
Experiment: Any procedure that can be re-

peated (at least hypothetically) an infinite times

and has a well-defined set of possible outcomes.

Sample Space: The collection of all possible

outcomes of an experiment is called the sample

space of the experiment. In this class we use

S to denote sample space.

Event: An event is a subset of the sample

space S.
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Examples of experiment and sample

space

Ex1: If the experiment is flipping a coin, sam-

ple space is S = {H,T}.

Ex2: If we flip two coins, sample space is S =

{(H,H), (H,T ), (T,H), (T, T )}.

Ex3: In Ex2, if we are only interested in the

number of Heads, sample space is S = {2,1,0}.

Ex4: Pick a die from a black box contain-

ing three dices: red, green and yellow, S =

{R,G, Y }.

Ex5: Roll a die, S = {1,2,3,4,5,6}.

Ex6: Toss a coin until see a Head. S =

{H,TH, TTH, TTTH, TTTTH, T · · ·TH, . . .}. Note

that S has infinite many outcomes.
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Some examples of Events

Ex7: In the example of flipping two coins S =

{(H,H), (H,T ), (T,H), (T, T )}.

Consider A = {(H,H), (H,T )}. Then A is an

event. Note: A is the event that the first coin

shows “Head”.

Consider A2 = {(T,H)}. A2 is another event.

Consider A3 = {(H,H), (H,T ), (T, T )}. A3 is

the event containing the outcomes that are

not in event A2.
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Set Algebra

Relations:

1. Inclusion: an event A is contained in an-

other event B, if every outcome in A also

belongs to B. We write A ⊂ B, if A is con-

tained in B.

2. Equality: we say A = B if A ⊂ B and B ⊂
A. Note in order to prove two events (sets)

A and B are the same, we often check A ⊂
B and B ⊂ A.

3. Complementation: the complement of an

event A is defined to be the collection of

all outcomes in sample space S that do not

belong to A. We write it Ac. E.g., In Ex7

Ac
2 = A3 and Ac

3 = A2.
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Operations

1. Intersection: the intersection of two events

A and B, denoted by A ∩ B, is the collec-

tion of all outcomes that belong to BOTH

A AND B.

2. Union: the union of two events A and B,

denoted by A ∪ B, is the collection of all

outcomes that belong to EITHER A OR

B (OR BOTH).

3. Empty set: If there is no common out-

come in A and B, then we say A ∩B = ∅.
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Examples

Ex1: A ∩Ac = ∅; A ∩ S = A; A ∪Ac = S

Ex2: Roll a die. S = {1,2,3,4,5,6}. Let

A = {1,3,5} and B = {1,2,3}.

Then Ac = {2,4,6} and Bc = {4,5,6}.

A ∩B = {1,3} and A ∪B = {1,2,3,5}.

(A ∩B)c = {2,4,5,6} and (A ∪B)c = {4,6}.

Ac ∩Bc = {4,6} and Ac ∪Bc = {2,4,5,6}.

We see (A∩B)c = Ac∪Bc and (A∪B)c = Ac∩Bc.

This is always true! (Can you prove it?)
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More than 2 events

Suppose we have a sequence of events, de-

noted by A1, A2, . . . , An. For example, n = 60.

Intersection of these n events is denoted by

∩ni=1Ai which contains all outcomes that are

common to all these n events.

Union of these n events is denoted by ∪ni=1Ai

which contains all outcomes that belong to at

least one of the n events.

Disjoint Events: We say a sequence of events

{Ai} i = 1,2, . . . are disjoint events, if Ai∩Aj =

∅ for each pair of (i, j), i 6= j.
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Three Axioms of Probability:

Suppose we have a system to assign a number

to each event in the sample space S. Let P (A)

be the number assigned to event A. A Prob-

ability model on a sample space S is a specifi-

cation of numbers to the events in S such that

the following three Axioms are satisfied

• Axiom 1. For every event A, P (A) ≥ 0.

• Axiom 2. P (S) = 1.

• Axiom 3. If {Ai} i = 1,2, . . . are disjoint

events then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai).
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Finite Sample Spaces

Definition: Consider experiments for which

the sample space S contains only a finite num-

ber of points s1, . . . , sn. A probability distribu-

tion on S is specified by assigning a probability

pi to each point si for each i = 1,2, . . . , n. pi
is called the probability that si will be the out-

come of the experiment. The numbers p1, p2, . . . , pn

must satisfy two conditions:

(1) pi ≥ 0 for all i

(2)
∑n

i=1 pi = 1.

