Marginal Distribution and Marginal Den-
sity: (X,Y) has the joint pdf f(x,y). The
marginal density functions of X and Y are given
by

fx@ = [ @ yady.
W= [ J@yada.

Explanation: We can actually derive the above
equations. Take an arbitrary a and consider the
region A = {(z,y) : ¢z < a}.

P(A) = P(X <a) = Fx(a). But we know

P(A) = [[ S ydedy= [ dal[ " dyf(a,y)]
Let g(z) = [ dyf(x,y). Then
Fy(a) = /_a dzg(z) for all possible a

which implies fx(z) = g(z) = [, dyf(z,y).
Similarly, we prove fy(y) = [22 f(z,y)dx.
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Ex.1

Suppose the joint pdf is given by
15 22 -+ y2 <1

Hey) = { 0 Otherwise

We compute the marginal density fy(y). If
ly| > 1 then f(x,y) =0 for all «

fy(y) = /OO f(z,y)dzr = /OO Odz = 0.

— O — 0

If ly| <1 then f(z,y) =0 for |z| > /1 — 3?2

00 Vi-y? 1 21/1 — 42
)= [ fawde= " de= T

So

\/ 2
2V 1-y* if —1<y<1

fr(y) = { 0 " Otherwise

Similarly, fx(z) = 217_332 if —1<z<1
| 0 Otherwise

Note the marginal is not uniform!



Indicator Functions

1 if argument is true

I(argument) = { O if argument is false

For example, in Ex.1

fay) = 12 +y% < 1)

J1 — 22

fx@) =21 <2 < 1)
a2

) =<y <)

Note that

I0<x<1l0<y<1l)=I0<z<1)I(0O<y<11)

and in general,

I(argument 1)I(argument 2)
= I(arguments 1 and 2)



Ex.2

Suppose the joint pdf is given by

1 _2?+y?
flay) = 2

T
We compute the marginal density fx(x).

oo

Ix(@) = [ flzy)dy

0o 1 x4y g
— _ 2
,/) o J

Likewise, fy(y) = e 2. So X and Y are

N(0, 1).



Independent Random Variables

Definition: We say X and Y are independent,
if for every two sets A and B of real numbers,

P(XeAYeB)=P(XeAP(Y € B).

Remark 1: Suppose (X,Y) has a continuous
joint pdf f(xz,y). Suppose the marginal densi-
ties of X and Y are fx(z) and fy(y). Then X
and Y are independent if and only if

f(z,y) = fx(x)fy(y) for all pairs of (X,y).

Remark 2: Suppose (X,Y) has a discrete joint
pf f(x,y). Then X and Y are independent
if and only if

flz,y) = fx(x)fy(y) for all pairs of (x,y).

where fy(x) and fy(y) are the probability func-
tion (p.f.) of X and Y.




In Ex.1, we claim X and Y are not independent,
because

2 2. 4/1/3y1/3 4
fX(\/;)fY(\/;): V WQ\/ =35

But f(\/g, \/g) =0

In ExX.2, we have

1 2
fX(af):\/%e_7
1 2
Frw) = =%
2 o0
Fe @ () = o5 L % L s

= —e
V2T V2T 27

Therefore we checked for every pair (x,vy)

fx(@) fy(y) = f(z,y)

which means X and Y are independent.



Factorization T heorem

If we can find two univariate functions h(x) and
g(y) such that

(x)  f(z,y) = g1(x)g92(y),
then X and Y are independent.

Note that if X and Y are independent, then

f(x,y) = fx(x)fy(y). So the condition (*)
does hold, because we let g1(x) = fx(z) and

g2(y) = fy (y).

The nice thing about Factorization theorem
is that often we can find such a factoriza-
tion of f(x,y) as in (*) without computing the
marginal densities, because g1 (x) is not neces-

sarily fx(z) and go(y) is not necessarily fy(y).



Ex.3

Suppose the joint pdf of (X,Y) is given by

f(z,y) ={

2e T2 if0<z,0<vy
0 Otherwise

Using indicator function, we can write

f(z,y) =2e772Y[(z > 0,y > 0).

