
Random Variable: A random variable is a

real-valued function defined on a sample space.

Discrete Random Variable: When the possi-

ble values of a random variable are countable,

then we say the random variable is a discrete

random variable.

It is relatively easier to understand discrete

random variables. Note that countable means

that either the set has finite many elements or

we can establish a one-one correspondence be-

tween the elements and the integers 1,2,3, . . ..

So we can list all the elements in the countable

set one by one.

For example, an infinite-countable-many set

usually has the form

{a1, a2, a3, . . . , ak, . . . , }.
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Notation

1. We use ω to denote the outcome in the

sample space S.

2. Uppercase letters are usually used to denote

random variables. For example, X is a random

variable. We use lowercase letter x to denote

the value of X.

3. We use X to denote the collection of the

possible values of the random variable X. So

X = {X(ω), ω ∈ S}.

4. If there are more than two random variables,

like X and Y , then we add a subscript like XX

XY to distinguish them.

5. Often we use the abbreviation r.v. instead

of random variable.
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Discrete Random Variable Defined on a

Finite Sample Space

Let us consider a finite sample space.

S = {ω1, ω2, . . . , ωn}.

Let X be a random variable on S, which means

that X is a real-valued function whose argu-

ments are ωs in S.

Let xi = X(ωi) for i = 1,2, . . . , n. Then

X = {x1, x2, . . . , xn}.

Note that it is ok to have some xis that are

the same.

Any well-defined rule can be used to define a

random variable X on S. We see some exam-

ples in the next few pages.
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Examples of Discrete R.V.

Ex1: Toss a coin. S = {H,T}.

Let X(T ) = 1 and X(T ) = 0 then we define a

r.v. X. X = {1,0}.

Ex2: Roll a die. S = {1,2,3,4,5,6}.

Let X(i) = i for i = 1,2,3,4,5, ,6. XX =

{1,2,3,4,5,6}.

Or we can define another r.v. Y by Y (1) =

Y (3) = Y (5) = 1 and Y (2) = Y (4) = Y (6) =

0. XY = {1,0}. In this example we see different

arguments could give the same value to Y .

Ex3: Toss 2 coins.

S = {(H,H), (H,T ), (T,H), (T, T )}.

Let X be the number of heads. Then X((H,H)) =

2, X((H,T )) = X((T,H)) = 1, X((T, T )) = 0.

X = {2,1,0}.
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Probability Function

Since the argument of the random variable X

is random, the value of X is random too. It

is natural to ask what is the probability that

the value of X is equal to x? (x is some real

number).

Probability Function: Probability function (p.f.)

of the discrete random variable X is defined as

f(x) = Pr(X = x) =
∑

ω:X(ω)=x

p(ω).

p(ω) is the probability distribution on the finite

sample space.

We use probability function f(x) to describe

the distribution of X.

If A is a subset of X then

Pr(X ∈ A) =
∑

xi∈A
f(xi).
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In Ex1, f(1) = Pr(X = 1) = p(H) = 0.5 and

f(0) = Pr(X = 0) = p(T ) = 0.5.

In Ex2, Pr(X = i) = p(i) = 1
6. i = 1,2,3,4,5,6.

Pr(Y = 1) = p(1) + p(3) + p(5) =
1

2
,

Pr(Y = 0) = p(2) + p(4) + p(6) =
1

2
.

In Ex3, f(2) = Pr(X = 2) = p((H,H)) = 1
4

and f(1) = Pr(X = 1) = p((H,T ))+p((T,H)) =
1
4 + 1

4 = 1/2, f(0) = Pr(X = 0) = p((T, T )) =
1
4.

Ex4: Roll 2 dice. Let X be the sum of the two

numbers. Find Pr(X = 5)? Solution: f(5) =

Pr(X = 5) = p((4,1)) + p((1,4)) + p((3,2)) +

p((2,3)) = 4
36 = 1

9.
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Three Common Discrete Distributions

Let x1, x2, . . . , xk be distinct real numbers. If

we have a function f(x) such that

f(xi) ≥ 0,

for all i = 1,2, . . . , n, and

n
∑

i=1

f(xi) = 1.

Then f can be a probability function of X

which takes value from X = {x1, x2, . . . , xk}.