The probability of each event A can be found

by adding the probability pi of all si that be-

longs to A.

For equally likely outcomes, we let pi = 1
n for

all i = 1,2, . . . , n.
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Examples

Ex1: Flip a coin. S = {H,T}. s1 = H and

s2 = T . Let p1 = p2 = 0.5.

Or consider a biased coin. p1 = 0.55 and p2 =

0.45.

Ex2: Roll a die. S = {1,2,3,4,5,6} We can

let pi = 1
6 for i = 1,2,3,4,5,6. This is the

probability model for throwing a die.

Ex3: Roll two dice. S = {(x, y),1 ≤ x ≤ 6; 1 ≤
y ≤ 6}. x is the number on the first die and y

is the number on the second die. Let A be the

event that x + y = 5. What is P (A)?
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Examples, contd’

Solution:

S = (1,1), (1,2), (1,3), (1,4), (1,5), (1,6)

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

So we find A = {(1,4), (4,1), (2,3), (3,2)} so
P (A) = 1/36 + 1/36 + 1/36 + 1/36 = 1/9.

Ex4: A card is dealt from a well-shuffled deck
of cards. What is the chance of getting a Jack?

Solution: A well-shuffled deck of cards means
that each one of the 52 cards has a probability
1/52 to be selected. In another word we as-
sume this is an equally likely outcome model.
The event is A = {select a Jack}. There are
4 Jacks and each has probability 1/52, so the
probability of getting a Jack is P (A) = 4/52.

12



A List of Theorems

Theorem 1.5.1: P (∅) = 0. The probability

of the empty set is always zero.

Proof: Let Ai = ∅ for i = 1,2, . . .. We have

a sequence of disjoint events because for any

pair of (i, j) Ai ∩ Aj = ∅ ∩ ∅ = ∅. So we use

Axiom 3 to get

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai) =
∞∑
i=1

P (∅)

but ∪∞i=1Ai = ∪∞i=1∅ = ∅, so the above equa-

tion becomes

P (∅) =
∞∑
i=1

P (∅)

which means P (∅) = 0.
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Theorem 1.5.2: For every n disjoint events,

A1, A2, . . . , An,

P (∪ni=1Ai) =
n∑

i=1

P (Ai).

Proof: Let’s add An+i = ∅ for i = 1,2, . . . and

consider the infinite sequence (A1, . . . , An, ∅, ∅, . . .).

Note that the augmented sequence are disjoint

events. Therefore we can use Axiom 3 to write

down

P (A1 ∪ · · · ∪An ∪ ∅ ∪ ∅ ∪ · · · )
= P (A1) + · · ·+ P (An) + P (∅) + P (∅) + · · ·
= P (A1) + · · ·+ P (An) + 0 + 0 + · · ·
= P (A1) + · · ·+ P (An).

But A1 ∪ · · · ∪An ∪ ∅∪ ∅∪ · · · = A1 ∪A2 · · · ∪An.

So P (A1 ∪A2 · · · ∪An) =
∑n

i=1 P (Ai).

Special case: Consider A and B. If A∩B = ∅,
then P (A ∪B) = P (A) + P (B).
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Theorem 1.5.3: For every event A, P (Ac) =

1− P (A).

Proof: Note that A ∩ Ac = ∅, so we can use

Theorem 1.5.2 (special case) and get

P (A ∪Ac) = P (A) + P (Ac)

but A∪Ac = S so P (A∪Ac) = P (S) = 1 (Axiom

2). Thus

1 = P (A) + P (Ac)

or P (Ac) = 1− P (A).

This is a very handy formula. In many cases

A can be a very complicated event, so it is

not easy to compute its probability directly.

Quite often, Ac is a much simpler event to

think of and P (Ac) is easier to get. So we use

P (A) = 1− P (Ac) to compute P (A).
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Theorem 1.5.4: If A ⊂ B then P (A) ≤ P (B).

Proof: Note if A ⊂ B then B = A∪ (B ∩Ac), A

and (B ∩ Ac) are disjoint. So P (B) = P (A) +

P (B ∩Ac) which means P (B)− P (A) = P (B ∩
Ac) and P (B ∩Ac) ≥ 0 (Axiom 1).

Theorem 1.5.5: For each event A, 0 ≤ P (A) ≤
1.