We choose g1(x) = 2e %I(x > 0) and g>(y) =
e 2YI(y > 0). Check

g1(x)g2(y)

By Factorization
are independent.

e I(z > 0)e ?YI(y > 0)
2e T2 (z > 0)I(y > 0)
2e T 72Y[(x > 0,y > 0)
f(z,y)

theorem, we know X and Y



Proof of Factorization Theorem

Suppose condition (*) holds for some g1(x) and g>(y).
fx(z) = /_oo f(z,y)dy
= [ a@ewd =06 e

() / " F(ey)da

= / " @) ga(y)dz = g2(y)( / " gi(@)dn)

From 1 = [ [ f(x,y)dzdy we also find
1 = /OO /OO g1(x)g2(y)dzdy
= (| a@ain(| g,

Thus we have

@@ = @) / " ga(m)dy)( / " gi(2)de)
= gi1(x)g2(y) = f(z,y).

So by definition X and Y are independent.
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Conditional pdf

Suppose (X,Y) has a joint pdf f(z,y). The
marginal pdf's of X and Y are denoted by

fx(x) and fy(y).

Take any z, if fx(x) > 0, then we say the
conditional pdf of Y given X =z is

_ = @y
fy (y| X = z) Fe(a)

fy (y|X = x) describes the distribution of Y
when we observe that the value of X is .

Take any y, if fy(y) > 0, then we say the con-
ditional pdf of X given Y =y is

.y f(z,y)
fx(z|Y =y) = )

fx(z|Y = y) describes the distribution of X
when we observe that the value of Y is y.
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For any two sets A and B, P(X € A|Y = y)
means the probability that the value of X is
in A when we observe that the value of Y is
y. P(Y € B|X = z) means the probability that
the value of Y is in B when we observe that
the value of X is x.

We can compute them by

P(X €AY =y) = | fx(alY =y)de
and

P(Y € BIX =) = [ fy(yIX = 2)dy

Important identities:
fx(@)fy (X =2) = f(z,y).
fyWix@lY =y) = f(z,y).
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Ex.1 Independent X and Y

If X and Y are independent, then f(x,y) =
fx (@) fy(y).

_ oy f@y)
_y=f@y .

Therefore, the conditional pdf is exactly the
marginal pdf.

The following statements are equivalent:

1. X and Y are independent

2. f(z,y) = fx(z)fy(y) for all (z,y)

3. fyIX =a) = £28 = fy(y) for all (a,y)

4. fx(ely =y) = L1508 = fx(e) for all (z,y)
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Ex.2

Suppose the joint pdf

1 if 22 +¢y2 <1

fla,y) = { 6 Otherwise

Find fx(z|Y = 0.5).

Solution: We have calculated

) =V1-PI(-1<y < 1)

1 332 . 2
fx(z|Y = 0.5) f(2,0.5) 7I(z=+05°<1)

fr(08)  2/1 052

1
= 51l < V0.75).
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Ex.3

Suppose the joint pdf is given by

_[6(z—y) ifOo<y<z<l1
F(@y) = 0 Otherwise

\

Compute fy(y|X = 0.6).

Solution: First compute fxy(xz = 0.6).

fx(06) = [

0

OOf(0-6,y)dy

0.6
— /O 6(0.6 — y)dy = 1.08

Then by definition of conditional pdf,

f(0.6,y)

fx(0.6)
6(0.6 — y)I(0 <y < 0.6)

fyr(y|X =0.6) =

1.08

(0.6 - y)l(o <y <0.6).

0.18
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Continuous Bayes Theorem

Question: suppose we know the marginal den-
sity of X fx(xz) and the conditional pdf of Y
given X: fy(y|X = z). How to get the condi-
tional pdf of X given Y7 For example, what is

fx(@|Y =1)7

Solution: Let f(x,y) be the joint pdf of X and
Y, then by definition

f(z, 1)

fr(1)

So we need to figure out f(x,1) and fy(1).
We know

fl@,1) = fx(@) fy(y = 1|X = =).

fx(z]Y =1) =

16



Continuous Bayes Theorem, contd’

fr@w) = [ frydr

@ = [
=[xy = 11X =ar
Therefore,
fx(@)fy(y =1|X = z)
Y =1) = .
Pl =) = e Y Gy = 11X = rydr
In general:
fo(aly =y) = flzy) . (=)

@) 2% flry)dr
_ fx (@) fy(y| X = z)

IS fx () fy (W) X = r)dr
The last equality is called continuous Bayes
theorem.
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Ex.4

Suppose that fxy(x) = e *I(x > 0) and the
conditional pdf of Y given X =z is fy (y|X =
x) = xe ¥*I(y > 0). Find (a) fx(z|Y =y) and
(b) P(X > 1]y =1).

