.80 11.09 2.03
LR model Fig. 8(f) 61.73 191.28 -

the moment-based model generally obtain rather close results for
most images. Practically, we suggest the moment-based model for
a much faster computation. As mentioned earlier, we do not suggest
that one is superior to the other according to accuracy and
robustness.

5. Summary

This paper presents a local distribution fitting model which inte-
grates neighborhood-based intensity information into an edge-
based implicit active contour for object boundary extraction. Our
model incorporates traditional intensity distribution fitting and
edge detection methods into a recent active contour (the LBF model),
which preserves the good properties of both models and alleviates
their difficulties, i.e., local intensity distribution fitting methods
are good at edge detection, and the active contour always provides
closed contours. This combination provides more accurate and ro-
bust segmentation than the LBF model. In the proposed LDF model,
a localized GMM and Hueckel edge model are used to characterize
the intensity distribution in the neighborhood of each image point.
Specifically, only two local image features (i.e., two local means)
are incorporated in the LDF model, which are sufficient to segment
a large class of piecewise smooth images. With the pre-calculated
LDF functions, our model does not require the user selection of the
initial contour, which essentially alleviates the initialization sensi-
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tivity problem of most existing active contours. In addition, the LDF
functions are calculated offline, which is more computationally effi-
cient than the LBF model and many other local energy-based models.
Experimental results on synthetic, natural and medical images show
the improved performance of the LDF model over the global PC and
PS models, and the LBF and LR models in inhomogeneous and noisy
images. For future works, we will investigate the techniques to ex-
tend the LDF model to color or texture applications for real-world
images [24,10].
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