Math 540/640: Statistical Theory I

HW #9

Instructor: Songfeng (Andy) Zheng

Problem 1: (From N(0,1) to χ_k^2)

(a) Let $X \sim N(0, 1)$. Let $Y = X^2$. Compute the MGF of Y and show that Y is a χ^2 random variable with degrees of freedom 1.

(b) Now suppose X_1, X_2, \dots, X_k are k iid N(0, 1) and let $Z = \sum_{i=1}^k X^2$. Use the conclusion of (a) to argue that $Z \sim \chi_k^2$.

Problem 2: Suppose $X \sim N(1, 4)$ and $Y \sim N(2, 1)$ and $Z \sim N(2, 3)$. Assume X, Y and Z are independent. Find the distribution of (a) X - Y, (b) X + Y - 2Z and (c) X - Y - 2Z.

Problem 3: (From Exp(1) to Chi-squares) Suppose X_i , $i = 1, 2, \dots, n$ are independent Exp(1). Let $Y = 2(X_1 + X_2 + \dots + X_n)$. Show that Y is a chi-square random variable. What is its degrees of freedom?

hint: compute the MGF of Y.

Problem 4: Suppose X and Y are independent Poisson random variables. $X \sim Poi(1)$ and $Y \sim Poi(2)$. Identify the conditional probability of X given X + Y = n.

hint: use the definition

$$P(X = k | X + Y = n) = \frac{P(X = k, Y = n - k)}{P(X + Y = n)}$$

to compute the conditional probability function of X.