
Recall that in a finite sample space with the
equally-likely-outcomes probability model, P (A) =
k
n where k is the number of outcomes in the
event A and n is the total number of all pos-
sible outcomes. We will learn some common
methods of counting to calculate k and n.

Introductory example: If 2 balls are randomly
chosen from a bowl containing 6 white and 5
black balls. What is the probability that one of
the drawn balls is white and the other is black?

Solution: There are 11 choices for the first
drawn ball, then there are 10 choices for the
second drawn ball. So there are 11×10 = 110
possible outcomes. If the first ball is white
and the second is black, there are 6 × 5 =
30 possible outcomes. Likewise, if the first
ball is black and the second is white, there are
5 × 6 = 30 possible outcomes. So there are
30 + 30 = 60 outcomes in the event. Then
the probability is 60/110 = 6/11.
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1. Multiplication Rule

If an experiment e is a composition of exper-

iments e1, e2, . . . , ek, where the sample space

Si of experiment ei contains ni outcomes, for

each i = 1,2, . . . , k. The number of outcomes

in e is the product: n1 × n2 × · · ·nk.

How to use the rule? The key is to think

e as a composition of simple experiments in

the sense that ni is easy to count for all i =

1,2. . . . , k.

Remark: The multiplication rule is the funda-

mental counting technique. We will use it to

derive many other useful counting methods.
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Ex1: Throw two dice (green and red). sup-

pose we are interested in the pair of outcomes

(x, y). What is the total number of outcomes?

Solution: let e1 = throw the red die and e2 =

throw the green die. Our experiment is a com-

position of e1 and e2. n1 = 6 and n2 = 6, so

the number=6× 6 = 36.

Ex2: How many distinct arrangements of the

letters A, B, C are possible?

Solution: Let e1 = choose a position for letter

A, e2 = choose a position for letter B after e1

and e3 = choose a position for letter C after

e1, e2. Our experiment is a composition of e1,

e2 and e3. Now let’s count n1, n2, n3.
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n1 = 3, because we can put A in positions 1,2

and 3.

n2 = 2, because after e1, one position is taken

by A, so there are 2 possible positions left for

B.

n3 = 1, because after e1, e2, the position for C

is fixed, just one choice.

Then using the multiplication rule, the number

is 3× 2× 1 = 6.

To check our calculation, w also list all the

possible arrangements. They are

ABC, ACB, BCA, BAC, CBA, CAB.
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Ex3: A committee of chair, secretary and trea-
surer is selected from 20 people. How many
different committee are possible?

Solution: Let e1 be selecting the chair, e2 be
selecting the secretary after e1 and e3 be se-
lecting the treasurer after e1, e2. Then select-
ing the committee is a composition of e1, e2
and e3. Now let’s count n1, n2, n3.

n1 = 20, because anyone of the 20 people
could be the chair.

n2 = 19, because after e1, one person is se-
lected as the chair, so there are 20 − 1 = 19
candidates for the secretary.

n3 = 18, because after e1, e2, one person is
selected as the chair and another is the secre-
tary, so there are 20 − 2 = 18 candidates for
the treasurer.

Then using the multiplication rule, the number
is 20× 19× 18 = 6840.
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Ex4: We have k balls and n baskets. n >

k. We randomly put each ball in one of the
baskets. Balls are allowed to share a basket.
Find the probability that no basket has more
than one ball.

Solution: First the size of the sample space is
nk, because the first ball can be in any one of
the n baskets and the same is true for other
balls. Let A = the event that no basket has
more than one ball. This is an equally likely
outcomes model, so P (A) = |A|

nk
, |A| is the

number of outcomes in A.

If A happens, then the first ball can be in any
one of the n baskets; the second ball must be
in one of the rest n− 1 baskets; the third ball
must be in one of the rest n−2 baskets, and so
on. The kth ball must be in one of the n−k+1
baskets. So the number of outcomes in A is
n × (n − 1) × · · · × (n − k + 1). Then P (A) =
n×(n−1)×···×(n−k+1)

nk
= (1 − 1

n)(1 − 2
n) · · · (1 −

k−1
n ).
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Ex5: The Birthday Problem There are 62

students are in a classroom. I bet a dollar that

there must have two students in this class-

room who have the same birthday. What is

the chance that I win a dollar?

I claim that the chance is about 99.5%.

