
Covariance and Correlation

Definition of covariance: Covariance of X

and Y is

Cov(X,Y ) = E[(X − EX)(Y − EY )].

We can also denote Cov(X,Y ) = σX,Y .

Two special cases: Cov(X,X) = V ar(X) and

Cov(X, c) = 0.

Definition of correlation: Correlation of X

and Y is

ρX,Y =
Cov(X,Y )√

V ar(X)V ar(Y )
.

By the definition we see ρ(X,X) = 1, and

ρ(X,−X) = −1.

We can show |ρ| ≤ 1.
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A list of properties of Covariance

(1). Cov(X,Y ) = E(XY )− EX · EY

(2). Cov(X,Y ) = Cov(Y,X)

(3). Cov(aX, bY ) = abCov(X,Y )

(4). Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z)

Remarks:

(a) We often use property (1) to compute
Cov(X,Y ).

(b) Property (2) says the covariance operation
is symmetric about X and Y .

(c) By (3) we know Cov(X,−Y ) = −Cov(X,Y ).

(d) By (4) and (2) we know

Cov(Z,X + Y ) = Cov(Z,X) + Cov(Z, Y )
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Ex1

If X and Y are independent, then

Cov(X,Y ) = 0

and

ρX,Y = 0.

Proof: Cov(X,Y ) = E(XY ) − EX · EY . By

independence, we know E(XY ) = EX ·EY , so

Cov(X,Y ) = 0.

By definition of correlation,

ρX,Y =
Cov(X,Y )√

V ar(X)V ar(Y )
= 0.

Therefore,

if Cov(X,Y ) ̸= 0, then X and Y are not inde-

pendent.
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Ex2

Suppose X and Z are independent. V ar(X) =
1 and V ar(Z) = 0.01. Y = X + Z. Compute
the correlation between X and Y .

Solution: Use the definition.

ρX,Y =
Cov(X,Y )√

V ar(X)V ar(Y )
.

Cov(X,Y ) = Cov(X,X + Z)

= Cov(X,X) + Cov(X,Z) = 1+ 0 = 1.

V ar(Y ) = V ar(X + Z)

= V ar(X) + V ar(Z)

by independence assumption

= 1.01.

So

ρX,Y =
1√
1.01

= 0.995.
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A useful variance formula

V ar(aX + bY )

= a2V ar(X) + 2abCov(X,Y ) + b2V ar(Y ).

Proof:

V ar(aX + bY )
= Cov(aX + bY, aX + bY )
= Cov(aX, aX + bY ) + Cov(bY, aX + bY )
= Cov(aX, aX) + Cov(aX, bY )

+Cov(bY, aX) + Cov(bY, bY )
= a2Cov(X,X) + 2abCov(X,Y ) + b2Cov(Y, Y )
= a2V ar(X) + 2abCov(X,Y ) + b2V ar(Y ).

A more general formula If X1, X2, . . . , Xn be

n random variables, a1, a2, . . . , an are constants.

Then

V ar(a1X1 + · · ·+ anXn)

=
n∑

i=1

a2i V ar(Xi) + 2
n∑

i<j

aiajCov(Xi, Xj).

The proof is left as an optional Hw problem.
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Ex3 If V ar(X) = 1, V ar(Y ) = 2 and Cov(X,Y ) =
−1. If U = 3X−2Y , V = X+2Y . Find V ar(U),
V ar(V ) and Cov(U, V ).

V ar(U) = V ar(3X − 2Y )

= 32V ar(X) + 2 · 3 · (−2)Cov(X,Y )

+(−2)2V ar(Y )

= 9 · 1+ 2 · 3 · (−2) · (−1) + 4 · 2 = 29.

V ar(V ) = V ar(X +2Y )

= 12V ar(X) + 2 · 1 · 2Cov(X,Y )

+(2)2V ar(Y )

= 1− 4+ 8 = 5.