Ex1: X takes value from {1,0}. Let Pr(X =

1) = f(1) = p and Pr(X = 0) = f(0) = 1 −
p = q. Then We say X is a Bernoulli random

variable whose probability of success is p. We

write X ∼ Ber(p).
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Ex2: Let X = {0,1,2, . . . , n}. Take a positive

real number p, 0 < p < 1. Let

f(k) =
(n

k

)

pk(1− p)n−k.

By Binomial theorem we check

n
∑

k=0

f(k) =
n
∑

k=0

(n

k

)

pk(1−p)n−k = (p+1−p)n = 1.

Thus we can use {f(k)} to define a distribu-

tion. We say X is a binomial random vari-

able with parameters (n, p) if X takes value

from {0,1,2, . . . , n} and Pr(X = k) = f(k) =
(

n
k

)

pk(1− p)n−k. We write X ∼ Bin(n, p).

Ex3: We say X is a uniform random variable

on {x1, x2, x3, . . . , xk} if Pr(X = xi) = f(xi) =
1
k for i = 1,2, . . . , k.

Remark: Two random variables can have the

same distribution.
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Some Bernoulli examples: 1. In a state gov-

ernor election voters vote for two candidates,

R and D. Randomly pick a voter, let X = 1 if

the voter votes for R and X = 0 if the voter

votes for D. Then X is a Bernoulli random vari-

able. What is the probability of success p? p
should be the probability that a randomly se-

lected voter votes for R.

p =
# of voters for R

# of all voters
.

2. Let A be some event. We define a random

variable X as follows

X(ω) =

{

1 if ω ∈ A
0 otherwise

X is a Bernoulli random variable. Its probability

of success is

p = Pr(X = 1)

=
∑

ωi:X(ωi=1)

p(ωi)

=
∑

ω∈A
p(ωi) = p(A).
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Some Binomial examples: 1. Toss a biased

coin 100 times p(H) = 0.6 p(T ) = 0.4. Let X

be the number of heads in 100 tosses.

Pr(X = k) =
(100

k

)

0.6k0.4100−k.

So X ∼ Bin(100,0.6).

2. Let X be the number of women in a Jury.

n = 12. X takes value from {0,1,2, . . . ,12}.
Let p be the probability that a random chosen

person is a woman and 1−p be the probability

that a random chosen person is a man. Then

Pr(X = k) =
(12

k

)

pk(1− p)12−k.

So X ∼ Bin(12, p).

What is p? p is the percentage of women in

the district.
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Some Uniform r.v. examples: 1. Roll a die.

f(k) = 1
6, k = 1,2,3,4,5,6.

2. The last digit of your SSN. It is uniformly

distributed on {0,1,2,3,4,5,6,7,8,9}.

Normalizing constant: Suppose that X has

probability function

f(x) =
c

x2
, x = 1,2,3,4,5

Find the value of the constant c.

Solution: Since f is a p.f. we must have

1 =
∑

x
f(x) =

5
∑

x=1

c

x2
.

Thus c = (
∑5

x=1
1
x2

)−1 = 0.683.

Remark: c is often called the normalizing con-

stant of the distribution. In some applications

we know the probability function upto a con-

stant. Then a practically important question

is to compute the value of that constant, as

we did in the above example.
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Distribution Functions

We start with the discrete random variables.

Definition: Let X be a discrete random vari-

able. X = {x1, x2, x3, . . . , } and x1 < x2 < x3 <

. . .. The distribution function of X is given by

F (x) = Pr(X ≤ x) for −∞ < x < ∞

Note that in terms of the probability function

of X

F (x) =
∑

xi:xi≤x

f(xi).

Sometimes we also call F (x) the CDF of X.
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Example

Suppose x1 = 0, x2 = 1, x3 = 2, x4 = 3. f(x1) =
1
8, f(x2) = 2

8, f(x3) = 2
8, f(x4) = 3

8. f is the

p.f. of X. Let’s compute the distribution func-

tion of X.

F (−1) = 0.

F (0) = f(x1) = 1
8, F (0.5) = f(x1) = 1

8.

F (1) = f(x1) + f(x2) = 3
8, F (1.5) = f(x1) +

f(x2) = 3
8.

F (2) = f(x1) + f(x2) + f(x3) = 5
8, F (2.5) =

f(x1) + f(x2) + f(x3) = 5
8.