How do I get this number? It is an application

of Ex4. Consider 62 students are 62 ”balls”

that are randomly assigned to 365 days (”bas-

kets”). What is the complement of the event

that at least two students have the same birth-

day? It is the event that no one day (”bas-

ket”) has two students (”balls”). By Ex4 we

know its probability is (1− 1
365)(1− 2

365) · · · (1−
62−1
365 ) = 0.005 (note n = 365 and k = 62).

Then using the formula P (A) = 1 − P (Ac) we

see the desired probability is 1−0.005 = 0.995.
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2. Permutations

Fact 1: The number of distinct arrangements
of n objects in a sequence is denoted by Pn,n

and

Pn,n = n× (n− 1)× (n− 2) · · · × 2× 1.

We also write the right hand side as n!.

Remark 1: Consider fact 1 as a generalized
version of Ex2 on page 4 in which there are
n = 3 objects. By the fact, the number in Ex2
is P3,3 = 3! = 3× 2× 1 = 6 which agrees with
our previous calculation.

Fact 2: The number of distinct arrangements
of k objects from n available objects in a se-
quence is denoted by Pn,k and

Pn,k = n× (n− 1)× (n− 2) · · · × (n− k + 1).

where 1 ≤ k ≤ n.

Remark 2: Fact 2 is a further generalization
of fact 1. Note that Pn,k = n!

(n−k)!.
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Explanation of Facts 1 & 2

We only derive fact 2 since it covers fact 1
when k = n. The derivation is very similar to
the solution of Ex2.

Consider k sequential experiments. e1 = select
an object to fill the first position, e2 =select
an object to fill the second position and so
on. ek=select an object to fill the kth po-
sition. The experiment is a composition of
e1, e2, . . . , ek.

n1 = n because anyone of the 20 people could
be the chair.

n2 = n − 1, because after e1, there are n − 1
candidates for the second position.

Likewise, nk = n− k + 1.

Then using the multiplication rule, the number
is n× (n− 1)× · · · × (n− k + 1).
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3. Combinations

Suppose there is a set of n objects from which

we choose k objects to form a subset. We want

to determine the number of different subsets

that can be chosen. We use Cn,k to denote

that number.

Note that we don’t care about the sequence or

order in the subset. No two subsets will consist

of exactly the same elements.

Fact 3: Cn,k =
Pn,k
k! = n!

k!(n−k)!.

For example, C6,3 = 6!
3!(6−3)! = 1×2×3×4×5×6

(1×2×3)2 =

20.

Note that we also write Cn,k =
(
n
k

)
.
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Derive Fact 3

Given a combination, we can permute the k

elements to get a sequence. There are k! ways

to arrange the k elements. Since there are Cn,k

combinations, we know there are Cn,k×k! ways

to form a sequence of k elements. But Fact 2

tells us that there are Pn,k such sequences. We

count the same number using two meth-

ods, they should agree with each other.

Thus we have an equation

Cn,k × k! = Pn,k

So Cn,k =
Pn,k
k! . Note Pn,k = n!

(n−k)!, then we

have Cn,k = n!
k!(n−k)!.
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Ex1: Suppose that a committee composed of
8 people is to be selected from a group of
20 people. The number of different groups
of people that might be on the committee
C20,8 = 20!

8!(20−8)! = 20!
8!12! = 125970.

Ex2: How many committees with 2 Repub-
licans, 2 Democrats and 3 Independents can
be formed from a group of 6 Republican, 5
Democrat and 4 Independent senators?

Solution:

e1 = select 2 Rs from 6 R candidates, n1 =
(

6
2

)
e2 = select 2 Ds from 5 D candidates, n2 =

(
5
2

)
e3 = select 3 INDs from 4 IND candidates,
n3 =

(
4
3

)
The committee selection is a composition of
e1, e2, e3. So the number is n1 × n2 × n3 =(

6
2

)
×
(

5
2

)
×
(

4
3

)
= 600.
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Ex3: Suppose a fair coin is tossed 10 times.

Compute the probability of (a) obtaining ex-

actly 3 heads; (b) obtaining 3 or fewer heads.

Solution: The number of possible outcome in

each tossing is 2, so the size of the sample

space is 210.. ”A fair coin” means the probabil-

ity model is an equally-likely-outcomes model.

(a) Let A3 = the event that we have exactly

3 heads. We select 3 out of 10 tosses to let

their outcomes be ”Head”. So the size of A3

is C10,3 or
(

10
3

)
. So P (A3) =

(10
3 )

210 = 0.1172.