Cov(U, V ) = Cov(3X − 2Y,X +2Y )

= Cov(3X − 2Y,X) + Cov(3X − 2Y,2Y )

= Cov(3X,X) + Cov(−2Y,X)

+Cov(3X,2Y ) + Cov(−2Y,2Y )

= 3Cov(X,X) + (−2)Cov(Y,X)

+3 · 2Cov(X,Y ) + (−2) · 2Cov(Y, Y )

= 3V ar(X) + 4Cov(X,Y )− 4V ar(Y )

= 3− 4− 4(2) = −9.
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Proof of |ρ| ≤ 1

We want to show for any X,Y , |ρ(X,Y )| ≤ 1.

Let Zt = X−tY where t is a real number. Then
we have

V ar(Zt) = V ar(X)− 2tCov(X,Y ) + t2V ar(Y )

Let g(t) = V ar(Zt) as a function of t. Consider
t = t0 = Cov(X,Y )

V ar(Y ) . We find

g(t0) = V ar(X)−
[Cov(X,Y )]2

V ar(Y )

Since g(t) = V ar(Zt) ≥ 0 for all t, we must
have

V ar(X)−
[Cov(X,Y )]2

V ar(Y )
≥ 0

which means

1 ≥
[Cov(X,Y )]2

V ar(X)V ar(Y )
.

Thus by the definition of ρ(X,Y ) we see

1 ≥ ρ2(X,Y ).

15



Markov Inequality

Let X be a positive random variable and E[X] <

∞. Then for every positive real number a, we

have

Pr(X > a) ≤
E[X]

a
.

Proof: We note that

Y = X − aI(X > a) ≥ 0

Why? because if X ≤ a then Y = X−0 = X >

0; and if X ≥ a, then Y = X − a ≥ 0. Since

Y is a non-negative random variable, by the

definition of expectation, its mean is greater

or equal to zero, so E[Y ] ≥ 0.

E[Y ] = E[X−aI(X > a)] = E[X]−aE[I(X > a)]

Thus we end up with

E[X] ≥ aE[I(X > a)] = aPr(X > a).

We used the fact E[I(X > a)] = Pr(X > a).
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Chebyshev Inequality

Let X be a random variable with mean µ and
variance σ2. Then for any a > 0 we have

Pr(|X − µ| > a) ≤
V ar(X)

a2
.

Proof: We use Markov inequality. Observe the
following fact

Pr(|X − µ| > a) = Pr((X − µ)2 > a2)

By Markov inequality, we know

Pr((X − µ)2 > a2) ≤
E[(X − µ)2]

a2

where we consider (X−µ)2 is the X in Markov
inequality. Note that

E[(X − µ)2] = V ar(X)

Hence we end up with

Pr(|X − µ| > a) ≤
V ar(X)

a2
.
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Let a = kσ in Chebyshev inequality, we then

have

Pr(|X − µ| > kσ) ≤
V ar(X)

k2σ2
=

1

k2

suppose k = 3, then

Pr(|X − µ| > 3σ) ≤
1

9
= 0.11.

Or we can conclude that

Pr(µ− 3σ < X < µ+3σ) ≥ 1−
1

9
= 0.89.

With 89% chance the value of X will fall into

the interval (µ− 3σ, µ+3σ).
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An important application of Chebyshev

inequality

Let X1, . . . , Xn be iid random variables. We

assume they have a common mean µ and vari-

ance σ2. Let

X̄ =

∑n
i=1Xi

n
.

Then for a > 0,

Pr(|X̄ − µ| > a) ≤
σ2

na2
.

Why? Use Chebyshev inequality on X̄. By the

iid assumption,

V ar(X̄) =
1

n
V ar(X1) =

1

n
σ2

Chebyshev inequality says

Pr(|X̄ − µ| > a) ≤
V ar(X̄)

a2
=

σ2

na2
.
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The Law of Large Numbers

Because for any a > 0 (no matter how small it

is),

Pr(|X̄ − µ| > a) ≤
σ2

na2
,

we can conclude

lim
n→∞Pr(|X̄ − µ| > a) = 0.

The above equation tells us the sample mean

converges to the true mean in probability. This

is called the weak law of large numbers.

There is also the strong law of large numbers.

The mathmatical expression is

Pr( lim
n→∞ X̄ = µ) = 1.
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