Solution: First we write down

fx(@)fy(y| X = =x)
J2% fx () fy (y| X = r)dr

fx(z) =e *I(x > 0).
fy(yIX = 2) = ye~o¥.

fx (@) fy (X = 2) = ze” TV (2 > 0).

fx@]Y =y) =

Then we know

re~(1+¥)z1(4 > 0)
2 re=+YTI(r > 0)dr

fx@]Y =y) =
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/OO re_(1+y)rl(a: > 0)dr

—00
= /OO re~ (1Y g,
0
. 1
(14 y)?
Therefore,
—(I+y)zp(
xe x> 0)
fX(£C|Y — y) — 1

(14y)?
(1+ y)Q:Ue_(l—l_y)xl(x > 0).

(b) By (a) we know

x|y =1) = dze ?%I(z > 0).

0. @)
P(X>1Y =1) = / Fx(z|Y = 1)de
1oo ,
= /1 Adre “Fdx
— 3¢ 2
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Bivariate Transformation

Suppose we have a pair of random variables
(X,Y). We create a new pair of random vari-
ables (U, V) by a bivariate transformation from
(X,Y), that is,

U=g1(X,Y) V=go(X)Y).

Let’'s assume the transformation is one-to-one
and smooth, which means there are hq, ho such
that

X =hi(UV) Y =hy(UYV)

and g1, 9o, h1, ho are differentiable.
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Examples of Bivariate Transformation

Example 1:

U=X+Y V=X-Y

then
X:U—I—V Y:U—V
2 2
Example 2:
2 2 Y
R:\/X +Y © — arctan <})
then

X = Rcos(®) Y = Rsin(©)

21



Jacobian of Bivariate Transformation

Suppose we have the following one-to-one bi-
variate transformation from (X,Y) to (U,V)

U=g1(X,Y) V =g(X,Y).
Assume we can write

X=hUV) Y =h(UYV).
Let

) 9
Oho(t,v)  Oho(uw)
ou ov

The Jacobian of the transformation is denoted
by |detJ|, which is computed by

ohq(u,v) y Oho(u,v) B Ohq(u,v) y Oho(u,v)
ou ov ov ou

{ Ohq1(u,v) 0Oh1(u,v) ]
J =
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Examples of Jacobian Calculation

Example 1:

U=X+Y V=X-Y

then
U+V U-—-V
e _; = h]_(U, V) Y = — h2(U7 V)
Ohy(u,v) 1 Ohy(u,v) 1
ou 2 ov 2
Oho(u,v) 1 Oho(u,v) 1
ou 2 ov -
11 1.1 1
| detJ| = |§§ - (—§)§| =5
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Examples of Jacobian Calculation, contd’

Example 2:

Y
R = \/X2 +Y? © = arctan <}>
then
X = Rcos(©) = h1(R,0©)
Y = Rsin(©) = hy(R, ©)
Think RisU and © is V.

Oh1(r,6) _ cos(6) Ohy(r,0) _ rsin(6)
or 56

Oho(r,6) _ Sin(6) Oho(r,0) _  cos(0)
or o0

|detJ| = | cos(8)r cos(8)— (—rsin(f))sin(0)| =r

24



Joint pdf after bivariate transformation

Suppose we have the following one-to-one bi-
variate transformation from (X,Y) to (U,V)

U=g1(X,Y) V =g(X,Y).

Assume we can write

X=h(UV) Y =h(UYV).
Let fxy denote the joint pdf of (X,Y)
Let fyy denote the joint pdf of (U,V)

Then the joint pdf of (U,V) can be computed
by

fuv(u,v) = fxy(h1(u,v), ho(u,v))|det ]|
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Example 1 and Example 2

Suppose the joint pdf of (X,Y) is f(x,y) =

1 _372+y2

Le T2 . Let (UV) = (X+Y,X-Y) and

(R,©) = (\/X2 + Y2, arctan (%)) Find the joint
pdf of (U,V) and (R,O).

Solution:

u+v\2 U—V\2
’ 2T

N | -

1 _u?+0?
fU,V(UaU):4—€ 4
T

1 (r cos(6))24(rsin(0))2
froe(r,0) = 52 2 r
7T

2

re 2

fro(r6) = r

r>0,—n7<0<m

So R and © are independent. Why? because
of the factorization theorem.
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What are the marginal pdfs of © and R?

£ (6) /oo 1 _gd 1 _§|Oo 1
= —7Te r = —e = —
© 0 27 2T 0 21
7T 2 7“2
fr(r) = / —re " df =re 2
—T LT
What is the marginal pdf of T' = RTQ? R = v4T

27



Joint distribution of n random variables

Notation: n random variables X;:=1,2,...,n
(z1,o,...,zn) is the value of the n-dimensional
random vector (X1, Xo,..., Xpn).

