EXxpectation of a discrete random variable

Definition: Suppose X is a discrete random
variable and its probability function (p.f.) is f.
Then the expectation of X, denoted by EFX, is
defined as

EX =) zf(z). (1)

Remark: When X has infinite many possible
values, then EFX is a sum of an infinite series.
There is a technical condition in order to well
define the sum of an infinite series. We only
talk about EX if

> lz|f(z) < oo (2)
If
d lzlf(z) =00 (3)

we say EFX does not exist. In this class, we do
not need to worry about this technical condi-
tion.



Examples

Ex1l: Let A besomeevent and X = I(A occurs).
That is, X =1 if A occurs and X = 0 if not.
Let's compute EX. By the definition of EX,

EX =1-f(1)+0-f(0)=f(1)

We know f(1) = P(X = 1) = P(A). Thus
EX = P(A).

Ex2: Roll a die. Let X be the number we see.
What is £EX7 By the definition of EX,

EX = 1-f(1)+2- f(2)+3-f(3)
+4- (&) +5- f(5) +6 - £(6)

We can assume an equally-likely probability model,
f(i)=¢ 1<i<6.



Ex3

Game of roulette. You bet on 38 numbers:
00,0,1,2,...,36. You win 1 dollar if the num-
ber is odd and lose 1 dollar if the number is
even. Let X be the money you win.

X =1or —1.
18
JO=P(X=1)=_
20
f-) = P(X=-1) =2
18 20 1

EX=1-f(1)+(-1) f(-1)= -~ =—5

You are expected to loss 5 cents per game.



EXxpectation of a continuous random
variable

Definition: Suppose X is a continuous ran-
dom variable and its probability density func-
tion (p.d.f.) is f. Then the expectation of X,
denoted by EX, is defined as

EX=/_O:Oxf(x)d:c. (1)

Remark: We only talk about EFX if
o0

/ 2| f(z)de < co.  (2)
o0

If
[ leli@ = (3

we say EFX does not exist. In this class, we do
not need to worry about this technical condi-
tion.



Examples

Exl: Let X ~Unif(0,1).

1 1
EX:/ z-ldx = ~a2|3 = =.
0 2

1
2

Ex2: Let X ~ N(0,1)

EX el S —o0
— €T e 2dr =
/—oo V27
2
1 !

The integral is zero because g(x) = T =€ 2
IS an odd function, that is,

g(—z) + g(x) = 0.
Note that

| s@idz= [ “lg() + g(~a))da

Thus if g(z) 4+ g(—z) = 0 then [Z2_ g(x)dx = 0.



Ex3

Let X be a continuous random variable with
pdf f(x) = e *I(xz > 0).
o0
EX = / x-e Ydx
O o0
(e MalEF — [ (e )da

0
w_
=/ e *dx
0

— (e MF=1.

integration by part

Remark: We have discussed the expectation
of discrete and continuous random variables.
Often we call EX the mean of X or the mean
of the distribution of X. For example, the
mean of N(0,1) is 0 and the mean of Unif(0,1)
is 1/2.



Expectation of r(X)

Suppose X is a random variable and r(t) is
a function, e.g., r(t) = t2. Note that r(X) is
another random variable. We want to compute
the expectation of r(X).

Suppose X is a discrete RV and its probability
function is f, then

E[lr(X)] =) _r(z)f(2).

X
Suppose X is a continuous RV and its pdf is
f(x), then

Elr(x)1 = [

@)

oor(x)-(f(m)dx.

Exl. Let X ~ Unif(0,1). Compute E[X?].

1 1 1
E[X?] = / 22 1de = ~a3|3 = =
0 3 3



Ex2. Let X take values at 1,—1,0 and f(1) =
f(=1) =1/4 and f(0) = 1/2. Compute E[X?].

12£(1) + (=11 f(—1) + 0% £(0)
1/44+1/44+0=1/2.

E[X?]

Ex3. Let X ~ N(0,1). Compute E[X?].
00 1 22
E[X?] = / 72 - e 2dx

use integral by part
2

€T T o T

= (— e 2)| —/ —e 2d

e e L Vot

00 1 _ﬁd

= e 2dx

/—oo V27

integral of the pdf of standard normal
= 1.




Variance

Let X be a random variable. Suppose EX ex-
ists and we write EX = . The Variance of X
is defined as

Var(X) = E[(X — u)?].

Often o2 is used to denote the variance of X.

Remark: We only talk about the variance of
X when E[(X — n)?] is well defined.

Exl: Let X ~ Unif(0,1). Then py=EX = 3.