Proof: By Axiom 1, 0 ≤ P (A). Note A ⊂ S and

P (S) = 1, so by Theorem 1.5.4, P (A) ≤ 1.

Note: Theorems 1.5.1, 1.5.2, 1.5.4, 1.5.5

are intuitively correct. You only need to

know these facts.
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Theorem 1.5.6: For every two events A and
B, we have

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof: Note

A = (A ∩Bc) ∪ (A ∩B)

B = (B ∩Ac) ∪ (B ∩A)

The three events (A∩Bc), (A∩B), (B∩Ac) are
disjoint events, therefore we know the proba-
bility of their union must equal to the sum of
their probabilities. But their union is exactly
A ∪B. So we can write

P (A∪B) = P (A∩Bc)+P (A∩B)+P (B∩Ac) (1).

On the other hand, we apply Theorem 1.5.2
to both A and B,

P (A) = P (A ∩Bc) + P (A ∩B)

P (B) = P (B ∩Ac) + P (B ∩A)

P (A)+P (B) = P (A∩Bc)+2P (A∩B)+P (B∩Ac)
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P (A) + P (B)− P (AB) = P (A ∩Bc) + 2P (A ∩B)

+P (B ∩Ac)− P (A ∩B)

(2).

You can now compare (1) and (2) and prove

the theorem.

Note: Theorem 1.5.6 covers the case when A

and B are disjoint. Then P (A∩B) = P (∅) = 0,

the equation in Theorem 1.5.6 reduces to

P (A ∪B) = P (A) + P (B).
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Ex1. Consider two events: A and B. Let

P (A) = 1/3 and P (B) = 1/2. Determine the

value of P (BAc) for each of the following con-

ditions (a). A and B are disjoint; (b) A ⊂ B;

(c) P (AB) = 1/8.

Solution: (a) If A and B are disjoint, then B is

contained in Ac. So BAc = B ∩ Ac = B which

means P (BAc) = P (B) = 1/2.

(b) If A ⊂ B then note B = (BA) ∪ (BAc) =

A ∪BAc and A ∩BAc = ∅. So P (B) = P (A) +

P (BAc) which means P (BAc) = P (B)−P (A) =

1/2− 1/3 = 1/6.

(c) note B = (BA)∪(BAc) and (BA)∩(BAc) =

∅. So P (B) = P (BA) + P (BAc) which means

P (BAc) = P (B)− P (BA) = 1/2− 1/8 = 3/8.
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Ex2. A patient with a sore throat and low

grade fever is believed to have either bacterial

infection or viral infection. The probability of

bacterial infection is 0.7 and the probability of

viral infection is 0.4. What is the probability

that the patient has both bacterial and viral

infection?

Solution: Let BI denote the event of bacte-

rial infection and V I denote the event of viral

infection. Then P (BI) = 0.7 and P (V I) =

0.4. The statement “the patient is believed to

have either bacterial infection or viral infec-

tion” means that P (BI ∪ V I) = 1. On the

other hand, P (BI ∪ V I) = P (BI) + P (V I) −
P (BI∩V I), so P (BI∩V I) = 0.7+0.4−1 = 0.1.

But BI ∩ V I is the event that the patient has

both bacterial and viral infection. So the de-

sired probability is 0.1.
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Ex3. A student applies to graduate school. He
only applies two universities X and Y . He esti-
mates that his probability of being accepted by
X is 0.7, and by Y is 0.4. He also suspects that
there is a 75 chance that at least one school
will reject him. Then what is the probability
that at least one of the universities will accept
him?

Solution: Let AX denote the event that he
is accepted by X, and AY be the event that
he is accepted by Y . We know P (AX) = 0.7
and P (AY ) = 0.4. The event that one of the
universities will accept him can be written as
AX ∪ AY . So we need to compute P (AX ∪
AY ). We use P (AX∪AY ) = P (AX)+P (AY )−
P (AX ∩AY ). If we know P (AX ∩AY ), we can
compute P (AX∪AY ). For that, note AX∩AY
means that he is accepted by both schools, so
(AX∩AY )c is the event that at least one school
rejects him. We know its probability is 0.75.
Thus P (AX ∩ AY ) = 1 − P ((AX ∩ AY )c) =
1−0.75 = 0.25. So P (AX ∪AY ) = 0.7 + 0.4−
0.25 = 0.85.
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