(b) Let B be the event that we have 3 or fewer

heads. Also let A2 be the event that we have

exactly 2 heads, A1 be the event that we have

exactly 1 head and A0 be the event that we

have no head. Then

B = A3 ∪A2 ∪A1 ∪A0.
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From (a) we know P (A3) =
(10

3 )
210 . By the

same arguments in (a) we find P (A2) =
(10

2 )
210 ,

P (A1) =
(10

1 )
210 and P (A0) =

(10
0 )

210 thus

P (B) =

(
10
3

)
210

+

(
10
2

)
210

+

(
10
1

)
210

+

(
10
0

)
210

= 0.1719.
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4. The Partition Formula

Motivation example: Suppose we want to

divide 12 Bridge players into 3 rooms to play

the game, what is the number of all possible

arrangements?

Solution: To arrange room 1, we need to choose

4 players from 12 players. So there are
(

12
4

)
ways. Then we have 8 players left. To arrange

room 2, we need to choose 4 players from 8

players. So there are
(

8
4

)
ways. The rest 4

players are put in room 3. By the multiplica-

tion rule, we desired number is
(

12
4

)
×
(

8
4

)
×1 =

34650.

This is an example of the partition problem.
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4. The Partition Formula, contd’

In general, suppose we need to divide (par-

tition) n objects into r groups. Let nj be

the size of group j, j = 1,2, . . . , r such that

n1+n2+· · ·+nr = n. We denote by
(

n
n1,n2,...,nr

)
the number of possible partitions.

Fact 4:( n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
.

To illustrate the partition formula, let’s go back

to the Bridge players example in which n = 12

and n1 = n2 = n3 = 4. So the number is(
12

4,4,4

)
= 12!

4!4!4! = 34650.

17



Derive Fact 4

The derivation is basically given in the Bridge

players example. Sequentially, we let ej be the

experiment to form group j, 1 ≤ j ≤ r. Then

the partition is a composition of experiments

e1, . . . , er. There are
(
n
n1

)
ways to form group 1.

Then from n−n1 objects we choose n2 objects

to form group 2, there are
(
n−n1
n2

)
ways. Keep

using similar arguments, there are n−n1−n2−
· · ·−nr−2 objects left to form group r−1. After

group r−1, there are n−n1−n2− · · ·−nr−2−
nr−1 = nr objects left and there is just one way

to form group r. So the number is
(
n
n1

)(
n−n1
n2

)
×(

n−n1−n2
n3

)
× · · · ×

(
n−n1−n2−···−nr−2

nr−1

)
× 1. Using

the equation
(
n
k

)
= n!

k!(n−k)! we can simply the

expression and get the formula in Fact 4.
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Example: How many distinct arrangements

can be formed from the letters “m,i,s,s,i,s,s,i,p,p,i”?

Solution: We have 11 letters. Each arrange-

ment is a partition: we need to find 1 position

for ”M”, 4 positions for ”I”, 4 positions for

”S”, 2 positions for ”P”.

Using the partition formula, the number is( 11

1,4,4,2

)
=

11!

1!4!4!2!
= 34650.
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5. Binomial and Multinomial Coefficients

Binomial Theorem:

(x + y)n =
n∑

k=0

(n
k

)
xkyn−k.

Because of the theorem,
(
n
k

)
is also called bi-

nomial coefficients.

For example,

(x + y)2 =
(2
0

)
x0y2−0 +

(2
1

)
x1y2−1 +

(2
2

)
x2y2−2

= y2 + 2xy + x2

A special case: Let y = 1− x,

1 =
n∑

k=0

(n
k

)
xk(1− x)n−k.

This identity is related to the binomial distri-

bution.
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Multinomial Theorem:

(x1 + x2 + · · ·+ xk)n

=∑
n1+n2+···+nk=n

(
n

n1,n2,...,nk

)
x
n1
1 x

n2
2 · · ·x

nk
k .(

n
n1,n2,...,nk

)
is called multinomial coefficients.

A special case: Let x1 + x2 + . . . + xk = 1,
then

1 =
∑

n1+n2+···+nk=n

( n

n1, n2, . . . , nk

)
x
n1
1 x

n2
2 · · ·x

nk
k .

This identity is is related to the multinomial
distribution.

Example: What is the coefficient of x2y3 in
the expansion of (1 + x + y)100?

Solution: Consider x1 = 1, x2 = 2, x3 = y.
n = 100, n2 = 2, n3 = 3. So n1 = n−n2−n3 =
100 − 2 − 3 = 95. Then by the multinomial
theorem the coefficient is

(
100

95,2,3

)
= 485100.
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