Var(X) = BI(X - )]

1 ]_2
= — )24
/O<a: )2da
1

_ 1 131 _

10



Ex2: Let X ~N(0,1). Then u= EX = 0.
Var(X) E[(X —0)?]

E[X?]

1.

In the notation N(0,1), O isthe mean of N(0, 1)
and 1 is the variance of N(0,1).

A useful identity

Var(X) = E[X?] — (EX)?.
Explanation: Suppose X is a continuous r.v. with pdf

)
E[(X - p)?] = / (¢ — w2f(2)da

-/ (@ — 2uz + 42) f(a)da

— 00

E[X?] - 2u / " f@)da

2 / " f@)da

B[X?] —2p - p+ p?
E[X?] — p?

11



Expectation of functions of multivariate
random variables

Definition: Suppose that the joint pdf of X4,..., X,
is f(x1,...,zn). Then the expectation of ¥ =
r(Xq,...,Xn) can be computed by

Elr(X1,...,Xn)]

= [ [ r(x, .. xn) f(x1, ... zn)dey - - dxn

For example, if r(Xq,...,Xn) = X1+'7'1‘+X”, then

X14---4+X,
E[ 1+n+ ]

= [0 [t I (g ap)day - dan
Or it T(Xl,...,Xn) — X]_"'Xn, then

= [ [z anf(z1, ..., xn)dry - - - dog
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Ex1

X and Y have joint pdf f(z,y) = (x +vy)I(0 <
r<1,0<y<1l). Compute F[XY] and E[X +
Y].

E[XY] = /O1 /01 ry - (x + y)dady

= /01 de’[/O1 dyzxy - (x + y)]

- 1 1, 1
= /Odm[ax —|—§a?]

1
3

E[X 4 Y]

[ ] @) Gt ydady
= /01 da| /O1 dy(z + 11)2]

11
= | dels((@+1)° —o?)
i
6.
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Ex2

X and Y have joint pdf f(z,y) = 1I(22 442 <
1). Compute E\/X2 + Y2,

E\/X2_|_Y2 — //2+y2<1 \/;U —|—y —dazdy

Use the polar coordinates
x=rcos(f) y=rsin(h)

dxdy = rdrdf

1
2
€T —dazd
//:r:2+y2§1\/ Ty Y
1 27 1
/ / r - —rdrd
0O JO T
1 2

— / 2r<dr

0

2

3

2
so B\ X2 +v2=2.
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Properties of Expectations

Property 0. Let X = ¢ be a constant random

variable, then E(c)

Property 1. Let a,b be constants and Y
aX + b, then EY = aEX 4+ b and Var(Y)

= ¢ and Var(c) = 0.

a?Var(X). Proof: Assume X has a pdf f(z)

then

EY = E[aX +b]
= /Oo(aa:—l—b)f(a:)da:

@)
=a./
— 00

Var(Y)

E
E
E

2 f(z)dz +b- /_O; £(z)dz

a-EX+b-1=aFEX +5b

(Y — EY)?]

(aX +b— (aEx + b))?]
a?(X — EX)?]

> a’(z — EX)?f(x)dx

= q? /0:0(:1: — EX)?f(z)dx

= a’Var(X).
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Applications of Property 1

Exl. Let EX =1 and Var(X) =2. If Y =
—2X + 3. Find EY and Var(Y).

We use property 1. a = —2 and b = 3.
EFY =(-2)EX+3=-2-14+43=1.

Var(Y) = (=2)?Var(X) =4-2 =38.

Ex2. Let X ~ N(0,1). If Y = X + 1. Find
EY and Var(Y).

We use property 1. a =2 and b= 1.

1 1
FY=—FX+4+1=—-—-041=1.
2 + 2 T
1., 1
Var(Y) = (5) Var(X) =1/4-1 = 7
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Property 2

X1,Xo,..., Xy are n random variables and let
ai,an,...,an be n constants. b is another con-
stant. Then

Fla1 X1+ +anXn+b) = a1 EX14+ - -F+anEXn+b.

Some special cases:

EX1+Xo+ - +Xn] =EX1+EXo+ -+ EXp
where ay = ap =:--- =ap =1 and b = 0.
X1+ Xo+---+Xpn,  EX1+EXo+ -+ EXp

El ]
n n
where a1y :a2=---:an=% and b = 0.
Note that Xq,...,X, can be arbitrary random

variables.