F (3) = f(x1) + f(x2) + f(x3) + f(x4) = 1,

F (3.25) = f(x1) + f(x2) + f(x3) + f(x4) = 1.
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The above figure shows the sketch F (X). Form
the graph we can see that F (x) has three prop-
erties. If x1 < x2 then F (x1) ≤ F (x2). ”=” can
be taken. In the graph F (1) = F (1.5) = 3/8.

1. F (x) is nondecreasing as x increases.

2. F (x) is continuous from the right at every
x. F (x) = limδ>0,δ→0 F (x+ δ).

3. limx→−∞ F (x) = 0, limx→∞ F (x) = 1.
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Continuous Random Variable and pdf

Definition: X is a continuous random variable
if there exists a nonnegative function f(x) de-
fined for all x ∈ (−∞,∞) such that for every
set A in the real line R

Pr(X ∈ A) =
∫

A
f(x)dx

f(x) is called the probability density function
(pdf) of X.

On the other hand, if we have a function f(x)
such that f(x) ≥ 0 for all x and

∫∞
−∞ f(x)dx =

1, then f(x) is a legitimate pdf of a continuous
random variable.

Remarks:

1. connection between CDF and pdf:

F (x) =
∫ x

−∞
f(t)dt f(x) =

dF (x)

dx
.

2. P (a ≤ X ≤ b) =
∫ b
a f(x)dx, P (X = a) =

∫ a
a f(x)dx = 0.
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Ex1: Uniform distribution on (a, b).

We say X is a uniform random variable on the

interval (a, b) if its pdf is given by

f(x) =

{

1
b−a a < x < b

0 otherwise

We write X ∼ Unif(a, b).

We check (1). f(x) ≥ 0 and (2).
∫ ∞

−∞
f(x)dx

=
∫ a

−∞
0dx+

∫ b

a

1

b− a
dx+

∫ ∞

b
0dx

= 0+ 1+ 0 = 1.

Therefore we know the defined f(x) is a legit-

imate pdf.
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Ex2: Suppose X ∼ Unif(0,10). Find (a).

P (X < 3), (b). P (X > 7), and (c). P (1 <

X < 6).

Solution: Since X ∼ Unif(0,10), we know

f(x) =

{

1
10 0 < x < 10

0 otherwise

(a).

P (X < 3) =
∫ 3

−∞
f(x)dx =

∫ 3

0

1

10
dx = 0.3

(b).

P (X > 7) =
∫ ∞

7
f(x)dx =

∫ 10

7

1

10
dx = 0.3

(c).

P (1 < X < 6) =
∫ 6

1
f(x)dx =

∫ 6

1

1

10
dx = 0.5
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Ex3: The pdf of a r.v. X is

f(x) =

{

cx 0 < x < 4
0 otherwise

Find the value of c and compute P (1 ≤ X ≤ 2).

Solution: f(x) must satisfy the following con-

dition

1 =
∫ ∞

−∞
f(x)dx

thus we establish the following equation

1 =
∫ 4

0
cxdx =

1

2
cx2|40 =

1

2
c42 −

1

2
c02 = 8c

So c = 1
8. Then we have

P (1 ≤ X ≤ 2) =
∫ 2

1

x

8
dx

=
1

16
x2|21

=
1

16
22 −

1

16
12

=
3

16
.
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Ex4: If a r.v. X has CDF

F (x) =

{

1− e−x 0 ≤ x
0 otherwise

Find its pdf and P (1 ≤ X ≤ 2).

Solution: Using f(x) = dF (x)
dx we compute

f(x) =

{

e−x 0 ≤ x
0 otherwise

P (1 ≤ X ≤ 2) =
∫ 2

1
e−xdx

= (−e−x)|21
= −e−2 − (−e−1)

= e−1 − e−2.

Or we can directly use CDF

P (1 ≤ X ≤ 2) = P (X ≤ 2)− P (X ≤ 1)

= F (2)− F (1)

= (1− e−2)− (1− e−1)

= e−1 − e−2.
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Ex5: If f(x) = 1
π

1
1+x2

for −∞ < x < ∞. Find

F (x) and P (−1 < X < 1). Note that f(x) is

the pdf of a Cauchy distribution.

Solution:

F (x) =
∫ x

−∞
f(t)dt

=
∫ x

−∞

1

π

1

1+ t2
dt

=
1

π
arctan(t)|x−∞

=
1

π
arctan(x)−

1

π
arctan(−∞)

=
1

π
arctan(x) +

1

2
.