Definition: A joint pdf function f(x1,...,zn)
must satisfy two conditions

1. f(z1,...,2n) 20
2. 20 2 flze,. . ,zn)dzy - - - den = 1.

Let A be some region, and denote P(A) =
P((Xq1,...,Xpn) € A). Then

P(A) = / . ./(:cl,...,mn)eAf(xl’ o, Tp)dxy - - dog,.
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The joint distribution function is

F(xq,...,zn) =Pr(X1 <z1,...,Xn < xn).
w]_ In
F(x1,...,2n) ::L/; ---]/ f(ry,...,rn)dry---drn
— 00 — 00

O"F(x1,...,Zn)

flx1,... an) =

Marginal pdf

The marginal pdf of X1 can be computed by

faG@)= [ [ f..en)ds - don

N :
n—1 dimension

Similarly,

o0 o0
fx, (xn) = / / flx1,...,zn)dxrdrs - dr,_1.
J—o0 —og

—
n—1 dimension

Basically, to find the marginal pdf of X;, we
just take the integral of f(x1,...,zn) With re-
spect to all s except z;.
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The conditional pdf of X; given that X, =

332,...,Xn:$n |S
le(QZ]_‘XQ — XD, ... 7Xn — Qﬁn)
— f(x].aan"'axn)
fgooo f(rlaw27 SR ,CBn)dTl
and

@)
/ f(?“]_,IQ,...,xn)dT‘]_

— 00

gives us the joint pdf of (X5, X3,...,Xn).

The conditional joint pdf of (X1, X5) given

foxy x) (@1, 22| X3 = 23,..., Xn = zn)
— f(x]_amQa'"axn)
220 2 f(re, 0, ..., xn)dridro

and
xO o0
/ / f(ry,ro, ..., xn)dridro
— 0 J —0OO

gives us the joint pdf of (X3,...,Xn).
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Independence

Definition: We say X4, X»o, ..., Xy are inde-
pendent if only if

f(xla o 7wn) — le(xl) e an(mn)

That is, the joint pdf is equal to the product
of the marginal densities.

If X1, Xo, ..., X are independent, then

P(Xl € A1, Xo € As,..., Xy € An)
= P(Xq1 € A1)P(Xp € Ay)--- P(Xp, € Ap)

IID RVs: If X4, X9, ... X, are independent
and have the same distribution, that is, they
have the same pdf. Then we say X, Xo,
... Xp are independent and identically distributed
(i.i.d.) random variables.
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Factorization Theorem: X, Xo, ..., X, are
independent if only if

f(x1,...,2n) = h1(x1) - - hn(zn).

EXx 1: Suppose the joint pdf of (X,Y,Z2) is

etV if0< 2y, 2
f(z,y,2) = { 0 Otherwise

Use the factorization theorem to show they are
independent.

Solution:

f(z,y,2)

e PV I(x >0,y >0,z >0)
e Ye Ye *I(x>0)I(y >0)I(z > 0).

Let hi(x) = e %I(xz > 0) ho(y) = e YI(y > 0)
and h3(z) = e ?I(z > 0). Then
f(z,y,2) = h1(z)ha(y)h3(2)

By the factorization theorem we show X,Y, Z
are independent.
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EX 2: Suppose X,Y,Z are i.i.d. random vari-
ables following standard normal distribution.
Write down the joint pdf of (X,Y, Z2).

Solution: The pdf of standard normal distribu-
tion is
1 52

f)= e 2

Therefore,

fle,y,2) = fx@)fy()fz(2)

1 221 _y 1 22
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Ex 3: Suppose Xq,...,X, are i.i.d. random
variables following Unif(0,a) distribution. Let
X(n) be the maximum of X4, Xo,..., Xyn. Find

Solution: Note that since 0 < X; < a, we know
0 < X(,,) <a. We compute P(X(,y <) for any
givent, 0O <t<a

P(X1 <t)P(Xp2<t) - P(Xn < t)

We used the independence assumption. AIsoO
by the identical distribution assumption, we
know

t t1 t
P(X,; <t)= / f(x)de = | —dx = —
0 0 a a
foreach:=1,2,...,n.
t n
P(X) <t) = <5)
Thus

dP(X(n) < t) . E (t)’n—l

Fx oy () = pn -