17



Proof of property 2:
Ela1 X1+ -+ anXn + 0]
= / / (arz1+ -+ anzn + b)) f(z1, ..., zp)dz1 -

_ / / a1z f (@1, .. wn)dzs - - dan +
+/ / ananf(ay. ... ap)dey - da
—I—/OO---/OObf(xl,...,xn)dxl---d:c

— al/Zdazlml[/Z---/Zf(ml,...,a;n)d:cg---da;n]—I—---
+an/oo da:nxn[/oo /OO F(or, .. ) dzp ]
—|—b/oo---/Oof(a:l,...,a:n)dwl---da:

oo

= a1/ drizi[fx,(zx1)] + -+ an/ dznzn[fx,(zn)] +0- 1
= a1EX1+---4+a,EX,+Db
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Applications of Property 2
Ex3. EX{=1,EX-2=2 EX3=—1. Find 1.
B(F1T22%43) and 2. B(—X1 +2X5 — X3 2).

X X X 1 1 1
S S T3 = JEX1+ JEXo+ JEXg

=%(1+2—1)=2/3.

E(

E(—X1 +2Xs - X3—2)
= (-1EX1 +2EXo+ (-1)EX3 + (—2)
=(-1)- 14224 (-1)-(-1)—2=2.

Ex4. A team of 10 players entered a restau-
rant for lunch. They all wear the same team
hat. The waiter collected their hats. When the
10 plavyers left the waiter randomly returned
them the hats. The waiter wondered how many
players can actually get their own hats.

19



Let N be the number of players who got their
own hats back. Since N is a random quantity,
let’s compute the average value of N, or the
expectation of N.

For 1 << 10, we define

0 Otherwise

Then N=X1+ Xo+:--+ Xq10. By property 2
we have

{1 if player i got his hat
X, =

EN = E[X14+Xo+...,X10] = EX 1+ -+ EX10.

For each EX;, we know
1

EX; =1P(X; = 1)+0P(X; = 0) = P(X; = 1) = &

20



Property 3

If Xq,Xo,...,Xy are independent random vari-
ables, then

E[h1(X1)ho(X2) - - hn(Xn)]
= E[h1(X1)]E[h2(X2)] - - - E[hn(Xn)].

In particular,
E[X1Xs---Xp] = EXq - EXo---EXp,

Proof:
E[h1(X1)h2(X2) - - hn(X5)]

By independence assumption,

flx1,x2,. .., zn) = fx,(x1) fx,(x2) - fx,(xn)

E[h1(X1)h2(X2) - - hn(X5)]

= (/ hl(xl)fxl(xl)dwl)---(/ hn () X, (2n) dzn)

= E[h1(X1)]E[h2(X2)] - - - E[hn(Xn)].

21

// hi(z1)ha(x2) - - ha(xn) fx, (1) fx, (x2) - - - fx, (xn)day - - -

dx,



Applications of Property 3

Ex5. Let X7, X5, X3 be independent N(0,1).
Find (a) E[X?X35X3] and (b) E[X1X5X3].

By the independence condition, we can use
property 3 to get

E[X{X5X3]
E[X?]E[X3]E[X3]
1-1-1=1.

E[X1X3X3]
E[X1]E[X3)E[X3]
0-1-E[X3] =0.

Ex6. If X and Y are independent, then
F[XY] = E[X]E[Y].
This is an often used equation.

Without independence the equation can be wrong.
For example, let Y = X and X ~ N(0,1), then
E[XY] = E[X?] =1 but E[X]E[Y]=0-0=0.
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EXx7: Variance of the sum of independent
random variables

If Xq,Xo,...,Xy are independent random vari-
ables, ay,ao,...,an are constants. Then

Var(a1 X1+ -+ anXn)
= a%Var(Xl) + .-+ a%Var(Xn).
Two special case:
Var(X1+ -+ Xn)
= Var(Xq1)+- -+ Var(Xy),
where a1 = ap = --- = an = 1.

Var(Xl Tt Xn)

n
Var(X1) 4+ -+ Var(Xy)

n2

Y

where a1=a2=---=an=%.
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Proof of Ex7: Variance of the sum of
independent random variables

We show for any two independent RV X, Y,
Var(X +Y) =Var(X) + Var(Y).

Var(X +Y)

E((X 4+Y) — (px + m)]?)

E((X — px)? = 2(X —ux)(Y — py) + (Y — puy)?)
E(X — px)® = 2E[(X — pux)(Y — py)] + E(Y — py)?
Var(X) — 2E[(X — px)]E[(Y — py)] + Var(Y)
because of independence

Var(X) 4+ Var(Y).

For the general result, let 24 = a1 X1 4+ --- +
ap—1Xnpn—1 and Zo, = apn X, then we know 2,

Z» are independent and thus Var(Z1 + Z5) =
Var(Z1)+Var(Zz) = Var(a1 X1+ +ap_1X, 1)+
a2Var(Xy). Then by induction arguments we
prove the general result.
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