P (−1 < X < 1) = F (1)− F (−1)

=
1

π
arctan(1)−

1

π
arctan(−1)

=
1

π

π

4
−

1

π

−π

4

=
1

2
.
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Ex6: Standard normal distribution. We say X

is a standard normal random variable if X has

a pdf as follows

f(x) =
1√
2π

e−
x2

2 , −∞ < x < ∞.

We write X ∼ N(0,1). Let’s check f(x) is

a pdf function. Obviously f(x) > 0 for all x.

We only need to verify
∫∞
−∞ f(x)dx = 1. Let

I =
∫∞
−∞ f(x)dx.

I2 =
∫ ∞

−∞
f(x)dx

∫ ∞

−∞
f(y)dy

=
∫ ∞

−∞

∫ ∞

−∞

1

2π
e−

x2+y2

2 dxdy

We now change the variables from (x, y) to

(r, θ) be letting y = r sin(θ), x = r cos(θ) then

x2 + y2 = r2 and

I2 =
∫ ∞

0

∫ 2π

0

1

2π
e−

r2

2 rdrdθ

=
∫ 2π

0
dθ

1

2π
(−e−

r2

2 )|∞0 =
∫ 2π

0
dθ

1

2π
= 1.

So I = 1.
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The above figure shows the plot of the density

function of standard normal.

Normal distribution has countless applications.

It is perhaps the most important and useful

distribution. We will study its properties in

the later part of this course.
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Compute the Density of a Transformed

Random Variable

Suppose X is a r.v. whose pdf is f(x) and

we know f(x). We can construct a new r.v.

Y from X through a function g, that is, Y =

g(X). For example, X ∼ Unif(0,1) and Y =

g(X) =
√
X. Then the question is how do we

compute the pdf of the new r.v. Y ?

To handle this question we consider two kinds

of transformations.

Case 1. There is an inverse function g−1 such

that X = g−1(Y ).

Case 2. The inverse function of g does not

exist.
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Case 1: inverse function exists

Theorem: Let Y = g(X) and fX(x) is the pdf

of X. Suppose g−1 exists and g−1 is differ-

entiable. Then the pdf of Y is fY (y), given

by

fY (y) = fX(g−1(y))|
dg−1(y)

dy
|.
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Ex1: X ∼ Unif(0,1) and Y = g(X) =
√
X.

fX(x) =

{

1 0 < x < 1
0 otherwise

In this example, the inverse function g−1 exists

and X = Y 2, g−1(y) = y2. dg−1(y)
dy = 2y. Using

the theorem,

fY (y) = fX(g−1(y))2y

fX(g−1(y)) =

{

1 0 < g−1(y) < 1
0 otherwise

fY (y) =

{

2y 0 < y2 < 1
0 otherwise

fY (y) =

{

2y 0 < y < 1
0 otherwise
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Ex2: X ∼ Unif(0,1) and Y = g(X) = −log(X)
2 .

In this case, g−1 exists and X = e−2Y , g−1(y) =

e−2y. dg−1(y)
dy = −2e−2y. Using the theorem,

fY (y) = fX(g−1(y))| − 2e−2y|

fX(g−1(y)) =

{

1 0 < g−1(y) < 1
0 otherwise

fY (y) =

{

2e−2y 0 < e−2y < 1
0 otherwise

fY (y) =

{

2e−2y y > 0
0 otherwise
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Case 2: inverse function does not exist

Ex3: X ∼ N(0,1) and Y = X2. In this case

we use CDF to compute the pdf.

Y takes value from [0,∞). Pick any y ≥ 0,

FY (y) = P (Y ≤ y) = P (X2 ≤ y)

= P (−√
y ≤ X ≤ √

y)

= FX(
√
y)− FX(−√

y)

dFY (y)

dy
=

d(FX(
√
y)− FX(−√

y))

dy

= fX(
√
y)

1

2
√
y
− fX(−√

y)
−1

2
√
y

=
1

2
√
y
[fX(

√
y) + fX(−√

y)]

Note that we used the chain rule to compute

the derivative. Substituting fX(x) = 1√
2π

e−
x2

2

into the above equation,

fY (y) =
1

√
2πy

e−
y
2 y ≥ 0.
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Discrete Joint Distributions

Joint Probability Function: Consider a pair

of discrete random variables (X,Y ). For every

point (x, y) we let

f(x, y) = Pr(X = x, Y = y).

We say f(x, y) is the joint p.f. of (X,Y ).

Clearly, if x0 or y0 is not one of the possible

values of X or Y then f(x0, y0) = 0.

Let X and Y denote the all possible values of

X and Y , respectively. Then we must have the

identity:

1 =
∑

x∈X ,y∈Y
f(x, y).

For each subset A in the xy-plane,

Pr((X,Y ) ∈ A) =
∑

(x,y)∈A
f(x, y)
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Example: a table of probabilities

Suppose the joint p.f. of (X,Y ) is specified in

the following table

Y
X 0 1 2 3 4
0 0.08 0.07 0.06 0.01 0.01
1 0.06 0.10 0.12 0.05 0.02
2 0.05 0.06 0.09 0.04 0.03
3 0.02 0.03 0.03 0.03 0.04

Determine (a) P (X = 2); (b) P (X = Y ); (c)

P (X ≤ 2, Y ≤ 2); (d) P (Y = 3).

Solution:

P (X = 2) =
∑

x=2,y

f(x, y) =
4
∑

y=0

f(2, y)

= 0.05+ 0.06+ 0.09+ 0.04+ 0.03

= 0.27.
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P (X = Y ) =
∑

x=y
f(x, y) =

3
∑

i=0

f(i, i)

= 0.08+ 0.10+ 0.09+ 0.03

= 0.30.

P (X ≤ 2, Y ≤ 2) =
∑

x≤,y≤2

f(x, y)

=
2
∑

x=0

2
∑

y=0

f(x, y)

= 0.08+ 0.07+ 0.06

+0.06+ 0.10+ 0.12

+0.05+ 0.06+ 0.09

= 0.69.

P (Y = 3) =
∑

x,y=3

f(x, y) =
3
∑

x=0

f(x,3)

= 0.01+ 0.05+ 0.04+ 0.03

= 0.13.

31



Continuous Joint Distributions

Joint Probability Density Function: Con-

sider a pair of continuous random variables

(X,Y ). The joint pdf of (X,Y ) is a bivariate

function f(x, y) satisfying two conditions:

1. f(x, y) ≥ 0

2.
∫∞
−∞

∫∞
−∞ f(x, y)dxdy = 1.

Let A be some region, and denote P (A) =

P ((X,Y ) ∈ A).

P (A) =
∫∫

A
f(x, y)dxdy.
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Ex.1

The joint pdf of (X,Y ) is given by

f(x, y) =

{

1 if 0 < x < 1,0 < y < 1
0 Otherwise

Compute Pr((X − 1)2 + Y 2 ≤ 1).

Solution: Let A = {(x, y) : (x− 1)2 + y2 ≤ 1}

Pr((X − 1)2 + Y 2 ≤ 1) =
∫∫

A
f(x, y)dxdy

=
∫∫

A∩[0,1]2
1dxdy

= Area of(A ∩ [0,1]2)

=
π

4

A ∩ [0,1]2 means the intersection of A and

[0,1]2. Similarly, P (0 < X < 0.5) = 0.5. (check

this yourself)

Geometry and symmetry are very useful when

dealing with uniform distributions.
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The above figure shows the region A for the

double integral in Example 1 and Example 2.
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Ex.2

The joint pdf of (X,Y ) is given by

f(x, y) =

{

e−x−y if 0 < x,0 < y
0 Otherwise

Find P (X + Y ≤ a).

Solution:

P (X + Y ≤ a) =
∫∫

x+y≤a
f(x, y)dxdy

=
∫ a

0
dx[

∫ a−x

0
dye−x−y]

=
∫ a

0
dx[e−x − e−a]

= (−e−x − e−ax)|a0
= 1− e−a(1 + a)

We often need to compute the double integral

by a process of repeated single integrations.

Question: Let Z = X + Y , what is the CDF

of Z? and what is its pdf? Hint: P (Z ≤ a) =

P (X + Y ≤ a).
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Ex.3

Suppose the joint pdf of (X,Y ) is given by

f(x, y) =

{

4xy if 0 < x < 1,0 < y < 1
0 Otherwise

Let Z = XY . Find P (Z ≤ a) and pdf of Z.

Solution:

P (Z ≤ a) =
∫∫

0<x<1,0<y<1,xy≤a
4xydxdy

=
∫ a

0
dx[

∫ 1

0
dy4xy] +

∫ 1

a
dx[

∫ a
x

0
dy4xy]

=
∫ a

0
dx[2x] +

∫ 1

a
dx[

2a2

x
]

= a2 − 2a2 ln(a)

Since FZ(a) = P (Z ≤ a)

fZ(a) =
dP (Z ≤ a)

da
= −4a ln(a)
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The above figure shows the region A for the

double integral in Example 3 and Example 4.
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Ex.4

Suppose (X,Y ) has the joint pdf

f(x, y) =

{

x+ y if 0 < x < 1,0 < y < 1
0 Otherwise

Let Z = X + Y . Find FZ(a) = P (Z ≤ a) for

0 < a < 1.

Solution:

P (X + Y ≤ a) =
∫∫

0<x,0<y,x+y≤a
x+ ydxdy

=
∫ a

0
dx[

∫ a−x

0
dy (x+ y)]

=
∫ a

0
dx[(a− x)x+

1

2
(a− x)2]

=
∫ a

0
dx[

a2 − x2

2
]

= [
a2

2
x−

1

6
x3]|a0 =

a3

3
.
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Bivariate Distribution Functions

Definition: The joint distribution function or

joint d.f. (or CDF) of (X,Y ) is defined as

F (x, y) = Pr(X ≤ x, Y ≤ y),

−∞ < x < ∞, −∞ < y < ∞.

Properties: If (X,Y ) has a continuous joint

p.d.f f(x, y) then

F (x, y) =
∫ y

−∞

∫ x

−∞
f(r, s)drds.

f(x, y) =
∂2F (x, y)

∂x∂y
.

FX(x) = Pr(X ≤ x)

= lim
y→∞Pr(X ≤ x, Y ≤ y)

= lim
y→∞F (x, y).

Likewise, FY (y) = lim
x→∞F (x, y).
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Ex.5

Suppose that the joint p.d.f of (X,Y ) is

f(x, y) =

{

1
8(x+ y) if 0 < x < 2,0 < y < 2

0 Otherwise

Compute (a). F (x, y) and (b). Pr(0.5 < X <

1.5,0.5 < Y < 1.5).

Solution: (a). We first consider the case when

0 < x < 2 and 0 < y < 2.

F (x, y) =
∫ y

−∞

∫ x

−∞
f(r, s)drds

=
∫ y

0

∫ x

0

1

8
(r + s)drds

=
∫ y

0
[
1

8
(
1

2
r2 + sr)|x0]ds

=
∫ y

0
[
1

16
x2 +

1

8
sx]ds

=
1

16
x2y +

1

16
y2x

=
1

16
xy(x+ y).
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If x ≥ 2, y ≥ 2, F (x, y) = P (X ≤ x, Y ≤ y) = 1.

If x < 0, y < 0, F (x, y) = P (X ≤ x, Y ≤ y) = 0.

If 0 < x < 2, y ≥ 2,

F (x, y) = P (X ≤ x, Y ≤ y)

= P (X ≤ x, Y ≤ 2)

= F (X,2)

=
1

16
x2(x+2) =

1

8
x(x+2).

If x ≥ 2,0 < y < 2,

F (x, y) = P (X ≤ x, Y ≤ y)

= P (X ≤ 2, Y ≤ y)

= F (2, y)

=
1

16
2y(2 + y) =

1

8
y(y +2).
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Solution (b).

Pr(0.5 < X < 1.5,0.5 < Y < 1.5)

= P (0.5 < X < 1.5, Y < 1.5)

−P (0.5 < X < 1.5, Y < 0.5)

= [P (X < 1.5, Y < 1.5)− P (X < 0.5, Y < 1.5)]

−[P (X < 1.5, Y < 0.5)− P (X < 0.5, Y < 0.5)]

= [F (1.5,1.5)− F (0.5,1.5)]−
[F (1.5,0.5)− F (0.5,0.5)]

By (a) we can compute

F (1.5,1.5) =
1

16
1.5×1.5(1.5+1.5) = 0.421875

F (1.5,0.5) =
1

16
1.5×0.5(1.5+0.5) = 0.09375

F (0.5,1.5) =
1

16
0.5×1.5(0.5+1.5) = 0.09375

F (0.5,0.5) =
1

16
0.5×0.5(0.5+0.5) = 0.015625

Pr(0.5 < X < 1.5,0.5 < Y < 1.5) = 0.25.
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